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Children with autism spectrum disorders, who improved with a
luteolin-containing dietary formulation, show reduced serum
levels of TNF and IL-6
I Tsilioni1, A Taliou2, K Francis3 and TC Theoharides1,4,5,6

Autism spectrum disorders (ASDs) have been associated with brain inflammation as indicated by microglia activation, as well as
brain expression and increased plasma levels of interleukin-6 (IL-6) and tumor necrosis factor (TNF). Here we report that serum
levels of IL-6 and TNF were elevated (61.95 ± 94.76 pgml− 1 and 313.8 ± 444.3 pgml− 1, respectively) in the same cohort of patients
with elevated serum levels of corticotropin-releasing hormone (CRH) and neurotensin (NT), while IL-9, IL-31 and IL-33 were not
different from controls. The elevated CRH and NT levels did not change after treatment with a luteolin-containing dietary
formulation. However, the mean serum IL-6 and TNF levels decreased significantly (P= 0.036 and P= 0.015, respectively) at the end
of the treatment period (26 weeks) as compared with levels at the beginning; these decreases were strongly associated with
children whose behavior improved the most after luteolin formulation treatment. Our results indicate that there are distinct
subgroups of children within the ASDs that may be identifiable through serum levels of IL-6 and TNF and that these cytokines may
constitute distinct prognostic markers for at least the beneficial effect of luteolin formulation.

Translational Psychiatry (2015) 5, e647; doi:10.1038/tp.2015.142; published online 29 September 2015

INTRODUCTION
Autism spectrum disorders (ASDs) are neurodevelopmental
disorders characterized by impaired social interactions and
communication, as well as stereotypic behaviors.1–4 The preva-
lence of ASDs is estimated to be 1 in 68 children.5 As many as 50%
of children with ASDs regress at 2–3 years old implying the
involvement of some epigenetic triggers, such as high fever,
infection,6,7 trauma,8 environmental toxins9–11 or stress.12 In spite
of the identification of a number of mutations in children with
ASDs,13 its pathogenesis remains unknown. Moreover there are no
objective biomarkers for either diagnosis or prognosis making
effective drug development difficult.
There appear to be distinct subgroups within the ASDs, includ-

ing gastrointestinal problems,14 mitochondrial dysfunction15 and
‘allergic’ symptoms,16 especially food intolerance and eczema.17

However, no group has been identified by objective biomarkers.
Increasing evidence indicates that brain inflammation is important
in the pathogenesis of neuropsychiatric disorders13,18,19 including
ASDs. A recent paper reported microglia activation as a common
finding in the brain of patients with ASDs.20 Microglia can be
activated by mast cells (MC),21 which have been implicated in
ASDs.22 In fact, the risk of ASDs appears to be 10 times higher in
children with mastocytosis,23 a condition characterized by an
increased number of activated MCs.24

We reported increased serum levels of the peptide neurotensin
(NT) in children with ASDs.25 NT is a vasoactive peptide isolated
from the brain26 and is implicated in immunity.27 We recently

reported that serum levels of corticotropin-releasing hormone
(CRH), secreted under stress, were also elevated together with NT
in children with ASDs.28 CRH increased vascular permeability22

through a synergistic action with NT.29 Interactions among CRH,
NT, microglia and MCs could contribute to brain inflammation.30,31

Many children with ASDs have been reported to have ‘allergic-
like’ symptoms32 implicating MC activation.33 Natural flavonoids,
like luteolin and quercetin, exhibit potent anti-oxidant and anti-
inflammatory activities34 and inhibit the release of inflammatory
mediators from human MCs.35 Luteolin and its structurally
related quercetin inhibit the release of histamine, leukotrienes,
interleukin-8 (IL-8), IL-6 and tumor necrosis factor-alpha (TNF-α)
from human cultured MCs36–38 and allergic inflammation.39

Moreover, luteolin inhibited IL-6 release from activated
microglia40 and reduced maternal IL-6-induced autism-like beha-
vioral deficits related to social interactions in mice.41 Luteolin also
inhibits MC-dependent stimulation of activated T cells,42 and is
neuroprotective.43 It also inhibits stimulation of astrocytes,44 as
well as microglial activation and proliferation,45–47 protects against
thimerosal-induced inflammatory mediator release from MCs 48

and methylmercury-induced mouse brain mitochondrial
damage.49 One open-label clinical study showed that a luteolin-
containing dietary formulation significantly improved sociability in
children with ASDs.50

Here we report that serum IL-6 and TNF levels that were
elevated in the children with ASDs in that study before treatment
were significantly reduced at the end of the treatment period;
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moreover, this reduction strongly correlated with those children
who improved by this luteolin dietary supplement.

MATERIALS AND METHODS
Fasting blood was obtained from Caucasian children (34 male and 6
female, 4–10 years of age) on the entire ASDs who participated in an open-
label clinical trial conducted at the Attikon General Hospital, Athens
Medical School, Athens, Greece (registered at ClinicalTrials.gov, NCT
01847521).50 Children were diagnosed with ASDs based on clinical
assessment and corroborated by meeting the cutoff scores on both the
DSM-IV-TR symptom list and the autism diagnostic observation schedule
(ADOS) algorithm. They were medication free prior to blood draw for at
least 2 weeks for all psychotropic medications and 4 weeks for fluoxetine
or depot neuroleptics. The exclusion criteria were: (1) Any genetic
condition linked to ASDs (for example, Rett syndrome, Fragile X syndrome,
tuberous sclerosis or focal epilepsy); (2) Any genetic syndrome involving
the central nervous system, even if the link with ASDs was uncertain; (3)
Any neurologic disorder involving pathology above the brain stem, other
than uncomplicated non-focal epilepsy; (4) Contemporaneous evidence,
or unequivocal retrospective evidence, of probable neonatal brain
damage; (5) Clinically significant visual or auditory impairment, even after
correction; (6) Any severe nutritional or psychological deprivation; (7)
Systemic or mastocytosis (including urticaria pigmentosa); (8) History of
upper airway diseases; (9) History of inflammatory diseases (for example,
juvenile rheumatoid arthritis, inflammatory bowel disease); (10) History of
allergies. Informed consent was obtained from all subjects. This protocol
was approved by the Ethics Committee of Attikon General Hospital, Athens
Medical School, Athens, Greece.
Children were administered the dietary formulation (NeuroProtek,

GMPCertified, Tishcon, Salisbury, MD, USA) containing the liposomal
flavonoids (mg per capsule): luteolin (100), quercetin (70) and the
quercetin glucoside rutin (30) in olive fruit extract formulated by a good
manufacturing practices–certified facility (Tishcon Laboratories, Westbury,
NY, USA) under contract from Algonot (Sarasota, FL, USA; www.algonot.
com). Quercetin and rutin were added to the formulation as ‘decoys’ to
keep the intestinal and liver enzymes occupied to allow luteolin to escape
metabolism and reach the brain.
Serum was also collected from normally developing, healthy children,

unrelated to the ASDs subjects, who were seen for routine health visits at
the Pediatric Department of the Social Security Administration (IKA)
polyclinic. Serum samples were labeled only with a code number, the age
and sex of the subjects. All ASDs and control blood samples were prepared
immediately and serum was stored in − 80 °C. Samples were then
transported on dry ice to Boston for analysis.

Assessment of serum cytokine levels
IL-6, IL-9, IL-31, IL-33 and TNF levels were determined with commercially
available enzyme-immunosorbent assay (ELISA) kits (R&D Systems,
Minneapolis, MN, USA) according to the manufacturer’s protocol.

Statistical analysis
Prior to analysis, the data were validated and inspected for outliers. The
results are presented as scattergrams with symbols representing individual
data points and the horizontal lines representing the mean for each group.
Normality of distribution was checked with the Shapiro–Wilk’s test.
Comparison between the healthy control and the ASDs groups was
performed using Mann–Whitney U-tests. Comparison of the ASDs group at
baseline and at endpoint was performed using Wilcoxon matched pair test.
The effect of Vineland Adaptive Behavior Scale (VABS) domains outcome in
time was investigated using a general linear model for repeated
measurements. A result was considered significant at a P-value o0.05.
The analysis was performed by using the GraphPad Prism version 5.0
software (GraphPad Software, San Diego, CA, USA).

RESULTS
There was no statistical difference in serum levels of IL-9, IL-31 and
IL-33 between ASDs and normotypic controls (results not shown).
Serum IL-6 levels were elevated (61.95 ± 94.76 pgml− 1) in

children with ASDs as compared with normotypic controls
(23.20 ± 16.31 pgml− 1), but this increase did not reach statistical
significance (Figure 1a).
Nevertheless, serum IL-6 levels were significantly (P= 0.036)

lower (14.68 ± 19.22 pgml− 1) in children with ASDs after treat-
ment with luteolin in comparison to their levels before the
beginning of treatment (61.95 ± 94.76 pgml− 1) (Figure 1b).
Serum TNF levels were significantly (P= 0.045) elevated

(313.8 ± 444.3 pgml− 1) in children with ASDs as compared with
normotypic controls (52.78 ± 34.62 pgml− 1) (Figure 2a).
These elevated serum TNF levels were significantly (P= 0.015)

lower (139.6 ± 181.5 pgml− 1) in children with ASDs after treat-
ment with luteolin in comparison to their levels before the
beginning of treatment (313.8 ± 444.3 pgml− 1) (Figure 2b).
There were two clusters of ASD children with low and high

serum IL-6 and TNF levels indicating two subgroups. Low IL-6 and
TNF levels are those below the mean, while high IL-6 and TNF
levels are those above the mean. The ASDs children who had both
high serum IL-6 and TNF levels were the same (n= 10).
The improvement in the VABS age-equivalent scores for these

10 ASDs children was significant (Po0.05) for all domains
(Table 1). The VABS composite score was also significantly higher
at the end of the study. These data indicate a positive effect of the
luteolin dietary supplement on the adaptive functioning of this
subgroup of ASDs children. More specifically these children
gained 9.73 months in the communication domain, 6.64 months
in daily living skills and 8.09 months in the social domain.
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Figure 1. (a) Comparison of serum IL-6 levels in normal and ASDs children. (b) Serum IL-6 levels in children with ASDs before and after
treatment with a luteolin-containing dietary formulation. Symbols represent individual data points, and the horizontal line represents the
mean for each group. ASD, autism spectrum disorder; IL, interleukin.
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DISCUSSION
Our study shows two clusters of ASD children with low and high
serum IL-6 and TNF levels, indicating two subgroups. Moreover,
the ASD children who had both high serum IL-6 and TNF levels
were the same (n= 10). We further show that the children with
ASDs in which the elevated serum IL-6 and TNF levels decreased
at the end of the treatment period with a luteolin formulation,
were the ones whose behavior improved the most.
There is evidence indicating that certain cytokines can impair

neurodevelopment and behavior13,51 and that microglia activation
and inflammation is involved in the pathogenesis of neuropsy-
chiatric diseases13,51 including ASDs.52,53 IL-6 can directly alter
neuronal activity, proliferation and survival that may impact
behavior.54 IL-6 has also physiological and pathological effects on
learning and memory.55 Increased gene expression of IL-6 was
noted in postmortem specimens of the temporal cortex of the
brain of individuals with ASDs56 and increased protein level of IL-6
was found in the brain and cerebrospinal fluid of individuals with
ASDs.57 In agreement with these findings, IL-6 was significantly
increased in the frontal cortex and cerebellum of ASD patients as
compared with the age-matched controls.58 IL-6 may derive from
microglia cells, which are activated in ASDs.20 Consistent with our
results is a previously reported meta-analysis of increased IL-6
concentrations in peripheral blood in ASD participants compared
with healthy controls.59 It is of interest that acute restraint stress of
mice led to increased serum IL-6, which was entirely MC
dependent.60 IL-1β can stimulate selective release of IL-6 from
MCs.61

In the present study, we also found significantly increased
serum TNF levels in children with ASDs in comparison to healthy
controls. Another study showed increased TNF production in

peripheral blood mononuclear cells of autistic subjects after
stimulation with polyhydroxyalkanoates and tetanus.62 TNF was
increased almost 50 times in the cerebrospinal fluid of ASD
children.63 Brain MCs can secrete TNF.64 Both TNF and IL-6 expression
has been documented in brains of children with ASDs65 and IL-6 has
been implicated in an animal ‘model’ of autism.7 In this context, it is
particularly important that MCs are the only cells that store
preformed TNF, which they can secrete rapidly.66 MCs are the only
cells that release IL-6 in response to stress.60 Preformed TNF is
secreted from MCs67 and stimulates T-cell activation.42,68 TNF has
been linked with neurite growth and the regulation of homeostatic
synaptic plasticity in the hippocampus.69

One study also showed increased serum levels of IL-17 in children
with ASDs.70 Another study showed increased plasma IL-1β and
IL-17, but only in children with ASD and regression; children with
ASD and GI issues had higher plasma IL-1β and IL-6, but not TNF. TNF
and IL-17 seem to act together in perpetuating the inflammatory
process.71,72 MC-derived IL-6 and transforming growth factor beta
(TGFβ) induce the development of Th-17 cells through dendritic
cell maturation;73 Moreover, MCs secrete IL-17, themselves.74

Here we report that treatment with a luteolin-containing dietary
formulation normalized serum IL-6 and TNF in those children that
showed the most benefit from the use of luteolin.
We recently reported that the structural analog of luteolin

3′,4′,5,7-tetramethoxy flavone was more potent than luteolin in its
ability to inhibit mediator release from human MCs.35

Luteolin is structurally closely related to 7,8-dihydroflavone,
which was shown to have brain-derived neurotrophic factor
(BDNF)-like activity.75 In fact, absence of BDNF was associated with
autistic-like-behavior in mice, while 7,8-dihydroflavone adminis-
tration reduced symptoms in a mouse model of Rett syndrome,76

most patients with which have symptoms of ASDs.77
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Figure 2. (a) Comparison of serum TNF levels in normal and ASDs children. (b) Serum TNF levels in children with ASDs before and after
treatment with a luteolin-containing dietary formulation. Symbols represent individual data points, and the horizontal line represents the
mean for each group. ASD, autism spectrum disorder; TNF, tumor necrosis factor.

Table 1. Effectiveness of the study luteolin formulation in ASDs children with high serum IL-6 and TNF levels (n= 10)

Vineland adaptive behavior scales (VABS) 0 week 26 week Change Effect sizea P-value

Communication AE 38.91 (25.47)b 48.64 (31.60) 9.73 0.38 0.008
Daily living skills AE 38.45 (19.11) 45.09 (21.00) 6.64 0.35 0.0003
Social AE 36.55 (18.04) 44.64 (20.93) 8.09 0.45 0.001
Composite score 37.97 (19.68) 46.12 (23.19) 8.15 0.42 0.001

Abbreviations: AE, age equivalent; ASD, autism spectrum disorder; IL, interleukin; TNF, tumor necrosis factor; VABS, Vineland Adaptive Behavior Scale.
a(26 week–0 week)/0 week s.d. bVABS scores (s.d.).
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We believe this is the first time that objective biomarkers can (a)
distinguish a subgroup of children with ASDs and (b) their
reduced level correlate with a favorable clinical outcome,
following administration of a natural anti-inflammatory com-
pound. Flavonoids are considered generally safe78–80 and are
being discussed as possible treatment of central nervous system
disorders81 that may involve brain inflammation in response to
environmental triggers. One obvious question is how much of the
luteolin may reach the brain because flavonoids purely absorb
orally and are extensively metabolized.82–84 Unfortunately, chil-
dren with ASDs are prescribed many other supplements and
psychotropic drugs that may have unwanted drug interactions.85

One way to deliver luteolin directly to the brain would be through
intranasal administration through the cribriform plexus as shown
before for another compound.86
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