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Abstract

Acute lung injury (ALI) is characterized by pulmonary edema and acute inflammation leading to pulmonary dysfunction and
potentially death. Early medical intervention may ameliorate the severity of ALI, but unfortunately, there are no reliable
biomarkers for early diagnosis. We screened for biomarkers in a mouse model of ALI. In this model, inhalation of S. aureus
enterotoxin A causes increased capillary permeability, cell damage, and increase protein and cytokine concentration in the
lungs. We set out to find predictive biomarkers of ALI in bronchoalveolar lavage (BAL) fluid before the onset of clinical
manifestations. A cutting edge proteomic approach was used to compare BAL fluid harvested 16 h post S. aureus
enterotoxin A inhalation versus BAL fluid from vehicle alone treated mice. The proteomic PF 2D platform permitted
comparative analysis of proteomic maps and mass spectrometry identified cytochrome b5 and cytokeratin 17 in BAL fluid of
mice challenged with S. aureus enterotoxin A. Validation of cytochrome b5 showed tropic expression in epithelial cells of the
bronchioles. Importantly, S. aureus enterotoxin A inhalation significantly decreased cytochrome b5 during the onset of lung
injury. Validation of cytokeratin 17 showed ubiquitous expression in lung tissue and increased presence in BAL fluid after S.
aureus enterotoxin A inhalation. Therefore, these new biomarkers may be predictive of ALI onset in patients and could
provide insight regarding the basis of lung injury and inflammation.
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Introduction

Pulmonary biomarkers are needed to predict the clinical course

of lung disease, status, progression, and response to treatment

[1,2]. A key aspect in biomarker discovery is uncovering molecules

that appear early during disease initiation, when the natural

history of the disease can be modified. During acute lung injury

(ALI), several factors correlate with tissue damage such as

recruitment of neutrophils and macrophages, and also increases

in IFNc in BAL fluid [3]. However, these events occur late in the

disease process, once ALI is fully initiated. Therefore, it is critical

to find new biomarkers that occur prior to tissue damage [4] and

perhaps even before cytokines are produced.

In humans, a major cause of ALI is the immune response to a

lung infection [5,6]. Naturally there are other causes such as

exposure to aerosolized toxic chemicals, aspiration, and multiple

trauma. However, even in these cases, a secondary infection may

trigger the inflammatory response that leads to ALI [6]. Although

no animal model is a perfect representation of ALI in humans [7],

bacterial lipopolysaccharide (LPS) does induce key features such as

alveolitis, neutrophil recruitment, and induction of IFNc that

mimic symptoms of human ALI. However, unlike infection with

whole organisms, LPS does not specifically stimulate T cells, which

likely make a substantial contribution to disease in humans.

Therefore, pathogen byproducts that stimulate T cells add a

critical dimension to the modeling of human ALI.

Staphylococcus aureus secretes enterotoxin proteins that are

pathogenic in humans, can cause toxic shock syndrome [4],

and are implicated in Chronic Obstructive Pulmonary Disease

(COPD) [8]. Importantly, S. aureus has been detected in nasal

polyps of patients suffering from chronic rhinosinusitis, and IgE

antibodies specific to S. aureus enterotoxin A (SEA) have been

detected in patients with severe asthma, suggesting that SEA is

involved in the pulmonary immune response [9,10]. In our

previous mouse study we showed that inhalation of SEA

induced T cells to migrate into lung, become effectors, and

prime innate cells [11]. This response was rapid, marked by

neutrophil recruitment and increases of protein in BAL fluid

along with high levels of IFNc and alveolitis. Consequently, the

SEA inhalation model approximates many aspects of human

ALI.

Our goal was to use a proteomic mining strategy to uncover

differences in BAL fluid from SEA treated mice versus vehicle

alone controls. The PF 2D proteomic platform allows two-

dimensional liquid fractionation of biological fluid based on

isoelectric focusing and hydrophobicity. We used this strategy to

detect changes during colon cancer chemoprevention [12], and

others have used it for biomarker discovery [13,14]. Recently,

this method uncovered a pathway involved in cytokine based
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inflammation [15]. Therefore, we set out to find distinct

changes in the BAL fluid proteome of SEA treated mice

compared to vehicle alone, and found an unexpected increase

in microsomal cytochrome b5 and cytokeratin 17. These data

were validated and coincided with rapid changes in lung

pathology that included increased lung inflammation. Thus, our

mouse model data show that cytochrome b5 and cytokeratin 17

are detected in BAL fluid very early after lung damage, and

thus may be potential biomarkers of pulmonary injury in

patients with ALI or other life-threatening diseases.

Results

Inhalation of SEA Induces Lung Inflammation and
Damage

We used an in vivo mouse model of ALI to uncover molecular

biomarkers of lung inflammation. After inhalation of SEA, mice

were monitored for signs of acute inflammation. In the current

study we first examined lung pathology 2 days post SEA

challenge, a time point where T cell effectors start to

accumulate [11]. Lung sections stained by hematoxylin and

eosin (H&E) showed leakage of red blood cells from blood

vessels into the alveoli (Fig. 1A, black arrows in upper right

panel), abundant leukocyte infiltration in the peri-vascular tissue,

and increased cellularity in the interstitium and alveolar space

as we observed previously [11]. Proteinous exudate was visible

after SEA (Fig. 1A, white arrows in upper right panel). In

contrast, lungs from vehicle-treated mice showed no signs of

injury (Fig. 1A lower panels). To visualize the possibility of

increased infiltrating leukocytes we performed the same inhala-

tion study with or without lung perfusion. We found that

perfusing the lung allowed for visualization of adherent

leukocytes in the lumen of blood vessels after SEA treatment

in the lung sections (Fig. 1B). In the absence of inflammation

(vehicle) leukocyte adhesion was not evident. Secondly, electron

microscopy (EM) was used to demonstrate the binding of

leukocytes to the vascular lung endothelium. EM showed

increased leukocyte adherence to blood vessel endothelium in

the lung airways after SEA inhalation whereas vehicle alone

injected mice showed no sign of leukocyte infiltration or

adhesion to the endothelium (Fig. 1C). Moreover, leukocytes

appeared to be transmigrating from the vasculature into lung

tissue (Fig. 1C, left panel: L*). Altogether, these pathologic

changes are consistent with rapid inflammation and immune-

mediated lung damage.

Next, we measured parameters representative of ALI and tested

the effect of 2u inhalation of SEA at inducing compounded

inflammation. Increased cell number and total protein in BAL was

evident (Figs. 2A and 2B). High levels of IFNc and IL-6 were

detected in BAL fluid after SEA inhalation and were strongly

augmented after 2u SEA (Figs. 2C and E). Additionally, IFNc and

IL-6 were detected in serum demonstrating a powerful systemic

response, which is a key factor in modeling ALI (Figs. 2D and F).

Finally, lactate dehydrogenases (LDH), a marker of cell injury

detectable in BAL fluid [16,17] was present in BAL fluid but there

was no difference after SEA inhalation (Fig. 2G). In fact, this result

reinforces the current consensus for the need of new and more

sensitive biochemical markers for ALI [1,2].

Identification of Early Markers of ALI
To identify biomarkers of lung injury we used a proteomic

approach comparing BAL fluid of SEA versus vehicle alone

treated mice. Importantly, in order to find early biomarkers of

ALI we collected BAL fluid 16 h after SEA inhalation and

analyzed the samples using a PF 2D proteomics platform as

described before [12,15]. PF 2D proteomics enables protein

separation by charge followed by reverse-phase chromatography

(Fig. 3). Proteomic maps of BAL fluid SEA versus vehicle alone

were similar as illustrated (Fig. 3A), but 2 peaks were spotted as

Figure 1. Intranasal SEA challenge induces lung injury and
leukocyte infiltrate. Mice received 1 mg of SEA diluted in BSS
(Vehicle) through the i.n. route. (A) Lungs from day 2 SEA challenged
mice were isolated, sectioned, and stained with H&E. Left panels display
a low magnification (100X) and right panels high magnification (400X)
of representative lung sections. Black arrows indicate leakage of red
blood cells, white arrows indicate eosin staining refractile material
(protein). (B) High magnification (400X) of lungs with (left panel) and
without perfusion (right panel) of representative lung sections after
vehicle alone and SEA i.n inhalation. Arrows indicate infiltrating
leukocytes retained in blood vessel after perfusion. (C) Electron
microscopy of lung blood vessels after vehicle alone and SEA i.n
inhalation: Alveoli (Alv), Blood Vessel (B.Ves.), Erythrocyte (e), Leukocyte
(L), Transmigrating leukocyte (L*). Bar = 10 mm. The data are
representative of three independent experiments using 2–4 mice per
group.
doi:10.1371/journal.pone.0040184.g001
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differential fingerprints (Fig. 3A dotted circle). After careful

analysis of three independent experiments using Proteoview

software, two fingerprints were consistently identified at specific

coordinates present in the BAL fluid map from 16 h SEA

treated mice but absent or reduced in vehicle alone samples

(Fig. 3B, right boxes). To identify the proteins contained in the

differential fingerprint fractions, a third dimension was used.

The fractions of interest were lyophilized, resolved by SDS-

PAGE, and detected by fluorescent dye staining (Fig. 3C). The

bands uniquely detected in the SEA BAL fluid samples were cut

out of the gel, digested with trypsin and proteins identified by

LC/MS/MS (Fig. 3D). Using this strategy cytochrome b5 and

cytokeratin 17 were identified as differentially present upon SEA

inhalation. Importantly, the sequences of cytochrome b5 and of

cytokeratin 17 indicated the proteins were derived from mouse

and were not contaminants of human origin. Interestingly, the

molecular weight of cytochrome b5 corresponds to the

migrating size (15 kDa) of the band on SDS-PAGE suggesting

that the full length protein was isolated (Fig. 3D). All the other

identified proteins had a higher molecular weight suggesting a

breakdown product of these proteins were isolated. Several

proteins like albumin and haptoglobin, known to be associated

with inflammation and injury [18,19] serve as a validation

component of our analysis.

Cytochrome b5 is a Marker of Lung Damage
We performed immunohistochemistry analysis of the proteins

with the greatest spectral count as assessed by mass spectrometry

(Fig. 3D) to validate their expression and to pinpoint from which

site in the lung these proteins were derived. Staining for

cytochrome b5 showed strong expression restricted to the

epithelium of lung airways (Fig. 4A, top panels). Interestingly,

the staining was quite evident in the airways of the vehicle alone

treated group (Fig. 4A upper left panel), but weaker and

punctuated in the 3 groups that received SEA (Fig. 4A the three

upper right panels). This observation is consistent with the notion

that cytochrome b5 may be released from epithelial cells of lung

airways that are damaged locally by activated immune cells

following SEA inhalation. To provide support for this notion,

cytochrome b5 staining intensity was determined using Image-Pro

Plus software and the data showed a significant decrease of

staining in all groups that received SEA versus vehicle alone

(Fig. 4B).

We also validated the expression of cytokeratin 17 that is

ubiquitously expressed in lung tissue, but contrary to cytochrome

b5, the tissue expression of cytokeratin 17 in the lung was not

visibly altered by SEA inhalation (Fig. 5a). We further validated

the presence of cytokeratin 17 using immunoblot (Fig. 5b).

Cytokeratin 17 accumulated in BAL fluid as early as 4 h post-

SEA (Fig 5c) and a longer exposure of the membrane revealed

cytokeratin 17 in BAL fluid from naı̈ve mice (Fig 5c) and in vehicle

alone BAL fluid (Fig. S1). Thus, cytokeratin 17 is sensitive to

perturbations in lung. Immunoblotting for cytochrome b5 was less

successful since a 60 kDa, instead of a 15 kDa, band was routinely

detected which might have been a concatemer of cytochrome b5

as previously published (not shown) [20]. Altogether our data raise

the possibility that cytochrome b5 and cytokeratin 17 are potential

biomarkers of lung injury released from damaged epithelium early

during pulmonary inflammation.

Discussion

Using a proteomic-based approach we compared proteomic

maps between BAL fluid from SEA versus vehicle-challenged mice

and uncovered the presence of cytochrome b5 right after the onset

of inflammation. Cytochrome b5 expression was restricted to

epithelial cells of the bronchioles and SEA inhalation decreased

the intensity of its signal. We propose that inflammation caused by

cell injury mediates rapid release of cytochrome b5 into the

extracellular space. Alternatively, cellular cytochrome b5 may be

shed in the early stages of lung injury and found in the BAL fluid.

Hence, cytochrome b5 is a potential biomarker of early lung

injury.

Previous studies, and the model presented in this report,

demonstrate that enterotoxin inhalation induces rapid T cell and

innate cell activation that mimic the characteristics of human lung

injury. These include acute onset of disease, obstruction of the

airways [11,21,22], increased vascular permeability (Fig. 1) [22],

endothelial and epithelial damage [21] (Fig. 1), production of nitric

oxide [23], and increase protein and cytokine concentration in the

lungs [11,21,22,23] (Fig. 2). Hence, SEA inhalation in mouse

provides a useful animal model of ALI that complements other

experimental approaches [7]. In this report we specifically show

rapid onset of protein deposition, leakage of red blood cells,

increased adhesion of leukocytes in small blood vessels, leukocyte

infiltration, and accumulation of proteins and cytokines in BAL

fluid (Figs. 1–2). These data firmly establish that SEA inhalation

can induce ALI.

The search for biomarkers of lung injury has provided

candidates expressed in different anatomical compartments [24].

The von Willebrand factor (vWF) and ICAM-1 have been

proposed as predictive markers of endothelial injury but with

mixed results [25,26,27]. Surfactant proteins SP-A and SP-D

expressed by type II pneumocytes, the receptor for advance

glycation end-product (RAGE), and KL-6 have been associated

with pulmonary epithelial cell damage [28,29,30,31]. Desomosine,

a stable fragment of elastine, has been used as a marker for

destroyed extracellular matrix in ALI [32,33]. Moreover, the

presence of inflammatory cytokines present during ALI is often

associated with a negative prognosis. For example, IL-1b, IL-6, IL-

8, and IL-10 are associated with morbidity and mortality in ALI

patients [34,35]. However, the etiology of the disease and the

presence of infectious agents promoting inflammation add to the

complexity of finding the appropriate biomarker [25]. Although

biomarkers of ALI have been identified, no single biomarker has

been successfully used to diagnose and predict the clinical course

of the disease [1,2]. However, the combination of a panel of

multiple biomarkers has been shown to be an improvement for

predicting mortality in acute lung injury [36] and reinforces the

idea that finding additional new early biomarkers will increase the

accuracy of diagnosis.

To better understand the onset of lung injury the PF 2D was

used to detect proteins in BAL fluid. Comparative proteomic

mapping of BAL fluid taken from mice after SEA inhalation

uncovered cytochrome b5 as a putative biomarker. Among the

Figure 2. Intranasal SEA challenge induces cellular infiltration, protein leakage and inflammation. Mice received 1 mg of SEA or vehicle
alone i.n., secondary (2u) challenge of either vehicle or SEA 48 h after the primary (1u) and were sacrificed 5 h later (53 hrs total). (A) Cells present in
BAL fluid were harvested and enumerated and (B) total BAL fluid protein quantified by BCA. (C) IFNc in BAL fluid and (D) in serum, and (E) IL-6 in BAL
and (F) in serum were quantified by ELISA. (G) LDH in BAL fluid was quantified. The data are representative of two independent experiments using 4
mice per group. The errors bars indicate the standard error of the mean between biological replicates.
doi:10.1371/journal.pone.0040184.g002
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different isoforms of cytochrome b5, we identified the isoform

bound to the ER membrane, called microsomal cytochrome b5

[37]. Following PF 2D fractionation, LC/MS/MS resolved 8

unique peptides covering 43% of microsomal cytochrome b5

sequence with perfect homology. However, a truncated soluble

form of cytochrome b5 encoded by a second gene lacking the

membrane binding carboxy terminus and expressed in erythro-

cytes, lung, gallbladder, adrenal gland, and bone marrow [38]

matches the peptide sequences. Nevertheless, the molecular size

of the protein isolated by PF 2D fractionation corresponded to

the membrane bound microsomal and not soluble cytochrome

b5. Additional genetic studies will be needed to confirm with

absolute certainty which form of cytochrome b5 has been

identified in our study. However, we ruled out OMb, the

mitochrondrial isoform of cytochrome b5 [39], which has only

58% amino acid conservation with microsomal cytochrome b5

[40]. Cytochrome b5 is a highly conserved protein involved in

electron transfer between NADH/NADPH and cytochrome

P450, participating in the oxidation of a wide array of

endogenous and xenobiotic substances [37,41]. The use of

model substrates and drugs in conditional hepatic knock-out

cytochrome b5 mice demonstrated that P450-mediated metab-

olism is dependent on cytochrome b5 [42]. Interestingly,

systemic LPS administration decreases cytochrome P450 mRNA

expression in lungs [43], which support the finding that

inhibitors of cytochrome P450 activity exacerbate LPS-mediated

inflammation while compounds known to induce cytochrome

P450 reduce inflammation [44]. Thus, cytochrome b5 may

influence inflammatory responses by impacting P450 function.

Additionally, some of the immunomodulatory proteins released

from lung epithelial cells, such as CC16 [45], surfactant proteins

[46,47], and galectin-3 [48] are considered damage-associated

molecular-patterns (DAMPs) [49]. Therefore, cellular damage

could induce release of DAMPs and aggravate ALI. We

identified cytochrome b5 and cytokeratin 17 by focusing on

the most prominent and reproducible differences apparent on

our proteomic maps. However, it is possible that known

DAMPs were present in the BAL fluid but not identified.

Some of the biomarkers identified in our study could potentially

be DAMPs and worsen lung injury by promoting the inflamma-

tory response. For example, cytokeratin 17, which we detected in

the BAL fluid after SEA inhalation, can trigger cytokine

production and inflammation in vivo [50]. Thus, the presence of

proteins in BAL fluid after SEA inhalation may enhance lung

inflammation. To the best of our knowledge the immunomodu-

latory effect of cytochrome b5 is unknown, but our results show

that cytochrome b5 is modulated during the early stages of lung

cell injury and perhaps represent a new target for therapeutic

intervention.

Materials and Methods

Mice
C57BL/6 mice were purchased from the National Cancer

Institute (Frederick, MD) or the Jackson Laboratory (Bar Harbor,

ME). All mice were maintained in the central animal facility at

the University of Connecticut Health Center (UCHC) in

accordance with federal guidelines. The present study was

Figure 3. Differential proteomic fingerprint of BAL fluid from
SEA vs. vehicle alone injected mice. Mice were immunized as
described in the legend of figure 1. After 16 h BAL fluid was obtained
and 2 mg of protein per sample was processed on the Beckman Coulter
ProteomeLab PF 2D platform. Chromatofocusing was performed as a
linear gradient from pH 8.0 to pH 4.0. Fractions were collected in
0.3 pH intervals, automatically reinjected for a second dimension on a
C18 column at 50uC. (A) Two-dimensional proteomic maps of BAL fluid
from SEA and vehicle alone immunized mice, representative of one out
three experiments is shown. (B) Chromatograms of second dimension
fractions from SEA treated mice were overlaid with their corresponding
equivalents from vehicle alone-injected mice. Overlays revealed peaks
present in two fractions of the SEA treated samples but undetectable in
the vehicle alone injected samples. (C) The fractions were lyophilized
and resolved by 4–15% SDS-PAGE. Bands detected by a protein-specific
fluorescent dye were cut out, digested by trypsin, and identified by LC/
MS/MS. (D) Peptides sequences were searched against the NCBInr

database version 20060804 using the Proteometrics Software Suite and
the Profound Search Algorithm. The data are representative of three
independent biological replicates. Each sample run on the PF 2D was a
pool of BAL fluid obtained from 5 mice.
doi:10.1371/journal.pone.0040184.g003
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approved by the University of Connecticut Health Center’s

Animal Care Committee.

Antibodies and ELISA
IFNc and IL-6 ELISA kits were purchased from Pharmingen

(Mountain View, CA). Anti-cytochrome b5 rabbit polyclonal

antibody was purchased from Abcam (Cambridge, MA). Anti-

cytokeratin 17 rabbit polyclonal antibody was purchased from

Santa Cruz Biotechnology (Santa Cruz, CA). LDH detection kit

was purchased from Cell Sciences (Canton, MA).

Microscopy
PBS/heparin solution was used for perfusion. Lungs were

inflated with 10% formalin solution, clamped for 5 min, fixed

for 2 h and stored in 70% ethanol before paraffin embedding.

Lung sections were stained for H&E or stained with the

appropriate antibody for immunohistochemistry (IHC) and

counter stained with methyl green (Vector laboratory, Inc.

Burlingame, CA). The percentage of bronchiole cells staining

positive for cytochrome b5 was quantified using Image-Pro Plus

software (Media Cybernetics, Inc. Bethesda, MD). Pixel analysis

was performed on 30 representative bronchioles for each

condition. Data was reported as the percentage of positive

staining area (brown) versus total staining area (all colors) present

in each bronchiole. Lung sections for Electron Microscopy were

processed at the central microscope facility, University of

Connecticut Health Center. Lungs were fixed in 2.5%

glutaraldehyde in 0.1M cacodylate buffer pH 7.2, post fixed

in 1% osmium tetroxide, 0.8% potassium ferricyanide in 0.1M

cacodyalte buffer, en-bloc stained with uranyl acetate, dehy-

drated in ethanol and embedded in Polybed 812 resin. Thin

sections (70 nm) of the lungs were cut and counterstained with

uranyl acetate and lead citrate. Thin sections were examined

using a Hitachi H-7650 transmission electron microscope.

BAL Fluid Processing and PF 2D Proteomics
BAL was collected by lavage of mouse lung with 5 ml of

sterile PBS. BAL was centrifuged at 1,000 rpm at 4uC to

separate cells from BAL fluid. BAL fluid was spiked with a

protease inhibitor cocktail (SIGMA #P2714), centrifuged at

25,000 x g, 4uC for 10 min, protein concentration was

determined by BCA assay (Pierce, Rockford, IL), and processed

through a Beckman Coulter ProteomeLabTM PF 2D platform

(Fullerton, CA) as described before [12,15,51]. Fractions were

collected every 0.3 pH units. Fractions corresponding to the

linear gradient between pH 8.0 through 4.0 were separated on

a HPRP column (Beckman Coulter) with a gradient from 0 to

100% of acetonitrile at 50uC. The proteins were detected with

Figure 4. Cytochrome b5 expression is restricted to bronchiole epithelium in lungs. Mice were immunized i.n. with 1 mg of SEA or vehicle
alone i.n., secondary (2u) challenge of either vehicle or SEA 48 h after the primary, and were sacrificed 5 h later (53 hrs total). (A) Immunostaining of
the lungs was performed using a rabbit polyclonal antibody against cytochrome b5 (Cyt b5) and rabbit immunoglobulin control (Ig). The data are
representative of three independent experiments with 2–4 mice per group, magnification 100X. (B) The percentage of positive cytochrome b5
staining per bronchiole is reported for each sample by analyzing 30 representative bronchioles from two separate experiments. The errors bars
indicate the standard error of the mean. **p,0.001.
doi:10.1371/journal.pone.0040184.g004
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UV light at 214 nm and collected at 0.5 min intervals and

stored at 280uC.

Two Dimensional (2D) Protein Map Analysis
Two dimensional protein expression maps of BAL fluid

displaying protein isoelectric point (pI) versus protein hydropho-

bicity, were generated by the ProteoView/DeltaVue software

package as described earlier [12,15].

SDS-PAGE, Immunoblotting, Fluorescence Staining, and
LC/MS/MS

The PF 2D fractions of interest were lyophilized and

resuspended in denaturing SDS sample buffer and resolved by

SDS-PAGE and immunoblotting as described earlier [15]. Gels

were stained by ORIOLE (BioRad, Hercules, CA) and proteins

were detected by fluorescence. Visible bands were excised from

the gel, subjected to tryspin digestion and identified by LC/MS/

MS at NextGen Sciences (Ann Arbor, MI). Tandem mass spectra

were extracted by Xcalibur (ThermoFisher) rev. 2.0. All MS/MS

samples were analyzed using Mascot version 1.0 (Matrix Science,

London, UK; version Mascot) assuming digestion by the enzyme

trypsin. Protein identifications were accepted if they could be

established at greater than 90.0% probability by the Protein

Prophet algorithm [52] and contained at least two identified

peptides.

Supporting Information

Figure S1 Detection of cytokeratin 17 in BAL fluid after
i.n. SEA and BSS. Mice were immunized i.n. as described in

legend of figure 4 and BAL fluid harvested after 16 h. BAL fluid

were immunoblotted using anti-CK17 antibody. Data are from 1

experiment.

(TIF)
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