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Abstract

Background: Calpain proteases drive intracellular signal transduction via specific proteolysis of multiple substrates upon
Ca2+-induced activation. Recently, dUTPase, an enzyme essential to maintain genomic integrity, was identified as a
physiological calpain substrate in Drosophila cells. Here we investigate the potential structural/functional significance of
calpain-activated proteolysis of human dUTPase.

Methodology/Principal Findings: Limited proteolysis of human dUTPase by mammalian m-calpain was investigated in the
presence and absence of cognate ligands of either calpain or dUTPase. Significant proteolysis was observed only in the
presence of Ca(II) ions, inducing calpain action. The presence or absence of the dUTP-analogue a,b-imido-dUTP did not
show any effect on Ca2+-calpain-induced cleavage of human dUTPase. The catalytic rate constant of dUTPase was
unaffected by calpain cleavage. Gel electrophoretic analysis showed that Ca2+-calpain-induced cleavage of human dUTPase
resulted in several distinctly observable dUTPase fragments. Mass spectrometric identification of the calpain-cleaved
fragments identified three calpain cleavage sites (between residues 4SE5; 7TP8; and 31LS32). The cleavage between the 31LS32

peptide bond specifically removes the flexible N-terminal nuclear localization signal, indispensable for cognate localization.

Conclusions/Significance: Results argue for a mechanism where Ca2+-calpain may regulate nuclear availability and
degradation of dUTPase.
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Introduction

Calpains, the intracellular calcium activated cysteine proteases,

play an important role in calcium-dependent signal transduction.

Downstream protein targets are regulated by calpain-catalyzed

limited cleavage, which usually results in a protein with modi-

fied activity. The potential role of calpain function in apoptotic

pathways has been recently addressed in several laboratories

[1,2,3,4]. Calpain-induced degradation of numerous apoptotic

or autophagy factors were implicated in switches between cell

death pathways [5,6,7]. Identification of in vivo cellular substrates

of calpain was attempted in a proteomic approach in Drosophila

Schneider 2 cells, wherein we provided a list of putative bona fide

targets [8]. One of these target proteins is dUTPase, lack of which

is involved in inducing cell death [9,10].

The enzyme dUTPase catalyzes the hydrolysis of dUTP to dUMP

and pyrophosphate [11,12]. The enzyme is a key regulator of cellular

dUTP/dTTP pool ratios: on one hand, it removes dUTP from the

DNA polymerization pathway, on the other hand, it contributes

dUMP, the precursor for dTTP de novo biosynthesis [9,13]. The

function of dUTPase is essential to maintain genomic integrity; lack of

the enzyme leads to massive uracil incorporation into the genome

[14,15], followed by repetitive futile cycles of repair resulting in DNA

fragmentation and thymine-less cell death [16,17]. Most dUTPases

are homotrimers where the trimeric organization is indispensable for

formation of active sites and catalysis [18,19,20,21,22]. In humans,

two dUTPase isoforms exist, a nuclear (DUT-N, which is by far the

major isoform in cycling cells) and a mitochondrial (DUT-M) form.

The two isoforms are encoded on the same gene and are expressed

under the control of alternate promoters [23]. Both forms contain
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localization signals on their N-termini; DUT-N possesses a nuclear

localization signal (NLS) [24], while DUT-M has a mitochondrial

leader peptide signal. The N-terminal segment of DUT-N is charac-

fterized by high degree of conformational freedom. This segment has

been shown to be prone to proteolysis in vitro by trypsin [21] and

could not be located in the electron density map that led to determina-

tion of the three-dimensional structure of the enzyme in complex with

the slowly hydrolysable substrate analogue a,b-imido-dUTP [21,25].

In this study, we investigate the putative contribution of the calpain

system to regulation of human dUTPase. We show that mammalian

calpain catalyzes limited proteolysis of the nuclear isoform of human

dUTPase. Identification of the specific cleavage sites by mass spec-

trometry reveals that this proteolysis results in removal of the nuclear

localization signal at the N-terminus. Results indicate that Ca2+/

calpain activation may perturb dUTPase localization and integrity,

potentially leading to loss of dUTPase function within the nucleus.

Results

Calcium-dependent proteolysis of human dUTPase by
calpain

To decide if human dUTPase may also be susceptible to calpain-

catalyzed proteolysis, as we reported it in Drosophila [8], we prepared

an in vitro digestion assay with the human recombinant DUT-N

and rat m-calpain. The use of rat m-calpain instead of the human

homologue may not cause any significant difference in this case as

these two proteins share 94% identity and 99% similarity. We found

that m-calpain can cleave dUTPase in the presence of calcium, but

not in its absence (Fig. 1). During proteolysis, two distinct dUTPase

fragments could be visualized (shown by numbered arrows 3 and 4).

The presence of the substrate analogue a,b-imido-dUTP did not

result in any significant alteration of the proteolytic process: no

protective effect of a,b-imido-dUTP could be observed as followed

on SDS-PAGE. This result suggests that the calpain cleavage sites

may not be located in the vicinity of the substrate binding pocket.

To examine the possible changes in catalytic activity of the

fragments compared to intact enzyme, we determined the catalytic

rate constants of both intact and calpain-cleaved dUTPase forms.

No difference in catalytic function was observed (Fig. 2), indicating

that calpain digestion does not alter dUTPase activity.

Identification of the calpain cleavage sites at the
dUTPase N-terminal region

To identify the cleavage sites, fragments were analyzed by mass

spectrometry. Three calpain-induced cleavage sites were identified

Figure 1. Calcium-dependent proteolysis of the human dUTPase. In vitro calpain cleavage was followed on a 15% SDS-PAGE. Panel (A):
Samples correspond to the experiment in the presence of calcium and the substrate analogue. Panel (B): dUTPase was incubated with calpain in the
presence of calcium, but without any substrate analogue. Panel (C): Control experiment was carried out in the absence of calcium. Incubation times
were 0, 30, 120, 360, 1200 sec, respectively, in each sample except for the control, were time points were 0, 120, 360 and 1200 sec. Plots under the gel
photographs represent changes in band intensities (line 1 (triangle) – calpain large subunit; line 2 (circle) – intact dUTPase; lines 3 (rhomboid), 4
(asterisk) – fragment forms of the dUTPase) against the time. Dotted arrow points at the small subunit of calpain. The intensity of the smeared band
of the calpain large subunit in lane 1 (0 sec, panel A) is somewhat smaller than the intensity of the corresponding band in lane 2 (30 sec, panel A) -
even if the smeared area is added to the densitometric evaluation - possibly due some leakage out of the leftmost well of the gel. To facilitate clear-
cut identification of the bands corresponding to the calpain small subunit and intact human dUTPase that run very close to each other on the gel, the
upper right panel shows calpain and dUTPase samples on their own.
doi:10.1371/journal.pone.0019546.g001
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in the two fragments separable on SDS-PAGE (bands 3 and 4 on

Fig. 1). Table 1 provides a list of the peptides that were present in

the samples, with highlighting those four peptides that were

necessarily derived from calpain digestion as these contain

non-tryptic sites. To ascertain the identity of these peptides,

important for our study, we performed MS/MS analysis. The

resulting spectra are shown in Figure S1, Figure S2, Figure S3 and

Figure S4.

Two calpain cleavage sites are very close together (4SE5; 7TP8),

these two cleavage sites are found at the very beginning of the

Figure 2. Mapping calpain cleavage sites. On the left panel, dUTPase activity was followed for the intact (solid line) and cleaved (dashed line)
proteins. Bar graph represents catalytic rate constants. Right panel shows the 3D structure of the homotrimer dUTPase [16] (PDB: 3EHW) (ribbon
model with the blue-, green-, and gold-colored monomers). The structure as observed in the electron density maps is schematically completed with a
cartoon of the flexible N-terminals (M24, the first residue located in the electron density map is in yellow). Stars correspond to the calpain cleavage
sites as determined by mass spectrometry.
doi:10.1371/journal.pone.0019546.g002

Table 1. List of peptides identified by mass spectrometry in lysates from gel bands 3 and 4 (cf Fig. 1).

m/z z Error/Da Peptide Start End

529.8700 2 0.098 (S)EETPAISPSK(R) 5 14

607.9600 2 0.14 (S)EETPAISPSKR(A) 5 15

428.3200 2 0.064 (T)PAISPSKR(A) 8 15

434.3700 3 0.14 (R)ARPAEVGGM(Oxidation)QLR(F) 16 27

642.9900 2 0.14 (R)ARPAEVGGMQLR(F) 16 27

537.3800 2 0.11 (R)PAEVGGM(Oxidation)QLR(F) 18 27

529.3600 2 0.083 (R)PAEVGGMQLR(F) 18 27

361.6500 3 0.13 (R)LSEHATAPTR(G) 31 40

485.3300 2 0.089 (L)SEHATAPTR(G) 32 40

1092.6900 2 0.19 (R)AAGYDLYSAYDYTIPPM(Oxidation)EK(A) 45 63

723.5100 3 0.18 (R)AAGYDLYSAYDYTIPPMEK(A) 45 63

776.1300 2 0.24 (K)TDIQIALPSGC(Carbamidomethyl)YGR(V) 68 81

853.6000 2 0.19 (K)HFIDVGAGVIDEDYR(G) 92 106

626.0900 2 0.24 (R)GNVGVVLFNFGK(E) 107 118

502.0000 2 0.23 (R)IAQLIC(Carbamidomethyl)ER(I) 129 136

1034.2900 2 0.29 (R)IFYPEIEEVQALDDTER(G) 137 153

Peptides were generated by in-gel digestion of gel bands. Peptides with non-tryptic cleavage sites, generated by calpain digestion, are shown in bold italic font. The
MS/MS spectra of these peptides are included in Fig. 2. Start and end positions are numbered according to the human dUTPase sequence. Residues in parentheses are
the N- and C-terminal neighboring residues of the protein (not present in the peptides). Error indicates the difference between the measured and calculated peptide
masses. Modifications are also noted. z, charge, m/z, mass normalized to charge.
doi:10.1371/journal.pone.0019546.t001
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dUTPase sequence. There is no information in the literature about

the function of this segment, which is not conserved among

dUTPases.

The third calpain cleavage site is between the 31LS32 dipeptide

that is located in the three-dimensional structure of human

dUTPase (Fig. 2). Cleavage at this site results in a truncated

protein that lacks the NLS segment (located between residues
12P-19A, [24]). The NLS segment shows conserved character with

respect to e.g. Drosophila dUTPase where its lack was also shown

to lead to exclusion of dUTPase from the cell nucleus [26].

Without this signal dUTPase is unable to enter the nucleus and

may not function correctly.

Cleavage of human dUTPase in HeLa cells via Ca2+-
activation

To test if the in vitro results may also be observed within intact

cells, we followed dUTPase levels in HeLa cells in the absence or

presence of Ca2+. In the latter case after 24 hours we observed

significant dUTPase degradation, paralleled with some decrease in

the m-calpain level also, while the dUTPase level in the control

cells was unaffected (Fig. 3). However, we could not detect any

dUTPase fragments, presumably because of further degradation

processes. The slight change in the amount of m-calpain may be

due to auto-proteolysis. As a control to monitor for equivalent

amounts of total protein applied per lane, the Western blots were

also developed against actin.

To directly demonstrate if the HeLa cell line contains a

significant pool of Ca2+-activated calpains under our experimental

conditions, we performed calpain activity measurements in HeLa

cell extract in the absence and presence of Ca2+. Results show that

the presence of Ca2+ led to calpain activation, indicating the

presence of an active calpain pool (Fig. 3).

Discussion

Intracellular proteolysis constitutes a main device of signaling.

Identification of cognate proteolysis substrates in the specific

pathways is indispensable to decipher the cellular network and

significance of these pathways. Such investigations are particularly

complex and demanding in the case of calpains that play roles in

several pathways. As compared to digestive proteases like trypsin

or caspases, calpains perform a more fine-tuned role by regulating

the function of numerous substrates by limited proteolysis [27].

We have recently identified in vivo calpain substrates in a

Drosophila system, providing a list of proteins, not yet described as

calpain substrates, which belonged to several different cellular

pathways, reflecting the well-known promiscuous calpain charac-

ter [8]. In the present study, we focused on one of the hits,

dUTPase, and wished to investigate if it is also a calpain substrate

in a human model. Results of in vitro digestion experiments showed

that human dUTPase is cleaved by Ca2+-calpain within the

flexible N-terminus (Figs. 1, 2). Although catalytic function is

unperturbed in the N-terminally truncated form (Fig. 2), cellular

localization is expected to be drastically altered, since the

truncated dUTPase species does not contain the NLS segment,

indispensable for nuclear import [24]. Nucleo-cytoplasmic traf-

ficking of trimeric dUTPases in eukaryotic cells depends on

cognate peptide signals due to the approx. 50 kDa molecular

mass of these proteins that prevents passive transport. Nuclear

availability of the enzyme seems to be generally required for

eukaryotic cells, attested to by the usual presence of a nuclear

localization signal at the N-terminus [24,26,28]. Interestingly, for

dUTPase from Singapore grouper iridovirus (a fish virus), a

nuclear export signal was also described, indicating that trafficking

of the host and the pathogen enzyme may be different [29].

The degradation of dUTPase was also observed in Ca2+-

induced HeLa cells that showed an activated calpain pool (Fig. 3);

however, we could not observe the fragments. As a speculative

hypothesis, we propose that within the cells, calpain-cleaved

dUTPase may be further degraded by other proteolytic events.

Degradation of dUTPase in HeLa cells was only observed after

24 hours of Ca2+-induction, which, as we hypothesize, might be

due to the fact that the cytoplasmic m-calpain may get hold of

their nuclear substrates mainly during cell division when the

nuclear envelope breaks down, and nuclear proteins gain even

distribution throughout the cell. It is widely observed that calpains

harbor several nuclear substrates [30,31], and even play role in the

regulation of cell division [32,33,34,35].

Based on the present results, we propose the hypothesis that

calpain activation may control dUTPase localization and

function through limiting its overall availability (Fig. 4). Upon

Ca2+-induction, and following mitosis-coupled release of the

nuclear dUTPase pool into the cytoplasm during the cell cycle,

calpain may cleave the N-terminal of dUTPase removing the

Figure 3. Degradation of cellular dUTPase pool upon calcium
induction. Upper panel: The fluorescence intensity change corre-
sponding to calpain activity in HeLa cellular extract was recorded in the
absence of calcium (control, black squares), or the presence of 2 mM
Ca2+ (red triangles). Bottom panel: HeLa cells were treated with
ionomycin and calcium to activate their calpain pool. dUTPase
degradation could be observed after 24 hours, but fragments could
not be visualized, indicating potential further proteolytic events.
doi:10.1371/journal.pone.0019546.g003
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NLS segment. Truncated dUTPase is unable to enter the nucleus

and may be further degraded. Lack of dUTPase function within

the nucleus may lead to perturbed dUTP/dTTP ratios and

provoke thymine-less cell death. Previously, several studies

indicated that the level of dUTPase protein decreases during

apoptosis [36,37,38]. Moreover, the potentially significant role of

dUTPase as an anti-apoptotic protein has been recently suggested

[39]. This pathway of inducing apoptosis by calpain action may

act in parallel to other described roles of calpain in apoptosis (e.g.

[1,4]).

Materials and Methods

Preparation of recombinant proteins
Preparation of rat m-calpain was according to [40]. The

human nuclear form of dUTPase (DUT-N) was expressed as a

His-tagged protein and purified as described in [41]. Protein

preparations were checked on SDS-PAGE and showed .95%

purity. Protein concentrations were determined according to

[42].

In vitro digestion assays
Digestion assays were performed in 50 mM TRIS?HCl pH 7.50

buffer also containing 150 mM NaCl; 1 mM EDTA; 1 mM

dithio-threitol; 30 mM human dUTPase and 2 mM rat m-calpain.

Reaction was started by the addition of m-calpain in the presence

or absence of 2 mM CaCl2. For digestion in the presence of

substrate analogue a,b-imido-dUTP, the same reaction buffer was

completed with 150 mM a,b-imido-dUTP and 10 mM MgCl2.

Reaction was stopped with 3 mM EGTA after 40 minutes,

digestion products were either directly submitted to mass

spectrometry or separated on SDS-PAGE gels and then analyzed

by mass spectrometry.

dUTPase activity measurement
Enzymatic activity of both intact dUTPase and calpain-cleaved

dUTPase was determined in steady-state pH indicator-based

assays as described previously in [43,44]. Reaction buffer

contained 1 mM HEPES pH 7.50; 150 mM KCl; 40 mM

Phenol Red indicator; 1 mM MgCl2; 40 mM dUTP and

150 nM dUTPase (from the digestion mixtures produced either

in the absence or presence of Ca2+). The reaction was followed in

1 ml reaction volume thermostatted cuvette (25uC).

Cleavage site identification by mass spectrometry
The calpain proteolysis cleavage products were desalted on C4

ZipTip (Millipore) and analyzed directly by MS on a Bruker

Reflex III MALDI-TOF mass spectrometer in linear mode.

Sinapinic acid was used as the matrix. External calibration

was performed on the Bruker protein calibration standard I

(#206355). Masses were determined by averaging seven indepen-

dent measurements. For identification of calpain cleavage sites by

MS/MS analysis, cleavage products were separated by SDS-

PAGE, then gel bands were subjected to tryptic digestion followed

by MS and MS/MS analysis as described in [8]. Database search

was performed against the NCBI 20070629 protein database

(5207057 sequences) using on-line Mascot search engine (version

2.2). Additionally, data were searched against our own database

containing the His-tagged dUTPase sequence using in-house

ProteinProspector server (version 5.3.0). For ion trap MS/MS

data, monoisotopic precursor masses with peptide mass tolerance

of 61.2 Da and fragment mass tolerance of 60.7 Da were

considered. Semitryptic cleavages were allowed. Modifications

considered: fixed - Cys carbamidomethylation; variable - acety-

lation of protein N-termini, methionine oxidation and pyroglu-

tamic acid formation from N-terminal Gln residues.

Figure 4. Schematic hypothetic model of the calpain effect on dUTPase. In cells where calpain is inactive, dUTPase (represented as the
structural model in Fig. 2) can be imported into the nucleus and may catalyze the dUTPRdUMP conversion within the nuclear environment. Upon
calcium-induction, calpain cleaves the N-terminal part of dUTPase (red arrows), resulting in an NLS-free enzyme. This truncated dUTPase, which may
undergo further degradation, is unable to enter into the nucleus.
doi:10.1371/journal.pone.0019546.g004
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Cell culture and Western blotting
HeLa cells were obtained from Invitrogen. Cells were cultured

in Dulbecco’s Modified Eagle’s Medium (DME) and Ham’s F-12

Nutrient Mixture (Sigma) supplemented with Penicillin–Strepto-

mycin solution (50 mg/ml; Gibco). The medium was comple-

mented with CaCl2 in a final concentration of 2 mM. To induce

calpain activation, 5 mM ionomycin (dissolved in DMSO) was

added to the medium. Control cells were mock treated with

DMSO alone. Cells were collected at indicated time points,

washed twice with PBS, and resuspended in lysis buffer (50

mM TRIS?HCl pH 7.4; 140 mM NaCl; 0,4% NP-40; 2 mM

DTT; 1 mM EDTA, 1 mM PMSF; 5 mM benzamidin, 16
completeTMEDTA free protease inhibitors (Roche). Cell lysis was

assisted by sonication five times (16 m; 10 sec). Insoluble fraction

was removed by centrifugation (20.000 g615 min at 4uC). Protein

concentration was measured with Bio-Rad Protein Assay to ensure

equivalent total protein load per lane. Products were resolved

under denaturing and reducing conditions on a 10 or 15%

polyacrylamide gel and transferred to PDVF membrane. Western

blot analysis was performed as below.

Generation of dUTPase anti-serum and Western blotting
Experiencing non-specific character of commercially available

antibodies against human dUTPase, we generated a new anti-

serum following the procedure described in [45]. Briefly, rabbits

were immunized with recombinant human dUTPase. Three

immunising shots were given, at time intervals of 2–3 weeks, first

in complete then in incomplete Freund’s adjuvant or in

physiological saline. Immunoblot analysis was done according to

the method described previously [46]. Firstly, the membranes were

reacted with rabbit serum containing polyclonal anti-dUTPase

antibodies (used at 1:5.000 dilution), or mouse anti-actin

monoclonal antibody (Sigma-Aldrich), respectively. Secondly, the

membranes were incubated with horseradish peroxidase conju-

gated secondary antibody: anti-rabbit IgG (Amersham Pharmacia

Biotech) or antimouse IgG (Sigma), respectively.

Calpain activity measurement in HeLa cell extract
To test the active calpain forms in HeLa extract, calpain activity

was measured. Cells were collected and washed twice with 50 mM

TRIS?HCl pH 7.50; 150 mM NaCl. To lyse the cells, they were

resuspended in 50 mM TRIS?HCl pH 7.50 buffer containing

150 mM NaCl, 1 mM EDTA, 1 mM PMSF, and 5 mM

benzamidin) and sonicated five times (16 m; 10 sec). Insoluble

fraction was removed by centrifugation (20.000 g615 min at 4uC).

Before the activity measurements, 2 mM 2-mercaptoethanol was

added and the extract was incubated for 20 min on ice. Enzyme

activity was measured with a modified FRET substrate as in [47],

either in the absence or presence of 2 mM CaCl2.

Chemicals
All chemicals were obtained from Sigma unless otherwise stated.

Supporting Information

Figure S1 MS/MS spectrum of m/z 529.87 (2+) confirming

peptide sequence EETPAISPSK. # stands for water loss.

(TIF)

Figure S2 MS/MS spectrum of m/z 607.96 (2+) confirming

peptide sequence EETPAISPSKR. # stands for water loss.

(TIF)

Figure S3 MS/MS spectrum of m/z 428.32 (2+) representing

peptide sequence PAISPSKR. # stands for water loss.

(TIF)

Figure S4 MS/MS spectrum of m/z 485.33 (2+) confirming

peptide sequence SEHATAPTR. # stands for water loss.

(TIF)
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