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Alternative pre-mRNA splicing has long been proposed to contribute greatly to proteome complexity. However, the extent

to which mature mRNA isoforms are successfully translated into protein remains controversial. Here, we used high-

throughput RNA sequencing and mass spectrometry (MS)–based proteomics to better evaluate the translation of alterna-

tively spliced mRNAs. To increase proteome coverage and improve protein quantitation, we optimized cell fractionation

and sample processing steps at both the protein and peptide level. Furthermore, we generated a custom peptide database

trained on analysis of RNA-seq data with MAJIQ, an algorithm optimized to detect and quantify differential and unanno-

tated splice junction usage. We matched tandem mass spectra acquired by data-dependent acquisition (DDA) against our

custom RNA-seq based database, as well as SWISS-PROT and RefSeq databases to improve identification of splicing-derived

proteoforms by 28% compared with use of the SWISS-PROT database alone. Altogether, we identified peptide evidence for

554 alternate proteoforms corresponding to 274 genes. Our increased depth and detection of proteins also allowed us to

track changes in the transcriptome and proteome induced by T-cell stimulation, as well as fluctuations in protein subcellular

localization. In sum, our data here confirm that use of generic databases in proteomic studies underestimates the number of

spliced mRNA isoforms that are translated into protein and provides a workflow that improves isoform detection in large-

scale proteomic experiments.

[Supplemental material is available for this article.]

Eukaryotic proteome diversity arises via multiple mechanisms, in-
cluding alternative premessenger RNA (pre-mRNA) splicing.
Alternative splicing (AS) is a highly regulated process by which a
single genemay code for multiple proteins through differential in-
clusion of alternative exons in the mature mRNA sequence.
Transcriptome profiling across tissues has shown that >90% of
multiexon genes undergo AS in eukaryotes and that∼80% of these
events occur within the protein-coding region of transcripts (Pan
et al. 2008; Wang et al. 2008). The splicing pattern for any given
gene often differs across cell types and/or tissues, as well as in re-
sponse to environmental cell stimuli (Cieply and Carstens 2015).
Therefore, AS has been proposed to play an important role in shap-
ing protein expression in a condition-specific manner. Studies of
individual genes have provided some concrete examples of how
AS impacts protein function, such as reduced kinase activity by al-
tering a kinase docking site (e.g., MAP2K7) (Martinez et al. 2015),
hindered immunotherapy via a truncated extracellular domain
of a cell surface signaling molecule (e.g., CD19) (Sotillo et al.
2015), and changes in protein subcellular localization that conse-
quently affect enzymatic activity (e.g., EHMT2) (Fiszbein et al.

2016). However, global analyses aiming to detect protein isoforms
(“proteoforms”) of alternatively spiced mRNAs have been limited.
Furthermore, no global studies looking at proteoform localization
have been reported.

Recently, several groups have combined RNA sequencing
with other sensitive and high-throughput techniques to deter-
mine how posttranscriptional processes impact the proteome
(Sheynkman et al. 2013; Sterne-Weiler et al. 2013; Floor and
Doudna 2016; Weatheritt et al. 2016; Jeong et al. 2018). Overall,
these approaches and developments have been valuable for de-
scribing the role of AS in modulating proteome complexity, as
well as understanding some of the disconnect between transcript
and protein abundance. For example, a study using ribosome pro-
filing determined that at least 75% of transcripts with alternative
cassette exons are engaged by ribosomes (Weatheritt et al. 2016).
However, these studies lack direct evidence showing that alterna-
tively splicedmRNAs are translated into detectable proteinswithin
a cell.
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The most widely used technique to study proteomes is nano-
liquid chromatography (LC) coupled with tandemmass spectrom-
etry (nLC-MS/MS), because of its sensitivity, robustness, and
throughput. Yet, one of the biggest hurdles for nLC-MS/MS analy-
sis of proteoformshas been increasing proteome coverage to detect
low abundance peptides, thus proteins. Depth of coverage is par-
ticularly critical for proteoform analysis, as discrimination be-
tween proteoforms requires the detection of peptides translated
across exon junctions (exon junction peptides [EJPs]) and/or alter-
native exon peptides (AEPs) that map uniquely to each variant.
Additionally, the composition of the database used for searching
MS data can impact which and how many isoforms one can con-
fidently identify. In contrast to the findings of Weatheritt et al.
(2016), a different research group observed that genes with a dom-
inant splice variant also express a dominant protein isoform by
nLC-MS/MS (Ezkurdia et al. 2015). This correlation does not rule
out there being more than one protein product per gene, as they
were only able to identify main proteoforms for ∼32% of annotat-
ed protein coding genes with multiple splice isoforms. The main
proteoforms were determined by “counting the total number of
peptides that mapped to each splice isoform annotated for a
gene,” which introduces a bias toward longer protein sequences
and does not take into account normalized relative protein
abundance values (Ezkurdia et al. 2015). Here, we seek to combine
improvements in both transcriptomic
and proteomic analysis to more compre-
hensively assess if differential inclusion
of alternative exons is reflected in the
proteome.

Results

Alternate exon junction usage and

changes in splicing patterns upon T-cell

stimulation

We have previously identified hundreds
of splicing events that are regulated
upon phorbol 12-myristate 13-acetate
(PMA) stimulation of the JSL1 Jurkat
T-cell line (Rothrock et al. 2003; Ip et al.
2007; Martinez et al. 2012, 2015;
Gazzara et al. 2017). The homogeneity
of these cells and reproducibility of the
splicing patterns under both unstimu-
lated and stimulated conditions (Ip
et al. 2007; Martinez et al. 2015) make
them an ideal system to study proteo-
form expression regulated byAS. To iden-
tify mRNA isoforms that are most likely
to be abundantly represented in the pro-
teome of JSL1 cells, we reanalyzed our
previously published RNA-seq data from
unstimulated and PMA-stimulated JSL1
cells (Gazzara et al., 2017) with the
MAJIQ algorithm to identify local splice
variations (LSVs) in which two or more
exon junctions were highly used (20%–

80% of the reads) in either condition.
We used MAJIQ for these studies as it is
optimized to detect and quantify both
annotated and novel isoforms, including

those derived from complex splicing events, intron retention, and
novel ends of transcripts (Vaquero-Garcia et al. 2016). Therefore,
this algorithm allows us to gain a comprehensive and quantitative
view of the transcriptome. The MAJIQ analysis led to the identifi-
cation of 25,199 “alternative junctions” (AJs), corresponding to
12,435 splicing events in 5578 genes (Fig. 1A). Most of these AJs
(∼81%) were detected at a similar level in both the unstimulated
and stimulated JSL1 cells, but ∼20% of AJs are used at least 20%
more often in one cellular condition relative to the other (Fig.
1B). Examples of different patterns of AJ usage are shown in
Supplemental Figure S1.

To address how much the above splicing variability impacts
the proteome, we first looked at the distribution of the AJs across
transcript regions and found that 73% of the AJs impact splicing
events within the coding sequence (CDS) of transcripts, whereas
13% affect the 5′ UTR and 2% the 3′ UTR (Fig. 1C). This observa-
tion is in close agreement with previously reported effects of splic-
ing on protein sequences (Wang et al. 2008). Of note, analysis of
all junctions (including those in >80% or <20% of transcripts) re-
veals that 91% fall in the CDS, suggesting that AJs may be some-
what selected against within the CDS. In sum, this analysis
identified 3929 genes that express at least two readily detectable
mRNA isoforms in the JSL1 cells that are predicted to impact the
proteome, with ∼20% of these mRNA isoforms changing in
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Figure 1. Identification of local splice variations (LSVs) and alternative junctions (AJs). (A) Workflow for
identifying significantly used AJs in mRNA by identifying LSVs containing two or more exon junctions
with support from 20% to 80% of the reads in either condition in previously described RNA-seq data.
(B) Distribution of AJ usage in unstimulated and stimulated conditions. A shift in AJ usage is defined as
the difference in percent spliced in (ΔPSI), set to 20%, between unstimulated and stimulated T cells.
(C) Distribution of LSVs with two or more AJs throughout transcript regions, namely, the coding se-
quence (CDS) and untranslated regions (UTRs). (D) Workflow for generating MAJIQ custom protein da-
tabase using AJs from A.
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abundance upon stimulation of JSL1
cells. Finally, to use the MAJIQ analysis
to guide our proteomics analysis, we
used the genomic coordinates of these
CDS-relevant AJs to extract the nucleo-
tide sequences of the flanking exons
and generate a custom database for MS
data search (Fig. 1D; Supplemental Fig.
S2). For simplicity, this custom database
uses only AJs relating to cassette exons
(8160 AJs total in 2607 genes), as
this type of splicing event is the most
common, and the most likely to gene-
rate detectable changes to the protein
sequence.

Increase in proteome coverage

Having identified the peptide sequences
that are possible to derive from AS in the
JSL1 cells, we next turned our attention
tooptimizing theMSdetectionofprotein
isoforms. When using RNA-seq data to
analyze AS changes in the transcriptome,
it is crucial to sequence samples in great
depth so that lower abundance tran-
scripts and junctions are readily detected
with higher confidence. Likewise, to
achieve identification of low abundance
proteins, we need to increase proteome
coverage by expanding our ability to
separate and detect peptides, which ulti-
mately increases the probability of
detecting AEPs and EJPs (see Supple-
mental Fig. S2). To achieve deep, com-
prehensive proteome coverage, we used
a workflow with multiple fractionation
steps designed to decrease sample com-
plexity and increase peptide and protein identification (Fig. 2A,
left). Our first step was to fractionate cells into cytoplasmic and
nuclear fractions, which we confirmed by western blot analysis
(Fig. 2B). The second fractionation step consisted of separating
the digested peptides from each compartment by reverse phase
high pH fractionation (Supplemental Table S1). We illustrate the
peptide fractionation step by overlaying the total ion chromato-
gram (MS data-dependent acquisition [DDA] mode) of a sample’s
fractions (Supplemental Fig. S3). Because we fractionated peptides
based on hydrophobicity, we can see a shift in the peptide reten-
tion time when we separate the fractionated peptide mixtures by
reverse-phase liquid chromatography (RPLC). The later fractions
contain more hydrophobic peptides, thus elute later in the
gradient.

Using the search method described in the section below, the
highpHpeptide fractionation step resulted in confident identifica-
tion of 34,925 additional unique peptides compared with samples
that were only fractionated by subcellular compartment (Fig. 2C),
corresponding to 1323 unique proteins (Fig. 2D), both with a 1%
false-discovery rate (FDR). The 8952 unique peptides identified
in the –pH peptide fractionation samples can be explained by
the analysis of fragment ions with different MS instruments and
mass analyzers, which provide different limits of detection and
MS/MS acquisition speeds that, although complementary and

consistent, provide slightly different overlapping proteomes. Ad-
ditionally, we used different strategies to remove detergents from
our samples after the cell fractionation step (acetone precipitation
vs. S-traps; see Methods).

Changes in protein abundance upon T-cell stimulation

After confirming that pH fractionation before nLC-MS/MSanalysis
greatly increased our ability to identify and quantify peptides, we
wanted to look at the proteomic changes occurring upon T-cell
stimulation, namely, changes in protein abundance. For the initial
peptide analysis, we used Proteome Discoverer, with the Sequest
HT search engine, to search the raw data (MS-DDA) and obtain
peptide and protein identification with a 1% FDR cutoff applied
with Percolator (Supplemental Table S2; Käll et al. 2007; Brosch
et al. 2009). Of note, each database search was performed indepen-
dently, and abundance values were manually normalized against
each search. Principal component analysis (PCA) confirmed that
the three biological replicates of each condition cluster together
(Fig. 3A), with sample variability attributable to whether the sam-
ples are nuclear (N) or cytoplasmic (C; PC1, 52.4%) and unstimu-
lated (U) or stimulated (S; PC2, 11.8%). For an unbiased analysis
of peptide abundances, we also collected the MS2 spectra in a
data-independent acquisition (DIA) mode. The biggest difference
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Figure 2. Increased protein and peptide identification achieved by high pH peptide fractionation.
(A) Sample processing workflow used for integration of mass spectrometry (MS)–based proteomics
and RNA-seq data. Jurkat T cells (JSL1) were stimulated for 48 h with phorbol 12-myristate 13-acetate
(PMA) before protein or RNA extraction. Cells were harvested and fractionated into cytoplasmic and nu-
clear subfractions for MS analysis. Additionally, a second fractionation step was introduced after protein
digestion to decrease sample complexity (high pH peptide fractionation). MS data were acquired via
data-dependent and data-independent acquisition (DDA and DIA). Right path in workflow is described
in Figure 1. (B) Validation of subcellular fractionation by western blot using antibodies for GAPDH and
lamin B1. (C) Number of peptides identified −/+ high pH peptide fractionation at 1% false-discovery
rate (FDR). (D) Number of proteins identified −/+ high pH peptide fractionation.
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between these acquisition modes is that DDA selects a predeter-
mined number of ions for fragmentation (the most abundant
ions from a given precursor scan), whereas in DIA, we select mass
over charge (m/z) windows and fractionate peptides within that
prespecified range (see Methods; Supplemental Table S3).

By confidently identifying peptides from DDA data analysis,
we generated a T-cell–specific peptide spectral library to search the
DIA data using Spectronaut software (Bruderer et al. 2015). Spectral

libraries are a repository of fragmentation
spectra and information on all the pep-
tides identified by DDA. Although this
type of DIA analysis approach allowed
us to better quantify peptide abundance,
the analysis is limited by the peptide in-
formation obtained from the DDA analy-
sis (we cannot identify peptides absent
from the spectral library). In agreement
with the PCA analysis, a heatmap based
on DIA protein abundance also shows
coclustering of samples based on T-cell
stimulation state (unstimulated, stimu-
lated) and subcellular fraction (cytoplas-
mic, nuclear) of our three biological
replicates (R1, R2, R3) (Fig. 3B). Further-
more, we show that sample clustering
also occurs at the high pH peptide frac-
tionation level across replicates (Supple-
mental Fig. S4).

After analyzing the DIA data, we ex-
ported the Spectronaut result file and
manually processed it to determine stim-
ulation-induced differences in protein
abundance among our sample types.
Protein abundance is presented in the
form of volcano plots based on subcellu-
lar compartment, where the changes in
protein abundance between our condi-
tions are plotted in the x-axis (log2 nor-
malized ratios of protein abundance in
stimulated/unstimulated conditions),
and the y-axis corresponds to the adjust-
ed P-value calculated based on the three
biological replicates (−log2 transformed)
(Fig. 3C,D). P-values were obtained by
performing a two-tailed homoscedastic
t-test between unstimulated and stimu-
lated conditions of either cytoplasmic
or nuclear fractions. We set our signifi-
cance cutoff as P-value ≤0.05 (or 4.32
when −log2 transformed). As expected,
we observe that proteins known to be in-
duced by T-cell activation such as CD69
and GZMA (Hess et al. 2004; Lieberman
2010; Singleton et al. 2011; Cibrián and
Sánchez-Madrid 2017) are significantly
up-regulated in stimulated cells (Fig. 3C,
D), confirming the efficacy of our PMA
stimulation. Gene set enrichment analy-
sis (GSEA) (Subramanian et al. 2005) in-
dicates the top five Gene Ontology
(GO) enrichments are cell cycle– and epi-
genetic regulation–related categories in

unstimulated cells, whereas stimulated cells show enrichment
for activated immune signaling pathways (cytokines, TNF, IFN)
and cell metabolism, proliferation, and differentiation (Fig. 3E,F).
Globally, we also observed these trends after comparing unstimu-
lated versus stimulated conditions (Supplemental Fig. S5).
Supplemental Tables S4 and S5 contain the full list of identified
and quantified proteins and peptides, respectively, in unstimu-
lated versus stimulated subcellular compartments. We note that
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Figure 3. Proteomic analysis of unstimulated and stimulated Jurkat T cells. (A) Principal component
analysis (PCA) of three biological replicates (i.e., independent 48-h PMA stimulations and cell fraction-
ations). Data were acquired via MS-DDA and analyzed using Proteome Discoverer 2.2 software
(SWISS-PROT database, 1% FDR). (B) Heatmap and clustering of protein abundance as quantified by
MS-DIA. Data were analyzed and clustered using Spectronaut software (SWISS-PROT database, 1%
FDR). (C,D) Volcano plot of log2 ratio (stimulated/unstimulated) cytoplasmic (C ) or nuclear (D) protein
abundance (MS-DDA) versus two-tailed t-test adjusted P-value; significance set at 1.5-fold change
(>|0.58| when log2 transformed) versus adjusted P-value <0.05 (>4.32 when −log2 transformed), respec-
tively. Negative log2 ratio values represent proteins that are more abundant in unstimulated cells, where-
as proteins with positive log2 ratio values are more highly expressed in stimulated cells. Decreased
expression of CXCR4 and increased expression of CD69 and GZMA are markers of T-cell activation.
(E,F) Top five most significant functional categories by gene set enrichment analysis (GSEA) of proteins
significantly changing upon stimulation in the cytoplasm (E) or nucleus (F). Metrics: (1) size, number
of genes that are categorized under the GO term; (2) NES, normalized enrichment score for the gene
set after it has been normalized across analyzed gene sets; (3) FDR q-value, estimated probability that
the normalized enrichment score represents a false positive finding; and (4) rank, position in the ranked
list at which the maximum enrichment score occurred (proteins are ranked in order of positive to nega-
tive correlation to enrichment [signal/noise] in unstimulated cells).
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although this study is not focused on detecting changes in protein
localization, we are able to quantify fluctuations in protein abun-
dance across subcellular compartments (Supplemental Table S6).

Identification of EJPs

Having achieved deep detection and quantification of peptides in
unstimulated and stimulated Jurkat T cells, we wanted to deter-
mine if we could detect splicing-derived proteoforms and if the
MAJIQ-trained custom database improved detection of proteo-
forms. Thirty-nine percent of the AJs within the custom database
developed in Figure 1 are predicted to generate peptide insertion
or deletion, whereas another 34% are predicted to generate a frame
shift (Fig. 4A). Themajority of the remaining AJs alter the N (16%)
or C (9%) terminus of the protein (Fig. 4A). In all of these cases, AS
is predicted to generate AEPs and/or EJPs (Fig. 4B, “unique pep-
tides”). In addition to searching for protein isoformmatches using
SWISS-PROT and the custom MAJIQ database, we also generated
additional databases by translating all RefSeq-assembled tran-
scripts in three reading frames. In total, we identified and quanti-
fied EJPs and AEPs that provide evidence for 554 proteoforms
(which correspond to 274 genes) by combining the results of the

SWISS-PROT,MAJIQ, and RefSeq databases (Fig. 4C; Supplemental
Table S7). The majority of the EJPs and AEPs were peptides present
in SWISS-PROT; however, 92 proteoforms (∼16% of total) were
only identified with high confidence by the database trained on
MAJIQ junction usage (Fig. 4C; Supplemental Table S7), whereas
∼10% were uniquely identified with RefSeq. The MAJIQ database
also identified 140 proteoforms that are not captured by RefSeq.
Therefore, as we predicted, the use of the RNA-seq to train a data-
base increases our isoform discovery, although in no case was
detection saturating. Possible reasons for the limited overlap in
the proteoforms detected by the three databases are discussed be-
low. Thus, we conclude that RNA isoform data obtained from a
specific cell type carry unique information critical to predicting
the resulting proteome.

In addition to observing distinct proteoforms, we can also
quantify differential expression between alternate proteoforms.
A clear example of this is the differential expression of alternate
isoforms of the metabolic kinase PKM. PKM transcripts have
been previously shown to be regulated by AS, specifically a
mutually exclusive event between exons 9 and 10 (PKM-E9 and
PKM-E10), thus encoding for PKM1 and PKM2 protein isoforms,
respectively (Takenaka et al. 1991), which play opposing roles in

metabolism (Christofk et al. 2008). Our
MS results show that PKM2 (UniProt ID
P14618) is more highly expressed than
PKM1 (UniProt ID P14618-2) in both
unstimulated and stimulated cells (Fig.
4D), consistent with up-regulation of
pyruvate metabolic processing in stimu-
lated cells (Fig. 3F). We used quantifica-
tion of the AEPs (Supplemental Fig. S6)
as a proxy for proteoform abundance, as
the remainder of the peptides are shared
between both proteoforms.

To determine if our detection of pro-
teoforms mimicked the mRNA isoform
profile, we performed RT-PCR with two
forward primers that anneal to the
unique exonic sequences of PKM-E9 or
-E10 (Fig. 4E). Of note, PKM-E9 and
-E10 are each 167 nt in length and code
for a variable segment of 56 amino acids
for either isoform. Inclusion of both ex-
ons would result in nonsense mediated
decay (NMD) of the transcript, and
both exons are not observed together in
the transcriptome (Chen et al. 2012).
Consistent with the MS result, we ob-
served that the overall inclusion of
PKM-E10 is higher than PKM-E9 under
both unstimulated and stimulated con-
ditions (Fig. 4E). Moreover, we are able
to show differences in expression of
PKM1/2 by western blot consistent with
the MS and RT-PCR quantification (Fig.
4F). Therefore, at least for this case study,
the relative abundance of the proteoform
is reflective of the AS preference. We also
note that the RT-PCR, western blot, and
MS quantification of PKM all show an in-
crease in the PKM1 isoform upon cell
stimulation (Figs. 4D–F).
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Differential expression of splicing-generated protein isoforms

To determine if other proteoforms showed differential expression
in a stimulation-specific manner, we looked at proteoform expres-
sion by plotting cytoplasmic and nuclear log2 abundance ratios
(stim/unstim) against−log2P-values (Fig. 5A,B).Wedoobserve sev-
eral instances of a specific spliced proteoform that shows increased
or decreased expression upon stimulation (Fig. 5A,B, colored cir-
cles). Functionally relevant examples of this are alternative proteo-
forms of the LEF1 transcription factor generated through
alternative use of terminal coding exons 11 (E11) or 12 (E12).
This AS event generates LQESASGTGPR from LEF1-E11 inclusion
(E11-EJP) (Fig. 5A) and AATPGPLLEMEAC from LEF1-E11 skipping
(E12-EJP) (Fig. 5B; Supplemental Fig. S7). These proteoforms are
both detected in our data and are differentially distributed between
subcellular compartments (Fig. 5C). In addition, although both in-
crease upon stimulation, the proteoform containing the E12-EJP is
more enhanced upon stimulation (Figs. 5A–C). Unfortunately, an-
tibodies that efficiently discriminate between LEF1 isoforms are
not available. However, as with PKM, the change in relative abun-
dance in the E11-EJP and E12-EJP is reflective of the RNA isoform
abundance, as RT-PCR detects an increase in the abundance of
both the E11 included and skipped product; however, there is a
preferential increase in E11 skipping in stimulated Jurkat T cells
(Fig. 5D). In sum, these data showour ability to detect and quantify
alternate proteoforms derived from AS and highlight that changes
in splicing efficiency can impact the proteomic repertoire.

Discussion

We describe here a workflow that allows
for increased identification and quantifi-
cation of peptides and proteins in the in-
terest of improving detection and
quantification of peptides that uniquely
distinguish protein isoforms. By using a
T-cell stimulation system, we were able
to quantify changes in alternative pre-
mRNA splicing and proteoform expres-
sion. We show that LSV and alternative
exon junction usage information is suffi-
cient to train a peptide database in order
to confidently identify proteoforms. By
training a database with exon junction
usage evidence for alternatively spliced
cassette exons, we increased detection of
splicing-derived proteoforms by >16%
over those identified with a standard da-
tabase (SWISS-PROT) and by 28% when
combined with RefSeq. In addition to
the improved database, we show that in-
creased depth of peptide detection and
miningof RNA-seqdata improves thedis-
covery of alternative proteoforms. Lastly,
although this was not the focus of this
study, we are also able to quantify fluctu-
ations in protein abundance across sub-
cellular compartments.

The approach we describe here to
identify AS-generated proteoforms adds
to a growing number of approaches in
the field of proteogenomics (Nesvizhskii

2014). One alternative approach to proteomic discovery that has
been described elsewhere (Ma et al. 2018) is the use of Cufflinks
(Trapnell et al. 2010) to assemble transcripts from RNA-seq data
that then are used to train a database of predicted peptides. This
Cufflinks-based approach has proven fruitful in the discovery of
microproteins (Ma et al. 2018), something that our approach did
not specifically look for and was not designed to detect. In con-
trast, the MAJIQ-based approach we describe here is optimized to
identify alternative proteoforms generated via AS by focusing on
AEPs and EJPs. The use ofMAJIQ is preferred over Cufflinks for dis-
covery of AEP and EJPs, as the latter does not specifically distin-
guish alternative transcripts derived from AS as opposed to other
gene regulatory mechanisms (Wang and Rio 2018). In addition,
the MAJIQ-derived database, which focuses on local splicing vari-
ations in a gene, is smaller than a Cufflinks-derived peptide data
base; thus, the MAJIQ-derived database involves reduced search
space and computational time. In sum, there is unlikely to be a sin-
gle best approach to the discovery of all of the nuances that may
exist in the proteome. Rather, it is valuable to recognize the limits
and strengths of each approach and train databases according to
the goal of any particular study.

We do note that even though our custom database allowed
for detection of AEPs and EJPs not in the SWISS-PROT database,
there were other proteoforms only detected by SWISS-PROT.
There are several reasons that may explain why we were not able
to identify as many proteoforms with our custom junction usage
database compared with SWISS-PROT. Filtering LSVs with a highly
stringent junction usage cutoff that excluded some detectable
AEP/EJP IDs and the limited length of the translated segment in
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the MAJIQ database mean many EJPs/AEPs identified by SWISS-
PROT are not present in the MAJIQ custom database. Moreover,
a limiting factor to our ability of detecting EJPs with either data-
base is the trypsin digestion step, as it has been reported that a frac-
tion of splice sites code for lysine and arginine residues (Wang et al.
2018). Therefore, using an enzyme that cuts at lysines and argi-
nines may reduce the number of peptides that span exon junc-
tions. In addition, not all EJPs or AEPs are detectable in normal
nLC-MS/MS pipelines. For example, although our laboratory has
previously studied the regulated skipping of exon 6 of LEF1 (as op-
posed to exon 11 analyzed in Fig. 5), we could not quantify the
proteomic impact of this splicing event as the peptide encoded
as a result of exon 6 skipping cannot be analyzed using our nLC-
MS/MS method because digestion with trypsin would generate a
55-amino-acid peptide for which the m/z is out of our scan range
and parameters. We emphasize, however, that despite not detect-
ing all possible proteoforms, our workflow does show the impact
of AS on the proteome, as we were able to quantify the relative
abundance of many proteoforms, including several with known
biologic significance, such as PKM and LEF1.

Pyruvate kinaseM1/2 (PKM) is a key enzyme for glycolysis, in
which it catalyzes the final step of the glucose conversion pathway
in order to produce pyruvate and ATP. PKM transcripts have been
previously shown to be regulated by AS (Takenaka et al. 1991).
PKM1 is constitutively active in healthy adult cells and promotes
oxidative phosphorylation, whereas PKM2 is allosterically regulat-
ed and leads into aerobic glycolysis, thus driving tumorigenesis
(Christofk et al. 2008). Several years ago, it was shown that the reg-
ulation of PKM splicing is performed by HNRNPA1/A2 and PTBP1
binding to intronic silencing sequences (ISSs) flanking PKM-E9, as
well as A1 binding within PKM-E9 (Clower et al. 2010; David et al.
2010; Chen et al. 2012). Changes in expression levels of these
RNA-binding proteins (RBPs) determine the splicing outcome
and can revert lactate production in cancer cells (Christofk et al.
2008; Clower et al. 2010; David et al. 2010; Chen et al. 2012).

Similarly, AS has been shown to regulate the activity of Wnt/
catenin beta 1–regulated transcription factor lymphocyte enhanc-
er factor 1 (LEF1) (Waterman et al. 1991; Arce et al. 2006). LEF1 has
multiple exons regulated by AS that give rise to various proteo-
forms that differ in catenin beta 1 binding, the context-dependent
repression domain (CDR), DNA-binding, and/or C-termini identi-
ty (Arce et al. 2006; Archbold et al. 2012; Nagalski et al. 2013). Our
group has extensively studied the regulation of LEF1 exon 6 (LEF1-
E6; addition of 28 amino acids within the CDR) (Mallory et al.
2011; Ajith et al. 2016), which increases upon T-cell stimulation
and promotes transcription of the T-cell receptor alpha chain
(Mallory et al. 2011; Ajith et al. 2016). Additionally, regulation
of exon 11 (LEF1-E11) alters the C terminus of the protein, as in-
clusion of E11 introduces an in-frame stop codon that ends the
CDS region of the transcript, whereas skipping of E11 results in us-
age of a stop codon found in exon 12 (LEF1-E12). Our finding that
the C terminus of LEF1 correlates with subcellular localization pro-
vides useful information to guide future studies regarding the func-
tional impact of exon 11 included on LEF1 protein function.

In sum, our work here underscores that AS does contribute to
the diversity and regulation of the proteome and is often underes-
timated owing to incomplete depth of both proteomic and tran-
scriptomic data. In particular, we show that intentional
acquisition and focused analysis of nLC-MS/MS data are required
to observe the full impact of splicing on protein expression. We
propose that a similar workflow will likewise be useful for interro-
gating the impact of AS on other physiologic systems.

Methods

Cell culture and stimulation

JSL1 cells were cultured in RPMI 1640 (Corning 10-040-CV) sup-
plemented with 5% heat-inactivated fetal bovine serum (FBS;
Gibco 16000-044), penicillin, and streptomycin (100 units/mL
each) and were grown at 37°C in 5% CO2. For stimulation, we
set up three independent replicates by diluting cells to 3.5 ×105

cells/mL and treating with 20 ng/mL PMA (Sigma-Aldrich) for 48
h before cell harvest (Lynch and Weiss 2000). Unstimulated JSL1
cells were cultured in parallel for each replicate at a seeding con-
centration of 2 ×105 cells/mL.

Custom database generation

MAJIQ

RNA-seq data and differential splicing analysis by MAJIQ was pre-
viously published (GSE93594) (Gazzara et al. 2017). In brief, total
RNA was isolated and poly(A) selected from unstimulated and
PMA stimulated JSL1 cells using RNA-Bee (Tel-Test) as previously
described (Smith and Lynch 2014). RNA-seq data were analyzed
with MAJIQ (Vaquero-Garcia et al. 2016) to identify LSVs and
quantify changes in exonic splicing patterns between our condi-
tions, which we term difference in percent spliced in (ΔPSI). To
generate the peptide custom database to search MS data, we fil-
tered the MAJIQ output for LSVs that had two or more junctions
eachwith 20%–80%of reads going to/coming from a specific junc-
tion, hereby termed “alternative junctions” (AJs). This allowed us
to filter the data set for junctions that were highly used (by an ar-
bitrary threshold) and increase the likelihood of detecting the iso-
forms at the protein level. Next, we extracted the flanking exonic
sequences upstream of and downstream from a given LSV and
translated them in silico using three forward reading frames
(SeqinR R package) (Charif and Lobry 2007) to generate peptide se-
quences that benchmark splicing products (Supplemental Fig. S2;
see also Supplemental Code). In the case of novel splice junctions
identified by MAJIQ, we used 50 nt upstream of and downstream
from the junction to build the sequences. The use of a 100-nt win-
dow around the splice junctions is based on the fact that our MS
pipeline is optimized for peptides of six to 25 amino acids, thus
predicting splice junction peptides of longer than about 30 amino
acids provides limited additional usable information.Our database
includes translated sequences up to the first stop codon found in a
given reading frame, removing any peptides that are fewer than six
amino acids long. In total, theMAJIQ database contains 60,894 se-
quence elements.

RefSeq

We downloaded the FASTA file for the GRCh37 annotated tran-
scripts. This assembly was used as the best comparison for
MAJIQ, as MAJIQ is based on the GRC37/hg19 genome assembly.
Using GRCh38 (hg38) annotated transcripts, or indeed any other
annotation, would not significantly affect the conclusions of
this study becauseMAJIQ identifies splicing isoforms independent
of any assembly (i.e., identified de novo isoforms) and thus ismore
complete than any specific annotation. Similarly to theMAJIQ ex-
tracted sequences, we translated the RefSeq transcripts in silico us-
ing three forward reading frames to generate peptide sequences.
Our database includes translated sequences up to the first stop co-
don found in a given reading frame, removing any peptides that
are less than six amino acids long. In total, the RefSeq database
contains 150,004 sequence elements.
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RT-PCR

Low-cycle reverse transcription (RT)–PCR analysis of AS events
was performed as described previously (Lynch and Weiss 2000;
Melton et al. 2007) using sequence-specific primers for individual
genes. In brief, we set-up three independent RT-PCR reactions
with 1 μg of RNA obtained from unstimulated or stimulated cells.
Primer sequences and RT-PCR conditions are provided in Supple-
mental Table S8. Formamide buffer was used to run samples on
5% denaturing polyacrylamide gels (PAGEs). RT-PCR products
were detected by densitometry using a Typhoon Phosphorimager
(Amersham Biosciences). Product bands were quantified with
ImageQuant software.

Cell fractionation and protein extraction

Unstimulated and PMA-stimulated JSL1 cells were harvested after
48 h of treatment, rinsed with PBS, resuspended in lysis buffer
(20 mM HEPES at pH 7.9, 150 Mm NaCl, 0.5 Mm MgCl2, 0.5%
NP-40 alternative, 10% glycerol, 1 mM DTT, 1.2 mM AEBSF),
and incubated on ice for 5 min. The lysates were centrifuged for
20 min at 4°C at maximum speed to pellet the nuclei (supernatant
is the cytoplasmic fraction). To obtain the nuclear fraction, we re-
suspended the nuclei pellets in 50 mM ammonium bicarbonate
(Sigma-Aldrich 11213-1KG-R) and sonicated with short intermit-
tent pulses until the lysate was cleared. We determined protein
concentration of each sample by Bradford assay (Bio-Rad 500-
0006).

Western blot

For protein analysis, 5 μg of whole-cell protein extract (WCE) was
loaded into 8% 37.5:1 bis-acrylamide SDS-PAGE gels. Antibodies
for western blot were diluted in 5% BSA-TBST as follows: GAPDH
(Abcam ab128915; 1:5000, 5 µg WCE), lamin B1 (Abcam
ab133741; 1:5000, 5 µg WCE), PKM1 (Cell Signaling D30G6;
1:1000, 5 µg WCE), and PKM2 (Cell Signaling D78A4; 1:1000,
5 µg WCE).

Protein sample processing for MS

–pH peptide fractionation samples

For each sample, we aliquoted 50 µg of fractionated protein extract
for further processing. Samples were denatured (10 mM DTT, 30
min, 55°C), and alkylated (25 mM iodoacetamide, 30 min, room
temperature). To remove the detergent used for cytoplasmic frac-
tionation, we used acetone (1:6, sample:acetone) to precipitate
the proteins overnight at −20°C, centrifuged at 8000g for 10
min, and air-dried the pellets. We resuspended the samples in 50
mM ammonium bicarbonate and added trypsin (Promega, Fisher
Scientific PRV5113) at a 1:33 ratio (trypsin:sample) for protein
digestion overnight at 37°C. Samples were dried on a SpeedVac
and resuspended in 0.1% TFA for stage-tipping.

+pH peptide fractionation samples

For each sample, we aliquoted 50 µg of fractionated protein extract
for further processing. To remove salts and detergents from the
samples, we used S-trap micro columns (ProtiFi C02-micro-40)
and followed the previously recommended protocol (Zougman
et al. 2014; HaileMariam et al. 2018). In brief, we added SDS to
each sample for 5% final concentration and denatured (20 mM
DTT, 10 min, 95°C) and alkylated the proteins (40 mM iodoaceta-
mide, 30min, room temperature). Next, we applied the samples to
S-trap micro columns and used the protocol-indicated buffers for
cleanup (Zougman et al. 2014). We used trypsin for overnight

digestion at 47°C (1:30 ratio in 50 mM triethylammonium bicar-
bonate). After eluting the peptides from the S-trap, we dried the so-
lutions on a SpeedVac and resuspended the samples in 0.1% TFA.
For further sample fractionation at the peptide level, we applied
the peptide mixture to a C18 Micro SpinColumn (Harvard
74-4601) and generated fractions by sequentially eluting peptides
off the column with increasing concentrations of acetonitrile in
100 mM ammonium formate (pH 10; Honeywell Fluka 17843-
50G) (Supplemental Table S1). Samples were collected in 1.7-mL
microtubes, and fractions were paired as shown in Supplemental
Table S1 (i.e., high pH fractions A and D were pulled together).
The fractions to be combined were chosen this way to allow for
peptides having different hydrophobic properties and to cut by
half theMS run time. Samples were dried on a SpeedVac and resus-
pended in 0.1% TFA.

−/+ pH fractionation samples

Peptides were desalted before nLC-MS/MS analysis by using in-
house-packed stage-tips assembled by sealing a disk of C18materi-
al at the bottom of a P200 tip. Stage-tips were equilibrated with
100 µL of 0.1% TFA, applied with sample, and washed once with
100 µL 0.1% FA. Elution of peptides was performed by using
50 µL of 70% acetonitrile +0.1% FA (twice). Samples were dried
on a SpeedVac and resuspended in 0.1% TFA for subsequent
nLC-MS/MS analysis.

nLC-MS/MS

DDA (–pH peptide fractionation samples)

Samples were analyzed by using an EASY-nLC nano HPLC system
(Thermo Fisher Scientific) coupled online with a Fusion Orbitrap
Tribrid MS instrument (Thermo Fisher Scientific). The nLC was
configured with a 75-µm ID×20-cm Reprosil-Pur C18-AQ (3 µm;
Dr. Maisch) reverse-phase capillary column packed in-house. The
full HPLC method was 135 min long with a 125-min gradient as
detailed: 1% to 28% solvent B (solvent A=0.1% formic acid; sol-
vent B=0.1% formic acid in 100% acetonitrile) over 120 min
and from 28% to 90% solvent B in 5 min at a flow-rate of 300
nL/min. Data were acquired using DDA and positive polarity
modes, consisting on a full-scanMS spectrum (350–1200m/z) per-
formed in the Orbitrap at 120,000 resolution (cycle time=3 sec),
followed by higher energy collision dissociation (HCD) fragmenta-
tion of the precursor ions (two to six charge state, intensity thresh-
old minimum=2×104). HCD collision energy was set at 35. MS/
MS scans detected on the ion trap (AGC target minimum=1×
104). Xcalibur software was used for data collection.

DDA (+pH peptide fractionation samples)

Samples were analyzed by using a Dionex UltiMate 3000 (Thermo
Fisher Scientific) LC system coupled onlinewith aQ Exactive HF-X
instrument (Thermo Fisher Scientific). The LC was configured
with a 75-μm ID by a 20-cm Reprosil-Pur C18-AQ (3 µm; Dr.
Maisch) reverse-phase capillary column packed in-house. The
full HPLC method was 75 min long with a 67-min gradient as de-
tailed: 5% to 20% solvent B (solvent A=0.1% formic acid; solvent
B=0.1% formic acid, 80% acetonitrile) over 45 min, from 20% to
40% solvent B in 15 min, and from 40% to 85% solvent B in
7 min at a flow-rate of 300 nL/min. Data were acquired using
DDA and positive polarity modes, consisting on a full-scan MS
spectrum (300–1100m/z) performed in the orbitrap at 120,000 res-
olution, followed by HCD fragmentation of the top 20 precursor
ions (≥+2 charge state) and MS/MS scans detected on the
Orbitrap with 30,000 resolution. HCD collision energy was
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stepped, with variable energies at 25.5, 27, and 30. Xcalibur soft-
ware was used for data collection.

DIA (+pH peptide fractionation samples)

As for the DDA data acquisition, we used the Dionex UltiMate
3000 LC system coupled onlinewith the same Q Exactive HF-X in-
strument. The same solvent gradient and reverse-phase C18 capil-
lary column were used for sample injection. Data were acquired
using DIA and positive polarity modes, consisting on a full-scan
MS spectrum (350–1100 m/z) performed in the Orbitrap at
120,000 resolution, followed by HCD fragmentation (stepped en-
ergy) of precursor ions≥+2 charge statewithin preselected overlap-
ping 20 m/z isolation windows (Supplemental Table S3). MS/MS
scans detected on the Orbitrap with 30,000 resolution. Xcalibur
software was used for data collection.

Database search

DDA

Data were analyzed using the Sequest HT search engine in
Proteome Discoverer 2.2 (Thermo Fisher Scientific), Percolator,
and three databases: a full human proteome database (SWISS-
PROT canonical plus isoforms, release 2018_05; 42,348 sequence
elements), theMAJIQ LSV custom database, and the RefSeq assem-
bled transcripts translated in three forward reading frames (both
described above). We programmed a bioinformatics workflow to
identify MS/MS spectra matching with protein sequences from
the SWISS-PROT database for a global proteomics analysis (1%
FDR). Our second database search used a MAJIQ custom database
based on highly used exon junctions of cassette exons (Fig. 1A,B)
with 1% FDR. Last, the third database search was performed
with the RefSeq 3-frame transcript translation with 1% FDR. The
parameters used for each database search are detailed in the
Supplemental Table S2. The similarity between −pH and +pH pep-
tide fractionation samples was determined by comparing the pep-
tides and proteins identified by each of the two databases
(Supplemental Tables S4, S5).

DIA

We imported the result file from PD 2.2 into Spectronaut
(Biognosys) to create a custom spectral library for the subsequent
DIA data analysis (Bruderer et al. 2015). After obtaining the spec-
tral library, we searched the DIA raw files against the SWISS-
PROT and MAJIQ junction usage databases. We used Spectronaut
protein and peptide quantification values to determine changes
in protein and peptide abundance upon T-cell stimulation.

For both DDA and DIA data, we performed normalization by
dividing a given quantification value (peptide or protein) by the
average of quantification values for that particular sample after
log2 transformation. Additionally, we filtered out proteins/pep-
tides that were identified in only one replicate and/or not quanti-
fied. To assess proteomic changes between our conditions, we
imputed missing values at the protein quantification level using
Excel. Significant changes were determined by performing a two-
tailed homoscedastic t-test between unstimulated and stimulated
conditions; our significance cutoff was P-value <0.05 (or 4.32
when –log2 transformed). Last, we calculated the adjusted P-value
using the Benjamini and Hochberg (BH) correction in RStudio
(RStudio Team 2015) to control for FDRs.

GSEA

GSEA was performed using the javaGSEA desktop application in-
terface (Subramanian et al. 2005). Input data set files contained

normalized log2 protein abundance values (fromMS-DIA analysis)
for each replicate/condition. We used the GO “c5.all.v6.2.sym-
bols.gmt” gene set database with 1000 phenotype permutations.
Enrichment statistic was set to “weighted” and metric for ranking
genes “Signal2Noise.”

Data access

All MS data generated in this study have been submitted to the
EMBL PRIDE archive (https://www.ebi.ac.uk/pride/archive/) un-
der accession number PXD012556.
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