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Cancers are caused by genomic alterations that may be
inherited, induced by environmental carcinogens, or caused
due to random replication errors. Postinduction of carcinoge-
nicity, mutations further propagate and drastically alter the
cancer genomes. Although a subset of driver mutations has
been identified and characterized to date, most cancer-related
somatic mutations are indistinguishable from germline vari-
ants or other noncancerous somatic mutations. Thus, such
overlap impedes appreciation of many deleterious but previ-
ously uncharacterized somatic mutations. The major bottle-
neck arises due to patient-to-patient variability in mutational
profiles, making it difficult to associate specific mutations with
a given disease outcome. Here, we describe a newly developed
technique Continuous Representation of Codon Switches
(CRCS), a deep learning-based method that allows us to
generate numerical vector representations of mutations,
thereby enabling numerous machine learning-based tasks. We
demonstrate three major applications of CRCS; first, we show
how CRCS can help detect cancer-related somatic mutations in
the absence of matched normal samples, which has applica-
tions in cell-free DNA–based assessment of tumor mutation
burden. Second, the proposed approach also enables identifi-
cation and exploration of driver genes; our analyses implicate
DMD, RSK4, OFD1, WDR44, and AFF2 as potential cancer
drivers. Finally, we used CRCS to score individual mutations in
a tumor sample, which was found to be predictive of patient
survival in bladder urothelial carcinoma, hepatocellular carci-
noma, and lung adenocarcinoma. Taken together, we propose
CRCS as a valuable computational tool for analysis of the
functional significance of individual cancer mutations.

Cancer is defined as a pathological state in which the cells
undergo uncontrolled cell division. There are three main
causes of human cancers: (i) hereditary, which constitutes only
a small fraction of cancer incidents; (ii) exposure to environ-
mental mutagens and radiation; (iii) random errors caused
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during DNA replication. A recent study has indicated that
about two-thirds of the cancer mutations are attributable to
random errors due to defects in replication fidelity (1).
Depending upon their contribution to cancer development,
cancer-related somatic mutations are of two broad types—
drivers and passengers. While driver mutations confer a fitness
advantage to cancer cells, passengers, aka. “hitchhikers,” don’t.
Passenger mutations comprise about 97% of somatic muta-
tions in cancer (2). Recent shreds of evidence highlight the
indirect and damaging roles of passenger mutations (2). While
a small number of driver mutations may be frequent and
concentrated around driver genes, the large majority of
cancer-related mutations are indistinguishable from germline
variants.

Whole genome sequencing and whole exome sequencing of
cancer DNA have become mainstream in cancer biology
research and clinical investigations. Extensive sequencing of
the cancer genomes during the last several years led to the
identification and cataloging of millions of cancer-related so-
matic mutations that collectively allow identification of the
cancer-associated mutational signatures. These mutational
signatures primarily comprise substitution and frameshift
mutations with one or two flanking 50 and 30 nitrogenous
bases. These signatures are found to be differentially enriched
across cancer types. The mutational signatures mainly focus
on highly repetitive patterns and not much on the rare mu-
tations which constitute the vast majority (3, 4). Further, these
signatures feature the subject mutation at the center of the
nucleotide string, thereby diminishing their generalizability.
While all the existing approaches represent a remarkable step
toward finding tractable repeating patterns across cancer ge-
nomes, these are not meant to predict cancer mutations in
contrast to germline or other noncancer somatic mutations.

Accurate replication of DNA prior to cell division is crucial
to impede mutagenesis. The fidelity of eukaryotic DNA
replication is partially attributable to the recognition and
removal of mispaired nucleotides (proofreading) by the
exonuclease activity of DNA polymerases PLOD1 and POLE.
Church et al. (5) reported POLE mutations in the highly
conserved residues, which may be strongly implicated in the
impairment of the proofreading mechanism. Moreover,
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Continuous representation of mutations
multiple studies linked the role of APOBEC cytidine de-
aminases in APOBEC-mediated mutagenesis in multiple can-
cer types (6, 7). Such sporadic, albeit numerous, findings
collectively hint toward the exclusive nature of cancer muta-
tions. Over the last years, the analysis of cancer genomes has
primarily focused on three directions: (i) driver gene identifi-
cation based on mutational recurrence; (ii) assessment of
functional consequences of nonsynonymous mutations; and
(iii) discovery of mutational signatures. There are two main
objectives of the current study: (i) an unbiased investigation of
the exclusive nature of cancer mutations as compared to
germline and noncancerous mutations; (ii) demonstrating the
applicability in driver gene identification and survival risk
stratification in patients.

Unlike gene expressions, which are numeric, variants present
the challenge of modeling categorical attributes (four nucleo-
tides) in the context of surroundingnucleotide sequences. Latter
is a more complex problem, especially since most cancer mu-
tations are sporadic and observed in a limited number of tumor
samples. A limited number of existing deep learning-based ap-
proaches enable learning from sequence data. These are used to
solve diverse tasks such as unraveling regulatory motifs (8) and
prioritizing functional noncoding variants, including expression
quantitative trait loci in different pathological conditions (9, 10).
These approaches are based on the Convolutional Neural
Network (CNN) architecture. We identified two main chal-
lenges with the existing CNN-based approaches: (i) it is chal-
lenging to capture long-range dependencies by CNN that are
typically expected in a DNA sequence; (ii) pooling steps in the
CNN abstract the information, making it difficult for the CNNs
to capture subtle differences in the sequences. To this end, we
felt the urgent need for a suitable learning framework that fit the
requirement of modeling functions and phenotypes associated
with coding variants. A significant contribution of our work is to
develop a strategy named Continuous Representation of Codon
Switches (CRCS) for representing coding variants as a finite
number of codon switches (total 640 in number). Further, we
learned numeric embeddings (vectors of continuous values) for
these codon switches, leveraging large volumes of protein-
coding genetic variants observed in the population (without
any known reference to any disease). Embedding of codon
switches unlocks the power of the massive community-scale
initiative to process and integrate nearly �60,000 exome
sequencing profiles (11).

We constructed a novel deep learning architecture consti-
tuting bidirectional long short-term memory with attention &
CRCS embeddings (BLAC) and demonstrated that a significant
chunk of cancer mutations are distinguishable from noncancer
mutations. We benchmarked BLAC to existing deep learning
architectures and other generic methods for detecting delete-
rious mutations and demonstrated its power to score cancer
mutations differentially. We validated our findings on inde-
pendent large-scale mutational data both from cancer patients
and healthy populations with no reported disorders. Our re-
sults highlight the possibility of calling somatic mutation in the
absence of matched normal specimens, which has immense
clinical value (12). We identified with BLAC a number of
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putative driver genes on the X chromosome such as DMD,
RSK4, AFF2, ODF1, etc. A cumulative score was developed
combining mutation level information at the patient level
which showed promise in survival risk stratification in bladder
urothelial carcinoma (BLCA), lung adenocarcinoma (LUAD),
and hepatocellular carcinoma (HCC).
Results

Learning numeric representation of mutations

DNA sequences are long chains made of four types of bases,
namely, adenine (A), cytosine (C), guanine (G), and thymine
(T). Traditionally, machine learning–based modeling of
sequence data employs one hot encoding-based presentation of
each nucleotide wherein one of four possible places in a binary
vector is turned 1, and the rest are set 0. Although easy to create,
such a representation fails to capture the semantic relationship
between two nucleotide sequences. It is possible to learn longer
and more sophisticated representations, called embeddings, of
nucleotides using state-of-the-art approaches (13). However,
these approaches are not helpful in learning effective embed-
dings with such a small dictionary (consisting of four nucleo-
tides). Alternatively, one can create embeddings of nucleotide
k-mers (14, 15). The dictionary size of k-mers representation is
4k. Besides having large dictionary sizes, arbitrary k-mers do not
represent biologically relevant genomic entities.

This study proposes a new, biologically inspired approach to
represent coding variants numerically. Coding mutations/variants
can be of three types—synonymous, missense, and nonsense. This
classification is based on the effect these single nucleotide variants
(SNVs) have at the amino acid level.We factor this by representing
coding variants as codon switches. A codon switch is defined as a
directional pair of codons, constituting a reference codon (subse-
quence arising from the reference genome) and an alternative
codon (subsequence arising from a genome of interest). Since a
variant is influencedby its surroundingnucleotides, it is essential to
consider the neighboring codon switches. We, therefore, con-
structed codon switch sequences containing the codon switch of
interest for modeling purposes. For this study, we could only
consider single base substitution since other categories such as
frameshift and complex alterations (including double base sub-
stitutions) are sparselypresent in thedata (constituting less than4%
of the entire repertoire of cancer-related alterations) (Fig. S1).
Figure 1A depicts the details of this construction process. Effec-
tively, a codonswitchdoesnotnecessarily represent analteration, it
may also represent an unaltered amino acid (e.g., ATA→ATA). A
dictionary of codon switches constructed in this way contains a
total of 640 codon switches (Codon switch sequences). Notably,
our entire study focuses on coding sequences only.

In this proof of concept study, we applied our approach on
mutations in chromosome X. We only used mutations from
healthy individuals to learn the embeddings. Embeddings are
finite-sized numerical vectors. In order to construct muta-
tional embeddings, the codon switch sequences were subjected
to Skip-gram with negative sampling (13). Skip-gram is a
popular shallow neural network architecture that is used in the
domain of natural language processing to obtain a numeric



Figure 1. An overview of learning Continuous Representation of Coding Switches (CRCS). A, the steps involved (i) selection of variants that lie in exon
regions; (ii) construction of the codon switch sequence. A codon switch is defined as a directional pair of codons, constituting a reference codon (subsequence
arising from the reference genome) and an alternative codon (subsequence arising from a genome of interest); (iii) creating skip-gram tuples; (iv) learning
codon switch embedding. A toy example illustrating the process of constructing codon switch sequences is included. The number against a codon switch
sequence indicates its index in the codon switch dictionary. B, a center codon switch is selected probabilistically. For the selected center codon switch, two
types of tuples are constructed. (i) Tuples that fall within the context windowof a center codon switch aremarked as one; (ii) a few codon switches from outside
the context are also selected, and their tuples are marked as 0. C, a classifier is trained to classify these tuples. Input layer weights of this network behave as
codon switch embeddings. D, tSNE plot of learned embeddings. E, distribution of different codon switches on the tSNE plots. Interestingly, similar codon
switches tend to cluster far from opposite codon switches (G> A and A> G, G> T and T> G, A> C and C> A, C> T and T> C). tSNE, t-distributed stochastic
neighbor embedding.
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Continuous representation of mutations
representation of words that preserves semantic similarity
between word pairs that appear in the same context across
discourses. We modified the skip-gram network and posed the
learning task as a classification problem. To train the network,
we generated tokens based on the neighborhood of a codon
switch from a codon switch sequence (Fig. 1, B and C). A total
of 68,836 unique coding substitutions from healthy individuals
(Exome Aggregation Consortium, ExAC (11)) were used for
learning the numeric representation of coding codon switches.
Further details on the training of codon switch sequences can
be found in Continuous embedding of codon switches.

The semantic representation obtained by training the neural
network was captured in 300-sized numeric vectors, repre-
senting each of the 640 codon switches. As vectors of similar
words correlate strongly, codon switches that share similar
nucleotide contexts orient themselves analogously in the
associated vector space. Figure 1D shows the t-distributed
stochastic neighbor embedding projections of the learned
embeddings. Interestingly, codon switches without any sub-
stitution (identical codons) tend to form a separate cluster.
Codon switches with mutations in the STOP codons form a
separate cluster. Missense and nonsense mutations are divided
into two overlapping clusters. A closer inspection of these two
overlapping clusters reveals that codon switches in these
clusters are localized in a complementary fashion. This shows
the reversible functional impact of mirroring codon switches.
Note that codon switches with G > A mutation and A > G
mutation are located in different clusters. Codon switches with
other complementary mutations also display similar trends
(Fig. 1E). Fig. S2 shows UMAP projections of the learned
embeddings. Notably, we could not spot any meaningful
pattern among codon switches representing a change in amino
acid side chain properties such as polarity and acidity (Fig. S3).
CRCS exposes the inherent diversity of chromosomes

To analyze other chromosomes, we generated CRCSes for
all the remaining chromosomes. A t-distributed stochastic
neighbor embedding visualization of the chromosome-specific
CRCSes highlights heterogeneity manifested by chromosomal
nucleotide sequence patterns (Fig. 2A). To further investigate,
we generated the unigrams (individual amino acids), bigrams
(strictly ordered consecutive amino acid pairs), and trigrams
(strictly ordered consecutive amino acid triplets) of amino
acids from the sequences and analyzed chromosomal fre-
quencies. Fig. 2B (Supplementary File 2) shows the similarity
of chromosomes in terms of the frequency of individual amino
acids. Similar figures are also generated for bigrams and tri-
grams (Fig. 2, C and D). Clear biases are observed among
different chromosomal groups at unigram and bigram levels,
suggesting amino acid composition differences. At the trigram
level, such chromosomal groups start fading away. This anal-
ysis suggests that independent learning of embeddings may be
necessary for other chromosomes.

Different chromosomes harbor different sets of genes that
are often functionally connected to reduce cell regulatory re-
dundancies. Examples are HOX and Odorant Receptor
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families. HOX genes are colocalized in chromosomes in many
species, such as Drosophila. In humans, 39 HOX genes are
present as clusters across four chromosomes (16). Similarly, a
significant fraction of human Odorant Receptors is clustered
in Chromosome 11 (17). This could be a strong reason for
sequence bias across chromosomes. Chromosomal sequence
biases can also be explained by local gene duplication (18).
Taken together, our analysis unravels inherent differences in
nucleotide sequence patterns across human chromosomes,
which demands further investigation. It is also apparent that
machine learning models should be created in a chromosome-
specific manner to enable various genotype-phenotype asso-
ciation studies.
Classifying cancerous and noncancerous mutations

Identifying cancer mutations is vital in various clinical set-
tings, albeit challenging. The most common use case is
detecting somatic mutations from tumor specimens in the
absence of matched normal tissue (12). This causes the under-
utilization of clinical sequencing outputs. On a separate note,
tumor mutational burden (TMB) is estimated by counting
cancer-related somatic mutations from cancer specimens. A
robust pipeline for cancer mutation detection includes the
subtraction of germline variants obtained from matched
normal samples. TMB estimation has been proven to be an
efficient way to monitor cancer treatment (19). Due to the
challenges involved in obtaining tissue biopsies, it is crucial to
assess TMB using cell-free DNA from blood, which may
include circulating tumor DNA. In the absence of matched
normal samples, the germline variant databases are used for
in-silico filtering. These methods are suboptimal and can
benefit significantly from the normal-free detection of cancer
mutations. We investigated if a classifier can be trained to
classify cancerous and noncancerous mutations.

We used CRCSes to classify codon switch sequences into
two categories, namely codon switch sequences harboring
cancerous mutations or noncancerous mutations. Due to the
significant computational overhead, we focused on the sex
chromosomes for downstream analysis. We note that �70
protein-coding genes harbored by chromosome Y offer inad-
equate levels of genetic diversity, thereby trivializing deep
learning-based interventions. On the other hand, we obtained
about 107,000 high-quality variants across �800 genes from
the ExAC browser for chromosome X. We considered splicing
events when populating codon switch sequences for training a
custom neural-network architecture for classification. Notably,
we generated embeddings for all 640 codon switches inde-
pendently for each chromosome, and we found substantial
heterogeneity, which the chromosomal amino acid composi-
tion biases can explain. As such, genome-wide applicability of
CRCS warrants independent model building for each specific
chromosome (Fig. 2).

For predicting noncancerous/cancerous mutations, we
trained our custom neural network architecture, BLAC, using
34,981/66,165 unique X-chromosome specific substitutions
from ExAC/Catalogue of Somatic Mutations In Cancer



Figure 2. CRCS embeddings reveal the exclusive nature of chromosomes. A, tSNE projections of the embeddings learned independently for all the
chromosomes. The embeddings are clearly segregated, indicating heterogeneity in nucleotide sequence patterns. B, Spearman correlation of unigram
frequencies across chromosomes. Chromosomes are found to give rise to some tight clusters. C, Spearman correlation of bigram frequencies in chro-
mosomes. D, correlation of trigram frequencies across chromosomes. Chromosomes described as trigrams. Chromosomal similarities fade away with in-
crease in the sequence length. CRCS, Continuous Representation of Codon Switches; tSNE, t-distributed stochastic neighbor embedding.

Continuous representation of mutations
(COSMIC) databases spanning 332 protein-coding genes
(Fig. 3A). Four-fold cross validation was used to evaluate the
performance of BLAC-based detection of cancer mutations.

We obtained an average precision (AP) (i.e., the area under
the precision-recall curve) of 0.78 on the four validation sets,
indicating predictability of the mutational subtypes (Fig. 3B).
We posed a similar classification problem by randomly split-
ting the SNV pool obtained from the ExAC browser as a
control. As expected, we obtained an AP of 0.5. With COSMIC
alterations, our finding was similar (Fig. 3B). This strongly
supports the conclusion that cancer-related somatic mutations
are surrounded by differential nucleotide contexts compared
to noncancerous variants. We compared the performance of
the trained model with SIFT (20) and Polyphen2 (21). These
methods are widely used to predict the deleterious nature of
mutations, using sequence homology and amino acids’ phys-
ical properties. SIFT and Polyphen2 yielded lower values of AP
(0.74 and 0.71, respectively), indicating the superiority of our
sequence-based approach. Notably, BLAC predictions are
based on unseen genes (due to our implementation of cross
validation), whereas SIFT and Polyphen2 use models trained
on the entire genome. Under the current experimental setting,
J. Biol. Chem. (2022) 298(8) 102177 5



Figure 3. Classification of cancerous and noncancerous variants. A, deep learning architecture, used for CRCS-based classification of ExAC/COSMIC
variants. B, Precision-Recall (PR) curve for the BLAC after 200 epochs. The red and green curves indicate the performance of SIFT (20) and Polyphen2 (21),
respectively. Validation performances were measured on fake alteration classes, constructed by randomly splitting cancer/noncancer alterations into two
equal-size groups. The black dashed line represents the performance of the fake test set created from COSMIC data. Similarly, the blue dashed line is for ExAC
data. Both PR curves thus obtained, as expected, collapsed on the 0.5 precision line. C, boxplots depict the distribution of prediction scores (probability of
being a cancer alteration), assigned to the ExAC and COSMIC alterations, in the validation set (across all folds). D, similar trends are observed for
nonpathogenic dbSNP alterations and mutations found in cancer patients from Met (23) and cBioPortal (62, 63). Scores on these datasets were predicted
using the model trained on the full dataset. BLAC, bidirectional long short-term memory with attention & CRCS embeddings; COSMIC, Catalogue of Somatic
Mutations In Cancer; CRCS, Continuous Representation of Codon Switches; ExAC, Exome Aggregation Consortium.

Continuous representation of mutations
SIFT and Polyphen2 enjoy a significant relaxation in terms of
the stringency of cross validation.

The median distributions of scores on ExAC and COSMIC
datasets (Fig. 3C), although significantly different, are on the
higher side of the spectrum, which has a high false-positive
rate at a threshold of 0.5. Thus, there is still a large gray area
in the probability spectrum where cancer-related mutations
are indistinguishable from noncancerous ones. Many cancer-
related mutations received poor probability scores, leading us
to the postulate that only a fraction of cancer-related muta-
tions occur amid exclusive nucleotide contexts. Choosing a
threshold value of 0.9, although it reduces the model’s sensi-
tivity, returns the mutations that have high chances of being
cancerous. Table S1 (and Fig. S4) shows the value of specificity,
sensitivity, and F1-score at the threshold of 0.9. It is evident
from the table that Polyphen2 has higher specificity while
BLAC scores have higher sensitivity and F1-score.

To independently validate our findings, we evaluated our
model trained on ExAC/COSMIC on three different datasets.
We took neutral SNVs from the single nucleotide poly-
morphism database (dbSNP) after removing entries tagged as
pathogenic (22). We considered somatic SNVs from the Met
study for a matching cancer alteration pool, a recently
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published pan-cancer study of solid metastatic tumors (23).
Met sequenced and analyzed 2520 Dutch population tumor
samples. We followed the filtering criteria discussed in
Pruning of the coding variants. After removing sequences
overlapping with the training set, 289,418 noncancer- and
1151 cancer-related mutations were left. We used cBio Cancer
Genomics Portal (cBioPortal) as the second source of cancer
mutation data for validation. All 287 studies were downloaded,
and chromosome X mutations were chosen. After applying our
filters as discussed above, 147,049 mutations were left from the
original 246,201. As expected, cancer mutations were assigned
relatively higher BLAC scores (Mann-Whitney U-test p-
value < 0.01), thereby underscoring the robustness and
crossdemographic reproducibility of our predictions (Fig. 3D).

While interoperability between chromosomes appears
intuitive, it might not be optimal for the discussed classifica-
tion task. As discussed earlier in the section, the embeddings of
codon switches are well segregated, indicating apparent het-
erogeneity (Fig. 2). To further reinforce this, we predicted the
BLAC scores on chromosome 22 using the embeddings and
classification model trained on chromosome X. As expected,
the results on these values were inferior than the
chromosome-specific model (Fig. S5).
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We also compared the proposed neural network with an
alternate embedding approach, that is, dna2vec (14) and found
its performance to be inferior to that of the CRCS-based
method (Fig. S6, A and B). Further, we also compared our
network with three different architectures, namely, DanQ (8),
DeepSea (9), and HeartENN (10). These methods also failed to
supersede the performance of the CRCS-based approach
(Fig. S6, C and D). A detailed discussion of this validation can
be found in Supplementary Note S1.
BLAC score assists in driver gene exploration

Driver genes play a pivotal role in the diagnosis and clinical
management of cancers. We asked if our model differentiates
between driver gene-specific noncancerous and cancerous
mutations. By merging multiple driver gene databases (Preci-
sion Oncology Knowledge Base, (OncoKB) (24), Integrative
Onco Genomics, (intOGen) (25), and cancer genome inter-
preter (CGI) (26)), we obtained 55 potential driver genes on
chromosome X, of which 33 were left after filtering. For these
33 driver genes, �148 and �680 coding variants were
retrieved, on average, from ExAC and COSMIC, respectively.
On feeding these variants to our CRCS pipeline, we observed
significant differences in the distribution of prediction scores.
Figure 4A presents the top ten genes (KDM6A, SMARCA1,
STAG2, GPC3, ZFX, RBM10, CCNB3, ZMYM3, NRK, and
A

C

Figure 4. Driver gene analysis and exploration. A, boxplots show the distrib
known driver genes from the validation set (across all folds). In the figure, five s
represented by four stars. Similarly, values in the range of [5e−12, 5e−9), [5e−9,
heatmap shows the genes (in black) that have been marked significant most f
was marked significant if the BLAC scores of the reported mutations were sign
show the organ of cancer. Gene marked with * are known driver genes. C, h
functions in the indicated cancer types. Of note, the selected cancer types
approach. Cancer types that displayed significantly divergent risk groups inc
undifferentiated endometrial carcinoma (UEC). The scale bar represents the ne
term memory with attention & CRCS embeddings; COSMIC, Catalogue of Somat
dbSNP, single nucleotide polymorphism database; ExAC, Exome Aggregation
RPS6KA3) based on p-values. The distribution of scores for the
remaining 23 genes is presented in Fig. S7.

We asked if the strength of differential elevation of BLAC
scores between cancerous and noncancerous mutations is
more pronounced in the case of cancer drivers. For this, we
computed the statistical significance of BLAC score differences
associated with all genes (on Chromosome X) by leveraging
cBioPortal (for cancer mutations) and dbSNP (noncancerous)
variant calls (Comparing cBioPortal predictions with dbSNP
predictions, Supplementary File 3). We found adjusted p-
values (we considered −log10 transformation of the adjusted
p-values in this case) associated with the known driver genes
to be of higher significance than the entire population of X
chromosome-specific genes (one-sided Kolmogorov-Smirnov
test p-value < 0.05). This indicates that one could use the
differential elevation of BLAC scores across cancerous and
noncancerous mutations for a given gene as a yardstick for its
driver potential. Figure 4B reports 32 genes that show signif-
icant, cancer-specific BLAC score elevation across five or more
cancers. Out of 32 genes, 24 were not reported in either of the
three databases: OncoKB (24), intOGen (25), and CGI (26).
Among the genes not cataloged in these three databases, DMD
is an important candidate. Mutation of the DMD gene causes
muscular disorders. However, increasing shreds of evidence
implicates DMD in developing all major cancer types (27).
RPS6KA6 (aka RSK4) has recently been found to play a pivotal
B

ution of prediction scores assigned to ExAC and COSMIC alterations for the
tars represent a p-value less than 5e−15. Values in the range [5e−15, 5e−12) are
5e−6), and [5e−6, 5e−2) are represented by 3, 2, and 1 stars, respectively. B,
requently, across cancer types. For a given cancer type in cBioPortal, a gene
ificantly elevated as compared to dbSNP variants. The colors in the top row
eatmap depicting the cluster-wise enrichment of the prominent biological
harbored a number of mutational genes identified using the CRCS-based
lude skin cutaneous melanoma (SKCM), lung adenocarcinoma (LUAD), and
gatively log-transformed (base 10) p-values. BLAC, bidirectional long short-
ic Mutations In Cancer; CRCS, Continuous Representation of Codon Switches;
Consortium.
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role in promoting cancer-stem-cell properties and radio-
resistance in esophageal squamous cell carcinoma (28). BLAC
score–based analyses indicated its potential involvement in
pancreas, liver, head-and-neck, and breast cancers. Another
intriguing candidate is OFD1, a protein involved in ciliogenesis
(29). The primary cilium is a thin and long organelle pro-
truding in almost all mammal cell types and is involved in
perceiving external stimuli, such as light, odorants, and fluids.
The primary cilium also coordinates signaling pathways that
convert extracellular cues into cellular responses with the help
of receptors and signaling molecules. OFD1 mutations have
been found implicated in Wnt hyper-responsiveness (30).
WDR44, another enlisted gene, is involved in ciliogenesis (31).
Its role in cancer is still elusive. Supplementary File 4 cites
reports highlighting the roles of the 32 genes with information
on their potential as cancer drivers, where applicable. Genes
such as AFF2, MID1, PCDH11X, MCF2, NHS, and GYG2 are
not reported to have a role in cancer pathogenesis and could
be interesting for future validation. Notably, AFF2 has recently
been predicted to have driver roles (32).

We asked if genes that show differential BLAC scores across
cancerous and noncancerous mutations in specific cancer
types are functionally interconnected. For this, we used gene
ontology analysis by Metascape (33). For the top three cancer
types, that is, skin cutaneous melanoma, LUAD, uterine
endometrioid carcinoma (UEC), harboring the maximum
number of genes (≥100) identified by the method discussed in
Comparing cBioPortal predictions with dbSNP predictions
(Supplementary File 5). Metascape-based functional enrich-
ment analysis revealed the contribution of identified genes to
be largely cancer-specific (Fig. 4C). For example, the pentose-
phosphate pathway (34, 35) and the triglyceride biosynthesis
process (36) are highly enriched in LUAD. Similarly, the
glycogenolysis pathway is enriched in UEC (37). We relaxed
the number of gene cutoff to ≥40 and obtained seven cancer
types (Supplementary File 5), namely skin cutaneous mela-
noma, lung squamous cell carcinoma, UEC, LUAD, head and
neck squamous cell carcinoma, BLCA, non–small cell lung
cancer, classified based on the number of genes they possess
(Fig. S8). Similar to our earlier analysis, we observed cancer-
specific pathway enrichments, suggesting functional in-
terconnections between identified genes (Fig. S9). For instance,
in the case of BLCA, we observed a specific enrichment for the
carbon metabolism pathway (38–40). The results suggest that
genes that attract more deleterious/driver-like mutations in
specific cancers selectively alter different pathways. For
example, modifications in the histone pathways are well
characterized in multiple cancer types (41, 42).
BLAC scores enable survival risk stratification in different
cancer types

Characterization of tumor specimens using next-generation
sequencing is becoming increasingly common in targeted
treatment selection. These processes offer large numbers of
alterations per patient. A significant technical difficulty in
detecting all somatic mutations from a tissue sample is that it
8 J. Biol. Chem. (2022) 298(8) 102177
requires the availability of matched normal tissue samples. In
practice, paired collection of cancer and normal tissue samples
is quite challenging. Even if all somatic mutations are detected,
it is hard to draw any conclusion unless these are character-
ized. As such, presently, only a small fraction of these, which
are well characterized, is finally taken into account to devise
therapeutic strategies (12).

Since the advent of massively parallel sequencing platforms,
numerous sophisticated methods have been developed for the
stratification of patients with differential prognoses. Most of
these methods map missense mutations to genes, thereby
losing their individualities. For example, Hofree et al. (43), in a
seminal paper, mapped somatic mutations to gene networks to
cluster tumors (genome sequences) after network smoothing
using random walk with restart. Clusters of patients thus ob-
tained indicated significantly differential survival patterns.
Milanese et al. (44) leveraged putative functional mutations to
predict recurrence in breast cancer. Their approach is also
based on mapping mutations to genes. We hypothesized that
CRCS could be used for risk stratification using mutation-level
information only.

Our construction of cancer and noncancer mutation clas-
sification problem unavoidably discounts the fact that some
cancer-related somatic mutations could indeed be randomly
located and hard to differentiate from other germline muta-
tions. This could be the primary reason for the overlapping
BLAC scores associated with the two categories. We, therefore,
inferred that mutations with extremely high BLAC scores
might indicate a higher degree of contribution to the cancer
hallmarks. We devised a cumulative BLAC score based on
individual BLAC scores associated with X chromosome–
specific mutations (since our demonstration of CRCS is
limited to X chromosomes only) such that mutations with
higher BLAC scores are given relatively higher weightage
(using an exponential function). We performed this task on
cBioPortal mutations that are not used in training our pre-
diction model. Out of eight cancer types that qualified our data
filtering criteria, three showed significant (log-rank p-value <
0.1) survival risk stratification based on this score (Fig. 5). The
three cancer types are BLCA, HCC, and LUAD. In each case,
patients with higher cumulative BLAC scores were mapped to
the high-risk group. Significant aberration of the X chromo-
some has already been reported in HCC (https://pesquisa.
bvsalud.org/portal/resource/pt/wpr-520359, (45)). In BLCA,
similar reports exist highlighting the association of KDM6A
hypermutation with antitumor immune response efficacy
(46–49). Notably, BLAC scores of cancer-associated somatic
mutations in KDM6A show higher elevation than germline or
other noncancerous somatic mutations (Fig. 4A).
Discussion

The majority of cancer mutations are thus far understood as
hitchhikers. No notable computational work convincingly in-
dicates the contextual difference between cancerous and
noncancerous mutations. This problem has great use in clinics
since often matched normal sequences are not available for
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Figure 5. Survival risk stratification based on cumulative BLAC scores. A, patients with lower average BLAC scores in bladder urothelial carcinoma
(BLCA), a subtype of bladder cancer, have better survival. B and C, similar trends are also visible in hepatocellular carcinoma (HCC), a subtype of liver cancer,
and lung adenocarcinoma (LUAD), a subtype of lung cancer. BLAC, bidirectional long short-term memory with attention & CRCS embeddings.

Continuous representation of mutations
confident somatic mutation calling. A good example is
detecting mutations in cell-free DNA for diagnostic purposes
or measuring the mutational burden post-chemotherapy or
immunotherapy (50). Furthermore, current computational
approaches for risk stratification of cancer patients under-
utilize information captured at the mutation level. These
methods typically map missense mutations to genes for further
downstream prediction tasks. The current work reports a
strategy to address this by learning numeric vector-based
representations of mutations (i.e., embeddings) that are more
amenable to machine learning tasks.

It has been observed that cancer mutations occur at
evolutionarily conserved sites (51) and active sites of proteins
(52). Further, mutational signatures (i.e., specific alterations
surrounded by specific flanking nucleotides) have been iden-
tified and correlated with different mutagenesis processes such
as smoking and UV exposure (53). However, no holistic
approach is visible to discriminate between cancerous and
noncancerous variants. In fact, it is still elusive whether cancer
mutations are exclusive in nature. The current work answers
this in the affirmative.

Currently, there is no mainstream strategy that embeds the
individual alterations while preserving their similarity in terms of
the nucleotide sequence context. One visible effort in this di-
rection is mut2vec (54), which provides mutational embeddings
at the gene level, leveraging text mining, and protein–protein
interaction network. This learning approach does not mimic
any underlying biological process. For thefirst time, our approach
enables learning semantic representation ofmutations from large
volumes of uniformly processed exome sequencing data.

Our CRCS and bi-directional Long Short Term Memory
(bi-LSTM)–based custom deep learning architecture (BLAC)
can discriminate between cancerous and noncancerous mu-
tations with a limited number of labeled samples from each
category. This is due to the powerful representation learning
accrued by the CRCSes by ingesting a large pool of SNVs from
tens of thousands of exome sequencing data. The prediction is
not black and white as the BLAC score spectrum associated
with cancerous and noncancerous mutations overlap sub-
stantially. However, we see an apparent elevation in the dis-
tribution of CRCS scores for cancer mutations. This provides
evidence for the exclusive nature of cancer mutations and the
fact that cancer mutations, by and large, differ from germline
or other somatic mutations in terms of nucleotide context.

Most of the existing deep learning architectures proposed
for solving various tasks using sequence data use CNN as the
building block. There are a few fundamental problems in using
a CNN layer to solve the problem as put forth in the article. (i)
In the CRCS representation, there is only one codon switch in
the sequence containing actual mutational information. Uti-
lizing CNN followed by a max-pooling on this representation
may drop the variability introduced by a single codon switch.
Thus, it becomes challenging for the model to differentiate
among mutations on an mRNA. (ii) A CNN layer is not able to
handle variable-length sequences. The maximum length of the
mRNA sequence needs to be fixed at the input, and then other
variable-length sequences need to be padded with zeros to be
fed into the network. This restriction on the input size limits
the generalizability of the model.

In contrast to CNNs, LSTMs are specifically designed to
capture long-range dependencies. Single position difference in
the codon switch sequence can alter the state of the LSTM
unit, ultimately changing the prediction of the network. Bi-
LSTMs, a variant of LSTM, look at both ends of the
sequence together, which further improves the prediction of
the network. In addition, the recurrent nature of LSTMs
makes them suitable for variable-length sequences. Apart from
these, in other proposed networks, concatenation of one-hot
encoded nucleotides was used to create the numerical repre-
sentation of the DNA sequence. Such representations are not
able to capture any semantic information. We realized that
these problems prohibit unlocking the information content
present in variable-length flanking regions surrounding the
coding variant of interest.
J. Biol. Chem. (2022) 298(8) 102177 9
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The current work reports results only on chromosome X.
This study can also be extended to the other chromosomes.
Given that CRCS embeddings vary across chromosomes
(Fig. 2), in future work, we plan to train separate models for all
the chromosomes, for genome-scale analysis of mutations.
Further, we need to devise strategies to accommodate minority
variants such as indels and complex alterations.

In a nutshell, our findings suggest that cancer-specific SNVs,
including passenger mutations, occur with differential nucle-
otide contexts compared to coding variants observed in
healthy populations. One significant advantage of CRCS is that
it is not reliant on any clinical or pathological parameters. We
predict that the proposed approach could be adopted in
attempting a broad range of questions concerning genotype-
phenotype interlinking.

Mendelian diseases such as sickle cell anemia or cystic
fibrosis can be linked with variants in single genes. On the
contrary, complex diseases such as myocardial infarction or
schizophrenia result from combinatorial effects of multiple
genetic variants (55). Genome-wide association studies are
popular in linking genotypes with diverse conditions or traits.
As an outcome of these studies, over 10,000 variants (common
in most cases) have been identified and associated with various
diseases during the last 15 years (56). In genome-wide asso-
ciation studies, stringent false discovery rate control comes at
the expense of true positive discovery or statistical power (57).
A substantial number of variants are ignored due to lower
frequencies. Numerical vector-based representation using
CRCS may be able to rescue these otherwise ignored variants.
According to the World Health Organization definition, rare
diseases affect fewer than one in 200,000 people in the USA,
and there are as many as 7000 such diseases (https://my.
clevelandclinic.org/health/diseases/21751-genetic-disorders).
Amyloidosis, Adrenoleukodystrophy (connected to X chro-
mosome), and mitochondrial diseases fall under this category.
Due to sample size issues and low minor allele frequencies,
many rare diseases cannot easily be linked with variants. CRCS
approach can be fruitful in such cases. This approach can also
be used to train models that can identify previously unchar-
acterized deleterious mutations that can lead to structural
changes to protein and corroborate computational structural
biology approaches. Alzheimer’s and Parkinson’s are examples
of some neurodegenerative diseases that can be linked with
causal variants (58). The proposed method can also be
extended to understand the role of splice site point mutations
and their implication in various diseases such as congenital
cataracts and Becker muscular dystrophy (59).
Experimental procedures

Description of datasets

We collected high-quality coding SNVs representing the
general population from the ExAC browser (11) (https://
console.cloud.google.com/storage/browser/gnomad-public/leg
acy/exacv1_downloads/release1). The same data can also be
downloaded from the gnomAD website (60) (https://gnomad.
broadinstitute.org/downloads). An equivalent set of neutral
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SNVs was downloaded from the dbSNP after removing
genomic alterations that are tagged pathogenic (22) (ftp://ftp.
ncbi.nih.gov/snp/latest_release/VCF). Cancer-associated cod-
ing variants were downloaded from the COSMIC (61) (v89)
and cBio Cancer Genomics Portal (cBioPortal) (62, 63).

A list of known driver genes for chromosome X was con-
structed by combining information from three sources -
OncoKB (24), (intOGen) (25), and CGI (26). OncoKB has 44
driver genes, out of which 7 (13) are annotated as oncogenes
(tumor suppressors). Among the remaining genes, 23 are not
annotated. MED12 is annotated as both an oncogene and a
tumor suppressor. IntOGen reports 36 driver genes, out of
which OncoKB also reports 25. Amongst these 25 genes, 3 (12)
are annotated as oncogenes (tumor suppressors) by OncoKB,
while the remaining are not annotated. CGI reports seven
driver genes, out of which 4 (1) genes are annotated as on-
cogenes (tumor suppressors). One driver gene is unannotated.
OncoKB also reports all genes reported by CGI. MED12 is
reported by both IntOGen and CGI Supplementary File 6.

Reference genome (hg19/GRCh37) was downloaded from
the UCSC genome browser (64). The list of mRNA and their
coordinates were obtained from kgXref and the knownGene
tables from the UCSC table browser (65).
Pruning of the coding variants

knownGene and kgXref tables were combined, and only
protein-coding mRNAs were selected. VCF files from ExAC
and COSMIC were scanned, and genomic alterations (indels
plus SNVs) on the protein-coding region of the genome were
analyzed further. Of 4,537,166 (4,664,549) alterations collected
from ExAC (COSMIC), 107,591 (197,085) alterations were
from the X-chromosome. These alterations were mapped to all
possible splice variants of the mRNAs, which, for chromosome
X, inflated the alteration counts to 289,813 (624,918) from
ExAC (COSMIC). Since the frequency of insertions, deletions,
and complex mutations have a very small contribution to the
datasets (Fig. S1, Supplementary Note S2, Supplementary File
7, Table S2), we restricted the scope of our analysis to SNVs
alone. To this end, 285,102 (590,171) SNVs, considering all
possible splice variants harboring the SNVs, were retained
from ExAC (COSMIC). Removal of duplicate SNVs caused a
reduction of 21,495/308,198 in these counts corresponding to
ExAC/COSMIC. After removing duplicates, 40% of variants
from ExAC were kept aside to learn embeddings. The
remaining counts of variants from ExAC and COSMIC were
149,566 and 281,973, respectively. For ExAC/COSMIC, the
count of synonymous, missense, and nonsense variants from
chromosome X were 54,541/62,102, 93,647/202,981, and
1313/16,703, respectively. Since synonymous variants are ex-
pected to have minimal effect on cellular fitness (66), they were
removed from further processing. At this stage, the pre-
processed data contained 94,960/219,684 variants from ExAC/
COSMIC dataset. SNVs specific to dbSNP (22), Met (23), and
cBioPortal (62, 63) were also preprocessed in a similar manner.
In dbSNP, variants marked as pathogenic and likely-
pathogenic were removed. After preprocessing, the total X
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chromosome–specific SNVs from dbSNP were 530,405.
Across 287 studies present in cBioPortal, mutations reported
on the X chromosome were filtered. After preprocessing, the
mutation count was 374,138 and 2611 for cBioPortal and Met
data, respectively.
Codon switch sequences

In this article, we present a novel representation for muta-
tions, viz. as codon switches. A codon switch dictionary was
created by altering one nucleotide in a codon at a time. This
results in 640 codon switches.† Here, we justify the count of
the total number of codon switches. A codon is made of three
nucleotides. If one mutation is introduced to a codon, it can
occur at any of these three nucleotides. Every position already
contains a specific nucleotide. The change can be made by
replacing it with one of the three remaining bases. Therefore, a
codon can be transformed into one of the nine possible codons
by introducing a single base change. In this way, we obtain 9✕
64 = 576 codon switches for all 64 codons. To generalize the
applicability of codon switches, we need to also consider un-
changed codons as codon switches, where both codons are
identical. Therefore, we have 576 + 64 = 640 codon switches in
the dictionary that can seamlessly represent any coding
sequence. Each codon switch is assigned a unique numeric
code from 0 to 639. To capture mutation identities adequately,
we considered the sequence of surrounding codon switches.
All protein-coding mRNA sequences (coding regions only)
probability of selecting a condon switch ¼ min
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were extracted from the reference genome to construct these
codon switch sequences. For each variant, we constructed a
codon switch sequence based on the nucleotide triplets as
observed in the corresponding reference sequence, except for
the single codon switch difference due to the variant itself. For
codon switches other than ones harboring variants, we
considered identical nucleotide pairs as per the reference
sequence. This is illustrated in Figure 1A. For the machine
learning task, these codon switch sequences were converted
into numeral sequences using their preassigned numeric
codes. All analyzed variants were processed in this manner for
embedding and other machine learning tasks.

Continuous embedding of codon switches

A skip-gram (13) model with negative sampling was
employed to learn continuous representations of codon
switches. The skip-gram model learns embeddings by training
a shallow neural network that attempts to predict a codon
switch’s context. The word whose context is being learned is
† Mathematically, total codon switch count is given as nc(cC1✕
n − 1C1 +

cCc)
where codon length, c = 3, and number of nucleotides, n = 4.
referred to as a center codon switch. In general, the context
(the surrounding nucleotides) of a codon switch is prohibi-
tively long to predict; thus, we resort to the negative sampling
approach. In the said approach, we define a small window (ws)
around it for every codon switch in a sequence, and all codon
switches in this region are termed context codon switches or
positive samples. Further, some codon switches from outside
the windows are randomly selected and termed the negative
samples. The rate at which codon switches are sampled is
called the negative sampling rate (nsr).

Theoretically, embeddings are learned by making every
codon switch in a sequence a center codon switch. Of note,
corner codon switches are also treated as center codon
switches, but we look at only one side of the window to get the
context. But, practically, in a large dataset with large se-
quences, the count of center codon switches is extremely high
thus making it infeasible to use every instance of a codon
switch as a center codon switch. Hence, we performed the
subsampling to limit it. Since a codon switch sequence consists
of codon switches that do not contain any nucleotide alter-
ation except for one codon switch, the distribution of codon
switches is heavily skewed toward the former type of codon
switches. Thus, we first systematically squeeze the probability
of frequent codon switches and inflate the probabilities of a
nonfrequent switch. This increases the chances of nonfrequent
codon switches getting selected as center codon switches. To
systematically adjust the probability of codon switches, we use
the following formula:
where ε = 0.001 and f are the codon switch frequency in the
dataset kept aside for embedding. For each selected center
codon switch, 2 ✕ ws tuples were constructed by pairing it
with ws adjacent codon switches from both sides. Taken
together, these tuples constituted the positive category. On the
other hand, for every center codon switch, negative sampling
was performed by pairing the center codon switch with
random [((2 ✕ ws + 1) ✕ nsr)] or two codon switches, uni-
formly sampled from the codon switch dictionary. We used
window size of 3 (ws) and negative sampling rate (nsr) of 0.2
for the construction of the dataset. For these values, a total of
219,418,024 tuples were generated. Out of this, 182,886,425
were generated as positive samples, and 36,531,599 were
generated as negative samples.

In order to learn the 300-sized numeric vectors representing
the 640 codon switches, we initialized a 640 ✕ L, where L =
300 sized matrix with random entries. To this end, we also
simplify the training procedure of skip gram. We posed the
problem of learning codon switch embedding as a classifica-
tion. To build the dataset, we assigned a class label of 0/1 to all
the codon switch pairs in the negative/positive sets (Fig. 1B).
Then, a simple neural network was trained to classify between
J. Biol. Chem. (2022) 298(8) 102177 11
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the tuples labeled as 0 or 1(Fig. 1C). Network S1 shows the
network architecture to learn CRCSes. The input to the neural
network was the concatenated vectors of length 2 ✕ L, cor-
responding to the pair of codon switches in each tuple. For a
pair of embedding, we first compute the dot product of the two
and then compute the sigmoid of the resulting value. The bi-
nary cross-entropy cost function was optimized on the output
of the sigmoid unit. In total, the model has 192,002 trainable
parameters. All parameters, except 2, are the learnable pa-
rameters from the embedding matrix. The other two param-
eters are for the last dense layer, where one of the parameters
belong to the neuron’s weight and the other one is for the bias
of the layer. The ADAM (67) optimizer was used for optimi-
zation. The procedure was repeated for 200 epochs.

Cross-chromosome sequence similarity analysis

To assess the diversity of chromosomes at the amino acid
levels, we computed the proportion of unigram, bigram, and
trigram of amino acids across all chromosome sequences.
Here, a unigram is defined as a single amino acid. There were
21 unique unigrams; among those, 20 were amino acids and
one representative unigram corresponding to a stop codon.
Similarly, a bigram and trigram are defined as strictly ordered
pairs and triplets of amino acids, respectively. In this manner,
we obtained 441 unique bigrams and 9261 trigrams (including
pairs and triplets of stop codon).

Variant classification

The pretrained embeddings were used for classifying codon
switch sequences. We labeled codon switch sequences stem-
ming from ExAC and COSMIC as 0 and 1, respectively. To
reduce the computational overhead, sequences of length less
than 1500 were selected. Only genes with a minimum variant
count of 200 (with alternate splicing) were retained, leading to
332 genes. These genes were then randomly split into 4-folds.
These folds were created so that there are no common genes in
train and validation splits.

A deep neural network was constructed to classify the se-
quences. The deep neural stack consisted of a nontrainable
embedding layer, followed by two stacked bi-LSTM layers (68,
69), interleaved with one batch normalization layer (70). The
bi-LSTM layers were followed by another batch normalization
layer and a time-distributed dense layer. The time-distributed
layer shared weights across all time-states in a sequence.
However, the time-states did not communicate with each
other. The time-distributed layer was followed by another
batch normalization layer and an attention layer (71). The
output layer is dense, and its neurons use a sigmoid activation
function. In all, the model used 3,877,201 parameters, of which
194,600 were nontrainable or fixed. The embedding layer used
pretrained codon switch embeddings, hence, marked as fixed,
whereas other layers were initialized randomly, hence, marked
as trainable. The Network was trained by minimizing a binary
cross-entropy loss function. The ADAM (67) optimizer was
used. A schematic of the network architecture is shown in
Figure 3A and Network S2. The confidence scores for dbSNP
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and Met were generated after removing sequences that were
part of the training set.

Other methods for mutation annotation

We compare the performance of our architecture with two
other methods, SIFT (20) and Polyphen2 (21), which annotates
deleterious mutations. The SIFT algorithm’s command-line
version of the executable (for Linux) was downloaded
from https://sift.bii.a-star.edu.sg/sift4g/AnnotateVariants.html.
SIFT 4G database of chromosome X was downloaded from
https://sift.bii.a-star.edu.sg/sift4g/public/Homo_sapiens/GR
Ch37.74/. We combined all four test folds into a single dataset
to run the predictions. This combined dataset was sorted first
on the chromosome, then on position, and then passed
through the executable. The following command was used to
annotate the mutation.

java -jar SIFT4G_Annotator.jar -c -i input_vcf.vcf -d sift_db
-r output_folder

SIFT_SCORE column from the output file of SIFT was used
for further analysis. The mutations with a low value of SIFT
score represent the deleterious mutations. As per recom-
mendation, if the predicted score is below 0.05, the mutation is
deleterious. However, we considered these scores as contin-
uous values and performed the analysis. To keep the scores in
a similar range as our method, we subtracted SIFT scores from
one before comparing.

We generated predictions from Polyphen2 using the web
server available at http://genetics.bwh.harvard.edu/pph2/. We
used the same dataset used for SIFT.

Other available embeddings

To compare the efficacy of CRCS against other embeddings,
we downloaded dna2vec (14) embeddings from https://github.
com/pnpnpn/dna2vec. Dna2vec trains the word2vec model on
k-mers of the human genome. We extracted 100 length em-
beddings of every codon (3-mer) of the human genome from
the dna2vec model, thus resulting in an embedding matrix of
64 ✕ 100. This matrix is fed to the network in the embedding
layer of our customized sequence classifier (Variant
classification). Codon sequences in place of codon switch se-
quences were used for training with dna2vec embeddings.

Other available architectures

We also compared the two widely used architectures devel-
oped for predicting functional effects of noncoding variants,
namely DeepSea (9), DanQ (8), and one recently published ar-
chitecture HeartENN (10). DeepSea and HeartENN are pure
convolutional neural networks. In contrast, DanQ is a hybrid
architecture having both convolutional and bidirectional LSTM
layers. HeartENN has 90 neurons in the last layer, but we
changed it to 919 neurons as in DanQ and DeepSea. Then, to
make these architectures suitable to classify sequences into
cancer and noncancer, we added one additional dense layer with
single neuron and sigmoid activation at the end. Networks S3–
S5 give the details about these architectures. Among these
models, DanQ has the most parameters (206,177,959), followed
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by DeepSea (64,921,359). HeartENN has 58,525,559 parameters,
out of which 760 are nontrainable. We used binary cross-
entropy as the loss function to optimize these networks. We
used RMSProp as the optimizer. One-hot–encoded protein-
coding mRNA sequences are provided as input for training.
Since convolutional neural networks work with fixed input size,
we have padded all the variable length sequences to 4500 (1500
length codon switch sequence) with 0s.

Comparing cBioPortal predictions with dbSNP predictions

In order to extract the significant genes for different cancer
types, we compared the prediction scores generated on the
cBioPortal with the prediction scores generated on the dbSNP.
Fig. S10 shows the prediction scores on cBioPortal data for
various cancer types. For the cBioPortal data, we grouped
predictions on cancer type and genes. For the dbSNP database,
the predictions were grouped based on genes alone. The cutoff
for the group size was set to 5. We compared the groups ob-
tained using cBioPortal and dbSNP. The Mann-Whitney U-
test with alternate hypothesis cBioPortal > dbSNP was used to
determine the statistical significance of genes. For a given
cancer type, p-values of all genes were collected and corrected
using the holm-sidak method (Supplementary File 3). The
resulting gene sets were used for Gene Ontology analysis (33).

To perform the driver gene analysis using the selected gene
sets, we first selected the genes that were present in most
cancer types. Genes occurring in ≥10 cancer types were
selected for analysis. This resulted in 32 significant genes.
Among the selected cancer types, we removed those cancer
types that had ≤5 genes, resulting in 25 cancer types.

Parameter choices

Embedding parameters

window size (ws) and nsr were selected as 3 and 0.2,
respectively.

Model parameters

We selected the regularization hyperparameters, attention
regularization, and other layer weight regularization using 4-
fold cross validation. We used grid search to search over the
hyperparameter space. Neural Network architecture was
selected using a systematic trial and error approach.

Other annotation algorithms

We used SIFT and Polyphen2 with standard parameters.

dna2vec and other deep learning algorithms

We have used the same architecture proposed by the au-
thors of those architectures.

Patient-level cumulative BLAC scores for survival analysis

We created a cumulative BLAC score for every patient by
combining the scores for the mutations found on chromosome
X in the patient. This cumulative score is designed to give
exponentially higher weightage to high BLAC scores. The
cumulative BLAC score will be termed as BLACs score here-
after. The BLACs score for a patient P is given by

BLACs scoreP ¼
Pi¼N

i¼1 2
k:ðBLAC scoreip−1Þ

N
(2)

where N is the total number of mutations on chromosome X
on patient P and k is a scaling factor. We obtained the best
performance when k is set to 4.

The cBioPortal (62) dataset was used for survival analysis.
As discussed in the earlier sections (Classifying cancerous and
noncancerous mutations and Pruning of the coding variants),
the filtering steps applied to select the candidate mutations are
(i) synonymous mutations and indels were removed. (ii) All
noncoding mutations were removed. (iii) All the mutations
that were part of ExAC or COSMIC databases were also
dropped since these mutations were present in the training
data. After these steps, we were left with 147,048 unique
mutations, which collectively span across 293 ONCOTREE
cancer subtype codes (72) and 14,349 patients. Further, we
selected only those patients who had ≥5 mutations left after
filtering. Then, these patients were grouped as per their cancer
types. Any cancer type having less than 100 patients was also
dropped from the analysis. After all the filtering steps, we were
left with eight cancer types. We computed the BLACs scores
for every patient in these cancer types. For every cancer type,
the patients were divided into two groups for every cancer type
by thresholding BLACs scores. The optimal threshold for every
cancer type was identified using χ2 statistics (73). The survfit
and surfdiff functions from survival package in R (v4.1.3) were
used to perform the analysis.

Of note, after all the filtering, there was not enough data left
to perform disease-free survival. Thus, we only performed
survival analysis on overall survival data.
Data availability

No new data was generated as part of the study. All the
experiments for the article were performed in python 3.7.2,
unless specified. All the deep neural networks were imple-
mented using TensorFlow 2. Software and code developed for
this study are present at https://github.com/Aashi-Jindal/
CRCV.
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