
ORIGINAL RESEARCH
published: 05 September 2018
doi: 10.3389/fpsyg.2018.01451

Frontiers in Psychology | www.frontiersin.org 1 September 2018 | Volume 9 | Article 1451

Edited by:

Claudio Barbaranelli,

Sapienza Università di Roma, Italy

Reviewed by:

Igor Portoghese,

Università degli studi di Cagliari, Italy

Leonardo Carlucci,

Università degli Studi G. d’Annunzio

Chieti e Pescara, Italy

*Correspondence:

Georgios D. Sideridis

georgios.sideridis@

childrens.harvard.edu

Specialty section:

This article was submitted to

Quantitative Psychology and

Measurement,

a section of the journal

Frontiers in Psychology

Received: 17 March 2018

Accepted: 24 July 2018

Published: 05 September 2018

Citation:

Sideridis GD, Tsaousis I and

Al-Sadaawi A (2018) Assessing

Construct Validity in Math

Achievement: An Application of

Multilevel Structural Equation

Modeling (MSEM).

Front. Psychol. 9:1451.

doi: 10.3389/fpsyg.2018.01451

Assessing Construct Validity in Math
Achievement: An Application of
Multilevel Structural Equation
Modeling (MSEM)

Georgios D. Sideridis 1,2*, Ioannis Tsaousis 3 and Abdullah Al-Sadaawi 4,5

1Harvard Medical School, Boston Children’s Hospital, Boston, MA, United States, 2Department of Primary Education,

National and Kapodistrian University of Athens, Athens, Greece, 3Department of Psychology, University of Crete, Rethymno,

Greece, 4Department of Psychology, King Saud University, Riyadh, Saudi Arabia, 5National Center for Assessment in Higher

Education, Riyadh, Saudi Arabia

The purpose of the present study was tomodel math achievement at both the person and

university levels of the analyses in order to understand the optimal factor structure of math

competency. Data involved 2,881 students who took a national mathematics examination

as part of their entry at the university public system in Saudi Arabia. Four factors from the

National math examination comprised the math achievement measure, namely, numbers

and operations, algebra and analysis, geometry and measurement, and, statistics and

probabilities. Data were analyzed using the aggregate method and by use of Multilevel

Structural Equation Modeling (MSEM). Results indicated that both a unidimensional and

a 4-factor correlated model fitted the data equally well using aggregate data, where for

reasons of parsimony the unidimensional model was the preferred choice with these data.

When modeling data including clustering, results pointed to alternative factor structures

at the person and university levels. Thus, a unidimensional model provided the best fit

at the University level, whereas a four-factor correlated model was most descriptive for

person level data. The optimal simple structure was evaluated using the Ryu and West

(2009) methodology for partially saturating the MSEM model and also met criteria for

discriminant validation as described in Gorsuch (1983). Furthermore, a university level

variable, namely the year of establishment, pointed to the superiority of older institutions

with regard to math achievement. It is concluded that ignoring a multilevel structure in

the data may result in erroneous conclusions with regard to the optimal factor structure

and the tests of structural models following that.

Keywords: multilevel structural equation modeling, nested models, construct validity, multilevel confirmatory

factor analysis, level specific misfit, discriminant Validity

INTRODUCTION

Mathematics achievement is one of the most important criterion to entering college and also
on achieving career readiness (Adelman, 2003; Maruyama, 2012), particularly in the fields of
STEM (Science, Technology, Engineering, and Mathematics) (Adelman, 1999). Moreover, math
achievement (along with verbal skills) is one of the two fundamental sub-components of the widely
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used conceptualization of academic self-concept (Shavelson
et al., 1976; Marsh, 1990; Möller et al., 2009). Researchers
have consistently found that math achievement is predicted by
both individual and contextual factors. For example, Cvencek
et al. (2015) found that students’ beliefs about math and
their math achievement are linked to their performance, with
students with low math efficacy performing lower than students
with high math efficacy. Furthermore, gender stereotypes about
math achievement (i.e., boys perform better than girls) seem
to influence math performance, with girls performing worse
than males when their negative gender stereotype is activated
(Ambady et al., 2001; Galdi et al., 2014). León et al. (2015),
based on Self-Determination Theory (SDT; Deci and Ryan,
1985), reported that autonomous motivation (when students
engage in learning from their own choice and preference
without external pressure), is positively related to math
achievement.

Regarding contextual factors, parental involvement (Kung
and Lee, 2016), and family health (Barr, 2015) have been found
to be influential factors in predicting students’ mathematics
achievement. Others have focused on within-school factors
such as learning environments and motivational classroom
discourse, since they influence the learning process (Vršnik
Perše et al., 2010; Herndon and Bembenutty, 2014). The
learning environment is the broader context in which the
instruction is delivered and is concerned with an institution’s
policy, curriculum, budget, infrastructure (e.g., libraries, labs, IT
facilities, etc.), institutional commitment, quality of academic
staff, etc. For example, Gamoran (1992) found that school
policies for admitting students to advanced math courses (i.e.,
standard procedures such as admissions tests vs. nonstandard
approaches such as teachers’ preferences-perceptions) influences
math achievement. Furthermore, previous studies reported that
schools located in rural areas compared to schools in urban
areas exhibit what is called as the: “rural math achievement
gap” (Khattri et al., 1997). Reeves (2015) suggested that one
possible explanation for this gap comes from the difficulty of
rural schools to attract qualified teaching staff, thereby reducing
students’ opportunity to practice and master advanced math
topics.

In higher education, the foundation year of the university
seems to be another important factor which might affect
the quality of the offered academic degrees. A recent study
by U-Multirank (2014), an organization funded by the
European Union to compare university performance across
a range of different academic activities, revealed that older
universities tend to perform better than newer ones across
most measures of research excellence. The term “new
university” has been used informally to refer to several
different waves of universities created in recent years around
the Globe as a result of economic growth in Europe and
the US. For example, in the United Kingdom, the term is
synonymous with post-1992 universities and sometimes modern
universities, referring to any of the former polytechnics,
central institutions or colleges of higher education that were
given university status from the British government post
1992.

In a study among academic staff at UK universities, it
was reported that 75% of respondents in the old universities
in UK were located in departments ranked “4” and above
(indicating an outstanding performance), whilst no respondents
from newer universities found themselves in departments
ranked higher than a “3A” (indicating a moderate performance,
see Harley (2002). More recently, recent higher institution
evaluations in the U.K. showed that older, compared to
younger establishments had higher student entry standards,
graduate prospects, research quality and intensity, smaller staff-
to-student ratios, better facilities, larger amounts of time spent
on academic services, receipt of honors from students, and
increased rates of degree completion (University League Tables
and Rankings, 2017). In a recent study, McCormack et al. (2014)
examining more than 250 university department across 100+
UK universities in terms of management practices -shown to
predict academic excellence-, found that departments in older
universities tend to be better managed than departments in newer
universities.

Several reasons for the superiority of the old established
universities compared to new ones have been proposed, including
a more robust organizational structure (due to tradition), a
better infrastructure (e.g., libraries, labs, IT facilities, etc.), more
qualified staff (higher academic achievements), better networking
after graduation (providing better employment prospects), and
a better academic environment (e.g., clubs, social events, sports,
etc.). The above factors likely contribute to a differential
attraction by older institutions of more qualified individuals,
that also result in higher graduation rates and better qualified
professionals (Aghion et al., 2010). One important hypothesis
of the present study was to test math achievement level
differences between old and new establishments, after concluding
the optimal factor structure at the university level of the
analysis.

Up until recently, the measurement of complex constructs
and competencies involved data at the individual level. More
recently, however, the advancement of Structural Equation
Modeling (SEM) expanded our previous use of data at only
a single level in the analysis, namely the person level, though
accounting for data complexities and higher order relations
(Brown, 2015). Several researchers (McDonald and Goldstein,
1989; Longford and Muthén, 1992) have proposed that patterns
of relationships between variables may be different when
taking into account nesting in that a relationship between
two constructs or two measurements maybe saliently different
when viewed under the lenses of a person level analysis
(e.g., when the unit analysis is individuals) versus a cluster
level analysis (e.g., when the unit of analysis is a cluster of
individuals,—e.g., an organization). The combination of the two
has contributed to what is now known as Multilevel Structural
Equation Modeling (MSEM) which essentially combines the
methodologies of structural equation modeling and multilevel
modeling (Rabe-Hesketh et al., 2004; Heck and Thomas, 2009).
At the measurement level in the analysis, this combination may
suggest that different simple structures (i.e., factor solutions)
may be operative at different levels in the analysis. At the
structural level one can predict different outcome variables
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that emerge from the earlier measurement models and posit
structural paths at each level in the analysis. For example,
in measuring academic achievement it is possible that a 5-
domain factor structure (e.g., math, language, biology, chemistry,
social studies) best describes individuals (who due to “domain
specificity” may have variable performance across subject
matters), but it is possible that a one-factor structure is
the most parsimonious solution at the university level, with
good universities having higher levels of achievement across
subject matters. The implications for including nesting in our
evaluation of measures is tremendous for construct validation
as a given instrument may operationally define differently a
construct at one level in the analysis (e.g., student with a 5-
factor solution) compared to another level (e.g., university level
where a general achievement factor best fits the data). Such
findings have implications not only for theory development and
falsification but also, measurement, which lies in the core of
all scientific efforts. That is, if proper levels of measurement
error are at the person level, then scores are valuable and
interpretable; If not, unreliable and likely detrimental for
accuracy and prediction. Furthermore, the constructs under
study may have different interpretations at each level in the
analysis with implications for both operational definitions and
use of scores (Huang et al., 2015). Up until recently, the
only available means for evaluating the construct validity of
instruments confounded (through ignoring) the presence, and
differential effects, that nesting of individuals within clusters
may exert on the data. The purpose of the present study was
to demonstrate, using a national measure of math achievement,
the evaluation of its optimal factor structure through accounting
for the correlated structure of the university where students
originate from using Multilevel Structural Equation Modeling
(MSEM).

Multilevel Structural Equation Modeling
(MSEM)
Multilevel Structural Equation Modeling (MSEM) evaluates
measurement and structural models at more than one levels in
the analysis when nesting is in place (Geldof et al., 2014; Heck
and Thomas, 2015). The primary purpose of modeling data at
two or more levels is to avoid the violation of the independence
of observations assumption which is introduced when ignoring
the clustering variable (e.g., the effects a school administration,
teacher, school culture, or classroom climate exerts on all
students-causing a baseline between person correlation that
reflects a systematic source of measurement error) (Julian, 2001).
That is, participants within a cluster are expected to have a higher
correlation compared to individuals between clusters (e.g., within
a class versus between classes). As shown earlier, such factors
have proved to influence math achievement in significant ways
(Vršnik Perše et al., 2010; Herndon and Bembenutty, 2014), thus
it is important to examine their influential role within amultilevel
perspective.

In the present study, we employed MSEM as a means
of evaluating the math achievement at both the person and
university levels of the analysis. The hypothesis of testing a simple

factor structure at the person level of analysis makes inherent
sense and is linked to assessment and evaluation, using person
scores for future decision making, etc. However, the idea of
testing math achievement at the university level of analysis needs
to be justified (as well as for any other clustering variable for that
purpose). At the measurement level in the analysis, universities
are evaluated for the quality and standards they provide to their
students, and that evaluation is oftentimes a function of their
students’ performance. Furthermore, within a university different
emphasis may exist that are associated with differential levels
of performance. Thus, to evaluate the role different universities
might play on math achievement performance, one needs to
test the most optimal measurement model for the assessment
of a particular domain (e.g., math) in order to make informed
decisions (such as staff recruitment, proper allocation of funds,
and future university planning) based on that measurement
model. For example, in the U.S. in 2013 most of the Federal
and State funding was directed to community colleges and small
universities compared to research institutions which focused on
research grant funding (Woodhouse, 2015). Such decisions need
to be grounded in empirical evidence in order to evaluate the
services and qualities provided by small and newer institutions
compared to older and larger research universities. Furthermore,
when involving the MSEM methodology, one is also able to
predict students’ achievement from university and department
level variables such as the year an establishment became a
higher education institution, ratio of students to staff, facilities,
etc.

If person level math achievement and university level math
achievement do not match, measurement—wise, then the most
optimal factor structure at each level in the analysis needs
to be estimated and applied. The equivocal assumption that
person level and university level achievement match, is clearly a
tentative assumption and needs to be empirically tested. Based
on the above, the purpose of the present study was to model
math achievement at both the person and university levels
of the analyses to understand the optimal factor structure of
math achievement using information from the factor model
at each level in the analysis and test the invariance of the
proposed structure at the person level by gender. A secondary
goal was to predict math achievement at different levels in
the analysis, after estimating first the most optimal factor
structure.

MATERIALS AND METHODS

Participants
Participants were 2,881 individuals who took the math teacher
test during a national examination at the National Center
for Assessment in Higher Education in Saudi Arabia. The
participants took on the measure as part of a licensure program
to teach mathematics in elementary and higher education.
There were 1,672 males and 1,209 females. The mean age
was 24.02 years with an S.D. of 2.517 years (Males: Mean
= 23.28, SD = 1.837; Females: Mean = 25.35, SD = 3.586).
Participants were nested within 22 universities, which were
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classified as “new” if they were established within the last
10 years, or “old” establishments. Consequently, 511 students
were nested within “old” universities and 2,370 within “new”
universities.

Measure
Math Achievement

The present measure was a standardized math competency
examination, which was administered regularly as part of
satisfying requirements for licensure by the state in Saudi Arabia,
thus, they were part of a National Examination study. The
instrument included four subscales, namely: (a) numbers and
operations (6 exercises), (b) algebra and analysis (17 exercises),
(c) geometry and measurement (13 exercises), and (d) statistics
and probabilities (7 exercises). Exercises were administered using
standardized instructions using a paper-and-pencil format within
a specific time period (30min per domain) and were scored as
either correct or wrong. The instrument We opted for creating
item parcels1 because models based on parceled data: (a) are
more parsimonious, (b) present heightened reliability, (c) have
distributions that approximate normality, (d) have fewer chances
for residuals to be correlated or dual loadings to emerge (both
because fewer indicators are used and because unique variances
are fewer), and, (e) are associated with enhanced model fit
(Bagozzi and Heatherton, 1994; Marsh et al., 1998; Bandalos
and Finney, 2001). Furthermore, one of the main weaknesses of
item-level factor analysis (i.e., the assumption that the observed
variables are continuously measured interval-level data) may
be partially overcome using item parcels (Panter et al., 1997).
Parcels were created using 3–4 exercises per parcel selected at
random from the domain’s exercise pool, in order to account
for systematic measurement error due to serial dependency,
level of difficulty, or content similarity. Consequently, data were
analyzed by use of Maximum Likelihood as recommended in
the literature when data have 3 or more categories (Dolan,
1994; Beauducel and Herzberg, 2006). A prerequisite assumption
to utilizing parcels, however, pertained to observing normality
of the parcels’ distributions, which was evaluated through
inspecting values of skewness and kurtosis. We differed from
utilizing the K-S statistic, as using our large sample size,
trivial deviations from normality would likely support alternative
model hypotheses. For skeweness and kurtosis acceptable values
have been reported in the range of ±2 (Field, 2000, 2009;
Trochim and Donnelly, 2006; Gravetter and Wallnau, 2014)
or ±1.5 (Tabachnick and Fidell, 2013). In the present study,
values of skeweness ranged between 0.061 and 1.297 and
kurtosis between−0.745 and+0.708, all laying within acceptable
limits.

Data Analyses
Data were analyzed using Multilevel Structural Equation
(MSEM). Initially, a series of confirmatory factor analysis (CFA)
models were tested to verify the proper simple structure using

1Throughout the manuscript, items and item parcels have been used

interchangeably.

aggregate data, ignoring nesting. We tested a model consisting
of four latent variables (Numbers/Operations, Algebra/Analysis,
Geometry/Measurement, and Statistics/Probabilities) using item
parcels as indicators per latent variable. Structural Equation
Modeling (SEM) evaluates discrepancies between data based
and hypothesized variance-covariance matrices by use of an
omnibus chi-square test using a system of linear equations.
Provided that the chi-square test is a test of “exact fit” and
thus, any model with measurement error is bound to be rejected
as misfitting the data, a number of ancillary descriptive fit
indices are oftentimes employed, along with residual values.
Specifically, fit indices such as the Comparative Fit Index (CFI)
as an absolute fit index2, the Tucker-Lewis index (TLI) as
an incremental fit index3, and unstandardized residual values
(Root Mean Square Error of Approximation) need to be
greater than 0.900 and less than 0.08, respectively, to suggest
a strong resemblance between sample-based and hypothesized
variance-covariance matrices. These indices were utilized with
both aggregate and multilevel data as there are currently no
level specific fit indices (with the exception of the SRMR)
that are available in commercial programs. Ryu and West
described how to estimate CFI and RMSEA values for their
partially saturated approach, but these methods are not currently
available in any software as there is no direct estimation of
the independence model for each level of the analysis4. Last,
information criteria in the form of the Akaike index were
employed using difference values using conventions described by
Raftery (1995).

At a second step in the analysis, the simple factor structures
were tested for verification at both levels in the MSEM analysis
(person-within and university-between levels in the analyses)
assuming there were ample levels of variance at the clustering
level (prerequisite assumption). Data were analyzed by means
of Maximum Likelihood (ML) estimation, which results in
inflated estimates when residual observations are correlated
(Pornprasertmanit et al., 2014). Multilevel Structural Equation
Modeling (MSEM) involves random variation due to individual
differences (individual-within level) and random variation due to
groups in which the individuals belong to (group-between level)
with the response of person i who belongs to group j on item
y being a function of the between-group random component
(yBj) and the within-group random component (yWij) as follows
(Ryu and West, 2009):

yij = yBj + yWij (1)

With the individuals who belong to the same group having
an enhanced relationship compared to individuals belonging

2Absolute in the sense that the best fitted model returns a value of zero.
3Incremental or relative in that the best fitted model returns a value of one and

zero reflects the worst fitted model, usually defined as the independence model in

which there is no relation between variables but means of the observed variables

are estimated at their true value.
4Use of the standard independence model is inappropriate as it would yield

spurious estimates of model fit by use of indices such as the CFI and other because

model fit will include the saturated part of the model that provides no misfit to the

overall evaluation.
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FIGURE 1 | Multilevel Structural Equation Model Positing a 4-factor correlated solution at both the within and between levels of the analysis (N = 2,881).

to different groups. As the total variance-covariance matrix is
decomposed to within and between levels, these components
are orthogonal. Since, theoretically speaking the mathematics
measure was designed to assess four domains, the estimation
of a 4-factor simple structure at the within and between levels
was estimated using the Equations (2) through (4) as described
by Muthén and Asparouhov (2009), using slightly different
notation:

yij = 3jηij (2)

With subscripts i and j being the person and clustering units,
respectively. In Equation (2), yij is a vector of measured variables
and 3j a matrix of factor loadings linking the measured variables
to corresponding latent variables at both the within and between
levels of the analysis. Subsequently, the within part of the model
is estimated as follows:

ηij = αj + Bjηij + ζij (3)

The above equation involves estimating the within level model
of the latent responses Yij as being part of a common
factor model that includes random intercepts α that vary
over clusters j. Bj contains a matrix of factor loadings at

the within levels and ζik, residual values of the unique and
common factor model at the within level. The between,
structural, part of the model is estimated using the following
formula:

ηj = µ + βjηij + ζj (4)

Which contain all random coefficients of intercepts α and
slopes B, that vary over clusters j, the means µ and the
factor loadings estimated from the between-cluster variance-
covariance matrix β . Last, ζ k contains residual values of unique
and common factors at the between level of the analysis.
Subsequently, the hypothesized 4-factor correlated model that
describesmath competency as a 4-dimension correlated structure
(see Figure 1) at both levels of the analysis is shown below
using expanded matrices5 (see also Geldof et al., 2014 for an
explanation of the notation). Multilevel Structural Equation
Model (MSEM) using matrix notation that posits a 4-factor
structure at both the within and between levels of the
analysis.

5Interestingly, the 4-factor within and 4-factor between simple structure

was equally appropriate to our preferred 4-factor within, 1-factor between

structure but for reasons of parsimony was eventually not the preferred

structure.
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Figure 1 shows the hypothesized 4-factor structure. Note
that with the above notation of Equations (2–4), all variables
are treated as endogenous (i.e., dependent). For alternative
conceptualizations see Muthén and Asparouhov (2009). Also,
factor loadings were not fixed to unity; instead, identification
of the metric of the factor should be done by fixing the factor
variance to unity when modeling the data.

The test of simple factor structures involved several stages.
At a first stage the optimal factor structure at a specific level
in the analysis (e.g., multi-factor correlated) was contrasted to a
competing structure (e.g., unidimensional), after saturating the
other level of the analysis. The goal of this test was to conclude
the optimal structure at each level in the analysis controlling for
measurement error introduced by the structure tested at the other
level of the analysis. This partially saturated modeling approach
was first introduced by Hox (2002) and then expanded by Ryu
and West (2009). It provides a test of model fit at each level in
the analysis, as currently there are no level-specific fit indices to
evaluate model misfit (except for the SRMR index). The standard
method for evaluating model fit in SEM involves the use of a
likelihood ratio statistic that tests the null hypothesis6 that data-
based model fit, as estimated using the ML fitting function, is
equivalent to the fit of a saturated model and, thus, there is no
difference between the data-based model and a “perfectly fitted
model.”:

TML = FML

(

θ́

)

− FML(θ́s) (5)

Applying the standard approach (Yuan and Bentler, 2007) to
nested structures would suggest that overall model fit would
be dominated by the within group model potential misfit for
which there is a larger sample size and thus, overall model fit

6Obviously support of the alternative hypothesis suggests that the misfit of the

data-based model is greater than zero.

woucertainly downplay misfit due to the between level of the
analysis. This is due to the fact that the entire model is estimated
simultaneously to test for the goodness of fit of a model (i.e., both
covariance components at the between level 6θb and the within
level 6θw). In other words, a conclusion pointing to a misfitted
model would fail to describe the location of the misfit. Ryu and
West (2009) proposed a partially saturated model fit approach in
which the discrepancy between estimated and saturated models
would be restricted to one level in the analysis. For example, if
one wants to test a within group model with no misfit introduced
by the between group model the later has to be saturated. A chi-
square test would then test the discrepancy due to the within level
as shown in the equation below:

χ2 = FML

[

6b

(

´́
2S

)

, 6W(2)
]

− FML

[

6b (2S) , 6W(2́S)
]

(6)
With any potential misfit found above attributed to discrepancies
between estimated and saturated within level covariance matrices
only. Consequently, we adopted this approach to test level
specific model fit.

At a second stage, we tested the discriminant validity of
the simple structure’s components via the Gorsuch (1983)
approach, which involves contrasting a model where between
factor covariations are freely estimated to a model that these
covariations are constrained to be equal to 1. If the later
model is not inferior to the freely estimated model, then
the hypothesis that the factors assess conceptually distinct
components is not supported (and thus, unidimensionality
is the likely alternative). Consequently, the proposed simple
structure should fit the data well at both levels of analysis
and should meet criteria for discriminant validation, when
appropriate.

At a third step in the present modeling, the functioning of
gender was investigated as a within person variable for which
the proposed factorial structure may not hold (measurement
non-invariance). Thus, a series of Differential Item Functioning
(DIF) analyses were conducted by use of the Multiple Indicators
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FIGURE 2 | Unidimensional Mathematics Competency model tested with aggregate data based on parceled items (N = 2,881).

FIGURE 3 | Four-factor correlated model tested with aggregate data based on parceled items. The latent mathematics factors were: η1, Numbers/Operations; η2,

Algebra/Analysis; η3, Geometry/Measurement; η4, Statistics/Probabilities. (N = 2,881).

Multiple Causes (MIMIC) model (Muthén, 1978; Mislevy, 1986)
following the Muthén (1989a) approach. The model tests the
probability that item uj that belongs to factor ηi and receives
a direct effect from a dichotomous covariate xi (gender in the
present case) has a response probability of 1 as shown below
(Gallo et al., 1994):

uij = λj∗ηi + κj∗xi + εij (7)

with λ being the factor loading of item uj on factor η with a
mean of zero, κj being the effect of the covariate on item uj at
values xi. The probability of correct responding is then estimated
as follows:

P
(

uij = 1
∣

∣ηi, xi
)

= 1− F
[

τj − λj∗ηi − κj∗xi
)

∗θ
−1/2
jj ], (8)

With θjj being the item residual variance, τj the item threshold,
λj the factor loading, ηi the factor mean (usually specified to be
zero), κj the effect of the covariate on item j, and F the normal
distribution function (Muthén, 1989a,b). The approach utilized
herein for testing invariance across gender at the person level
in the analysis has been described by Muthén (1989a,b) and
involves the following steps: (a) test for optimal factor structure,
(b) test for effects of covariate(s) through constraining those

direct effects to zero and evaluate magnitude of modification
indices, verifying that factor structure does not change, (c) add
direct effects of covariate on items recommended bymodification
indices, verifying again that the factor structure does not change
as a function of modeling the covariate, (d) conclude on meeting
requirements for full or partial invariance due to the covariate.
All analyses were run using Mplus and Maximum Likelihood
(ML) estimation using raw data as inputs and through analyzing
variance-covariance matrices.

RESULTS

Simple Structure of Math Test Overall7

Figures 2, 3 display the simple structures tested with aggregate
data (i.e., ignoring clustering due to university) including
a unidimensional, and a multidimensional model. Results
indicated that model fit was adequate using unstandardized
residuals (RMSEA) and less so the descriptive fit indices across
all models (e.g., Unidimensional Model RMSEA = 0.013,
CFI= 0.985; Multi-factor model RMSEA= 0.011, CFI= 0.985).
When comparing the models using a Chi-square difference test,

7That is, ignoring for level-specific estimates of the measure’s simple structure.

Cluster membership was ignored.
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TABLE 1 | Comparison of simple structures of math achievement using aggregate data.

Model Chi-square Degrees of freedom 1-Chi-square 1-Degrees of freedom p-value

M1. Unidimensional Simple Structure 145.141* 77 – – –

M2. Four-factor Correlated Model 137.022* 71 8.119 6 n.s.

*p < 0.01; The level of significance was set to 0.01 to adjust for the excessive levels of power associated with an n-size of 5,445 participants. The critical value of a Chi-square statistic

with 3 degrees of freedom is 11.345 at p < 0.01.

n.s. = Non-significant.

TABLE 2 | Intraclass Correlation Coefficients (ICCs) of math items along with 95% confidence intervals, tests of significance and design effect values.

Math exercises ICC (%) 95% Confidence interval Z-Test p-value DEFF

Number and Operations 1 1.9 0.001 to 0.036 2.121 0.034* 5.921

Number and Operations 2 5.7 0.019 to 0.095 2.927 0.003** 15.763

Algebra and Analysis 1 2.4 0.005 to 0.042 2.551 0.011* 7.216

Algebra and Analysis 2 3.7 0.010 to 0.065 2.639 0.008** 10.583

Algebra and Analysis 3 1.4 0.001 to 0.027 2.129 0.033* 4.626

Algebra and Analysis 4 0.3 −0.003 to 0.010 1.023 0.306 1.777

Algebra and Analysis 5 4.9 0.016 to 0.083 2.875 0.004** 13.691

Algebra and Analysis 6 0.6 −0.001 to 0.013 1.778 0.075† 2.554

Geometry and Measurement 1 0.8 0.000 to 0.017 2.035 0.042* 3.072

Geometry and Measurement 2 4.2 0.013 to 0.071 2.825 0.005** 11.878

Geometry and Measurement 3 4.2 0.013 to 0.071 2.825 0.005** 11.878

Geometry and Measurement 4 1.7 0.002 to 0.032 2.230 0.026* 5.403

Statistics and Probabilities 1 5.2 0.017 to 0.088 2.902 0.004** 14.468

Statistics and Probabilities 2 4.1 0.011 to 0.071 2.648 0.008** 11.619

The above ICCs may appear on the low side but, although not customary, tests of significance and confidence intervals were constructed based on the parametric bootstrap distribution

using routines initially developed for use with categorical data (Preacher and Selig, 2012; Raykov and Marcoulides, 20158). As shown above only the Algebra and Analysis exercises 4

and 6 did not present themselves with ample variability at the university level of the analysis. Further information was provided by use of the Design Effect (DEFF) index for which values

greater than 2.0 suggest the need to employ a multilevel structure.

*p < 0.05; **p < 0.01.
†
Significance using a one-tailed test at p < 0.05.

model fit was not significantly different between the two nested
models, the univariate and multi-factor, although the multi-
factor model showed slightly better fit [1Chi−square(6) = 8.119,
p > 0.05] (see Table 1). By use of the AIC and BIC parsimonious
indices the univariate model was deemed the preferred model
for these data (Univariate AIC = 185,519.350; Multi-factor
AIC = 185,523.231; Univariate BIC=185,796.653; Multi-factor
BIC = 185,840.149), although effect size indicators of the AIC
(Raftery, 1995) suggested that whenever the difference in AIC
values is less than 10 units (3.881 in the present instance), there is
not strong support for the superiority of one model over another.
Interestingly, this early conclusion was severely challenged in the
next section, after modeling the mathematics simple structure at
each level in the analysis and after testing misfit at each level of
the analysis using the Ryu and West methodology.

Simple Structure of MA at the
Between-Person (Within) and
Between-University (Between) Level
A series of models were fit to the data and subsequently compared
and contrasted in order to determine the best fitted model at
each level in the analysis (person or university). However, it
was necessary to first test that variability in math achievement

scores was present at the university level of analysis (Raudenbush
and Bryk, 2002; Maas and Hox, 2005). Consequently, a series of
Intraclass Correlation Coefficients (ICCs) were assessed in order
to verify that variances of the match exercises at the between-
university level were non-zero (Werts et al., 1974; Raykov, 1997;
Hsu et al., 2016). The coefficient is estimated as the ratio of the
between-level variance σ 2

u0 to that of the total variance (within
σ 2
r and between σ 2

u0) and makes use of the null model as follows
(Kreft and de Leeuw, 2004):

ICC =
σ 2
u0

(σ 2
u0 + σ 2

r )
(9)

with σ 2
u0 being the cluster-based variance and σ 2

r the between-
person within cluster variability. Furthermore, we supplemented
the ICC analysis using the “design effect” index (Muthén
and Satorra, 1995) which targets at correcting the negative
bias associated with nested data due to the violation of the
independence of standard errors. It contributes a multiplier that
intents to correct standard errors. It is computed as follows:

Design Effect = 1+ (nc − 1)∗ICC (10)

8This parametric bootstrap distribution was assumed to be normal.
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with nc being the number of level-1 units that comprise the
clustering variable. As shown in the above equation the design
effect is a function of both the number of units in the clustering
variable but also the magnitude of the ICC. Values that warrant
the need to account for the correlated structure due to clustering
are in excess of 2.0 units. Table 2 shows those estimates which
confirmed the need to model the information at the university
level of the analysis.9 Table 3 provides significance tests based on
difference chi-square test statistics for nestedmodels. Themodels
tested were ordered based on the number of modeled parameters
(from parsimonious to more parameterized) and were: (a) a
one-factor model at both levels, (b) a unidimensional model
within and multidimensional between, (c) a multi-factor model
within and one-factor model between, and, (d) a multi-factor
model at both levels10. Of interest was the comparison between
unidimensional and multi-factor structures at both levels in
the analyses, in light of the fact that there was no significant
difference between the univariate and 4-factor correlated model
with the aggregate data (i.e., when ignoring the nesting of
participants onto clusters).

Table 3 initially shows the fit of the four competing models
followed by chi-square difference tests in the case when models
were nested, along with values from information criteria, for
comparisons of non-nested models. The best model fit was
associated with a one-factor model structure at the between
level and a 4-factor correlated structure at the between level
(4W1B) of the analysis (RMSEA < 0.001, CFI = 1.0, TLI =

1.0, SRMRWithin = 0.016, SRMRBetween = 0.037) with the chi-
square test being non-significant [χ2

(148)
= 130.885, p = 0.841]

suggesting “exact fit” between the specified model and the data
(MacCallum et al., 1996). This 4W1B model was superior to
the unidimensional model at both levels in the analysis by use
of a chi-square difference test [1Chi−square (6) = 59.472, p ≤

0.001]. In the comparison between the preferred 4W1B model
and the 4-factor model at both levels (4W4B), the chi-square
difference test was not significant. In the case of two models that
one is not clearly superior we opt for the less complex model
based on the principle of parsimony. However, when utilizing
information criteria, it appears that the more complex model
(i.e., 4W4B) was associated with larger AIC and BIC values, in
excess of 10 units (AICDIF = −10.078, BICDIF = −49.694).
Based on the work of Raftery, when AIC difference values exceed
10 units, there is strong evidence that one model is superior to
the other. Thus, the 4W1B model appears to be the preferred
choice with these data (see Figure 4). Further analyses to verify

9Moerbeek (2004) recommended that the larger the ICCs the more detrimental the

effects are of disaggregation (i.e., ignoring the information at the macro level).
10The high between factor correlations warranted the need to test a hierarchical

structure of math achievement at the within level. Unfortunately, there were

problems in the estimation of the slope of the “Number and Operations” factor

with the hierarchical entity. When fixing that slope to unity, model fit of the

hierarchical model was deteriorated significantly. That is, for a difference of 3

degrees of freedom misfit introduced by the chi-square test equaled 62.438 points,

which, for a critical value of 7.815 chi-square units was significant. Consequently,

the hierarchical model did not provide a plausible model with the present data,

mostly due to estimation problems so, although we cannot rule out this model, we

cannot adopt it either. T
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FIGURE 4 | Optimal model for the measurement of math achievement at both the person and university levels of the analysis. All measurement and structural

(between factor correlations) paths were significant at p < 0.01. Factor variances were standardized to unity for identification. Factor model indicators are based on

parceling. The full sample of 2,881 participants contributed data in the evaluation of this model.

the validity of the proposed structure follow in the next section
with a quantification of misfit per specified model at each level in
the analysis.

Verifying Multilevel Simple Structures
Through Estimating Level-Specific Misfit:
an Application of the Ryu and West (2009)
Partially Saturated Model Methodology
Before concluding the optimal factor structure at any level in the
analysis it was important to evaluate the level of misfit between
competing models as a function of the information provided at
that level only. The methodology has been described by Ryu and
West (2009) as the partially saturated approach in that the level
that is not tested is saturated so that it does not contribute any
measurement error toward the overall fit of the model. Thus,
when the 4-factor model was fitted to the data at the person level
(within), with a saturated model at the between level, model fit
was good [χ2

(71)
= 107.784, p = 0.003, RMSEA = 0.013, CFI =

0.992, TLI = 0.979]. At a second step, a unidimensional model
was fit to the data and produced the following fit [χ2

(77)
= 166.446,

p < 0.001, RMSEA = 0.020, CFI = 0.980, TLI = 0.953]. Because
the twomodels are nested a chi-square difference test was utilized
that was equal to the difference in chi-square units between the
two models and was evaluated with the respective difference in
the number of degrees of freedom. Results indicated that the
difference chi-square statistic was equal to 58.662 units, which
was significantly different from zero with 6 degrees of freedom
(the critical value was 12.592 chi-square units). Thus, the 4-factor

correlated model at the within level of the analysis provided
superior model fit compared to the unidimensional structure and
was associated with low amounts of measurement error.

A similar evaluation took place at the between level in the
analysis through saturating the within level model. The fit of
the 4-factor correlated model [χ2

(71)
= 18.680, p = 1.00, RMSEA

< 0.001, CFI = 1.0, TLI=1.0] was contrasted to that of the
unidimensional structure at the university level [χ2

(77)
= 22.174,

p = 1.0, RMSEA < 0.001, CFI = 1.0, TLI = 1.0]. Results pointed
to accepting the null hypothesis that both models fit the data
equally well. Consequently, due to parsimony, the 1-factor model
was deemed the most appropriate structure at the university level
(between person level).

Testing for the Discriminant Validity of the
Optimal Multilevel SEM Model
One important hypothesis related to the discriminant validation
of the mathematics measure as the between factor correlations
were very high. To this end, we compared the freely estimated
correlated factor model at the within level and saturated between
[χ2

(71)
= 107.784, p = 0.003, RMSEA = 0.013, CFI = 0.992, TLI

= 0.979] to a model in which the within factor relationships
were constrained to be equal to 1.0 and the between model again
saturated [χ2

(77)
= 166.446, p < 0.001, RMSEA = 0.02, CFI =

0.980, TLI = 0.953]. If this later model fits the data equally well
compared to the 4-factor freely correlated model, then between
factor correlations equal to 1.0 would represent plausible values.
Consequently, discriminant validation would be lacking. When
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FIGURE 5 | Item parcels showing significant Differential Item Functioning (DIF) across mathematics items. There were 4 out of the 14 item parcels. Bottom two lines

show differences between males and females on the logit scale and those at the top of the graph at the probability scale. Differences are likely reflective of Type-I

errors. Notably, significant DIF was observed on difficult items, thus, probability of success is low for both groups.

comparing the fit of the 4-factor correlated model with freely
estimated between-factor correlations to that of the same simple
structure but with fixed correlations to unity, results indicated
significant misfit of the later as the difference chi-square value
was equal to 58.662 with again a critical value of 12.592. Thus,
a conclusion of discriminant validation was supported as the
model with fixed correlations was statistically inferior to that of
the 4-factor freely correlated model.

Testing for Measurement Invariance and
the Presence of Item Bias Due to Gender:
A Multiple Indicator Multiple Causes
Differential Item Functioning (DIF)
Analysis11

A MIMIC model was applied at the within (person) level
to test the measurement invariance of the instrument across
gender although alternative approaches based on multi-group
modeling are also available (Kim and Cao, 2015). Based
on recommendations by Muthén (1989a) the effects of the
covariate and measurement non-invariance should be examined
by constraining the effects of the covariate on the item parcels
to be zero and through examining the misfit documented in
the modification indices. After fitting this constrained model to
the data, results indicated that item parcels 1, 3, 4, and 10 were

11As in a DIF analysis with polytomous data. Item parcels had a maximum of 4

levels, thus DIF could be examined with item parcels.

associated with increases in chi-square values between 11.039
and 38.985 units, all significant given a critical threshold value
of 10 chi-square units. Furthermore, a direct effect of gender
on the first factor (Numbers/Operations) was significant and
negative suggesting that females had lower scores than males
on that factor. Inspection of the behavior of item parcel 1
that loaded onto the Numbers/Operations factor revealed that
its factor loading was positive, thus, the expectation was that
females would have higher scores compared to males on that
item parcel. The covariate effect, however, was negative and
significant suggesting that females actually had lower scores
on that item parcel. That was evidence of measurement non-
invariance for the first arithmetic item parcel across gender.
The same exact effect was also observed with item parcel 3, the
first item of the Algebra/Analysis factor pointing again to the
presence of non-invariance due to gender. For item parcels 4
and 10, however, there was no significant effect on the factor
mean pointing to an expectation that differential responding
should not be expected across gender. Nevertheless, the effects
of the covariate were significant and positive suggesting that
females, had significantly elevated scores on those item parcels,
indicating non-invariance or the presence of Differential Item
Functioning (DIF). Figure 5 displays the difference across gender
on both the logit (y-axis to the right) and the probability scale (y-
axis to the left of the figure). As shown in Figure 5, differences
that exceeded levels of significance were practically meaningless.
For example, at the probability scale, success rates between 2
and 4% were significantly different from each other but likely
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represent miniscule differences using an effect size metric. The
largest difference represented 3 percentage units. Furthermore,
the pattern of findings was not consistent in that all four item
parcels were favored by males only or females only suggesting a
balance across gender that is likely reflective of random variation
that exceeded levels of significance due to excessive levels of
power of the z-test statistics. Consequently, a conclusion of
measurement invariance was drawn, suggesting that the few
significant observed discrepancies likely reflect Type-I errors due
to the large sample size.

Testing for Level Differences Across
Gender Using Multilevel MIMIC Model
Assuming measurement invariance across gender as per the
previous section, with the few significant findings reflecting very
low effect sizes and were rather an artifact of the large sample
size, a latent means analysis was conducted using procedures
described by Kim and Cao (2015). Consequently, the latent factor
means of the four math constructs were regressed on a dummy
gender variable. Results pointed to the presence of null effects
across all constructs except the Numbers/Operations factor. The
mean of females was −0.214 units lower compared to that of
males on the respective construct (z =−2.791, p= 0.005).

Multilevel Structural Equation Modeling
(MSEM) for the Prediction of Math
Achievement From Type of University
(Old-New)
Following evaluation of the measurement models above, a last
aim involved a structural model in which the latent factor
mean of the unidimensional math structure at the between
level of the analysis was regressed on the year the university
was established (see Figure 6). Prior to testing this model, it
was necessary to verify the measurement invariance of the
model across old and new establishments. Consequently, a
multi-group MSEM model was tested with age of university
comprising the between-level grouping variable. Factor loadings
and intercepts were constrained to be equivalent across type of
universities and model fit was subsequently evaluated. Results
indicated that imposing these constraints was associated with
excellent model fit. Specifically, the overall chi-square test was
non-significant suggesting “exact fit” [χ2

(336)
= 308.371, p =

0.858] and among fit indices both the CFI and TLI were
equal to 1. The RMSEA was less than 0.001 and the misfit
introduced by the different levels of the age of institution
variable were very similar (168.773 and 139.597 chi-square
units for old and new establishments, respectively). Thus, a
conclusion of strict measurement invariance was supported, and
generalized math competency was subsequently regressed on
a dummy variable (year the university was established) coded
with zero representing older institutions and with a value of 1,
newly established institutions. Results indicated that there were
significantly lower math achievement levels in students nested
within newer establishments compared to older ones (bMath =

−2.174, p < 0.001).

FIGURE 6 | Effects of type of university (old and new establishments) on the

math achievement of university students. Only latent variables and level-2

predictor are shown for parsimony. *p < 0.05, two-tailed test.

DISCUSSION

The measurement of academic achievement has been
predominantly examined with person level data which
essentially fail to disaggregate the person variability from
that of between person structures such as the university students
belong to. Consequently, when using person-based estimates of
achievement any influences due to university are confounded.
The purpose of the present study was tomodel math achievement
at both the person and university levels of the analyses in order
to understand the optimal factor structure of math achievement
using information from the factor model so that all available
information regarding the measurement of math achievement
is accounted for. Several salient findings emerged, which are
presented in order of importance in the sections that follow.

The most important finding related to the fact that the
simple structure of math achievement appears to be different
when viewed under the lenses of the aggregated model (person
level data) and under the differentiation as person level and
university level data. Specifically, the aggregate data analysis
supported a conclusion of an optimal univariate model for the
measurement of math achievement and the multilevel structural
equationmodel a conclusion favoring a unidimensional structure
at the university level and a multi-factor model at the person
level. This is an important consideration that affects both
theory and measurement practice and utility. That is, a simple
structure should be evaluated for fit at each level in the analysis
and that conclusion should inform theory; also, those findings
should inform measurement in that they should lead to simple
structures with the least amount of measurement error so
that subsequent phenomena (i.e., structural relations) would
be modeled properly with the most appropriate measurement
models for each level in the analysis. At the between university
level, the correlation between constructs was high suggesting
that math ability at the university level is driven by the overall
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capacity of the university, without showing domain specific
effects. At the person level, differential performance (low-high
achievement) across subspecialties was observed suggesting that
individuals may have a preference and different level of skill
in some math area (e.g., statistics) but less so in another
(e.g., algebra). So, although at the university level, institutions
were either good or not so good across math specialties,
math achievement at the person level was governed by math
subspecialty in that performance in one subject matter was
unrelated to the performance in another subject matter (between
factor correlations were at times zero). The findings at the person
level are expected in that individuals should not necessarily
be “equally” good across math specialties. The finding at the
university level did not provide support to the hypothesis that
there are different emphases within a university (defined by
different quality staff and resources so that for example, a
department within a university may emphasize statistics but less
so, algebra and analysis). This apparently diverse simple structure
observed at the university level compared to the aggregate data is
surprising provided that the ICCs were not that large to warrant
such a saliently different solution (Opdenakker and Van Damme,
2000).

The second most important finding relates to the ability of
the MSEM model to understand the variability of university
phenomena, after employing the most appropriate simple
structure, using university level predictors, after first verifying
measurement invariance. In the present study, the age of an
institution was factored in, to understandmath achievement with
strict invariance being justified across old and new institutions.
Results favored older institutions in that math achievement was
significantly elevated. This finding agrees with previous data from
e.g., UK university evaluations in 2016 in that older institutions
had significantly higher ranking, research quality and intensity,
better student to staff ratio, significantly higher allocation of
funds, more facilities, higher honors, and higher completion
rates (University League Tables and Rankings, 2017). Thus, the
present analysis using the university as the unit of analysis
and after evaluating the most optimal simple structure at the
university level, allows for a proper evaluation of university
departments, their degree of competency and production, which
is primarily associated with funding from federal and/or state
sources. Interestingly, in the U.S. the major research institutions
(that are mostly older) seem to be penalized with regard to
funding as the likely newer community colleges and non-research
institutions seem to be receiving the largest share of their budgets
from federal and state funds (Woodhouse, 2015). In the absence
of the MSEM methodology, one could neither test for the most
optimal model using the university as the level of analysis, nor
would be able to predict how the age of the institution could
contribute to achievement in math. Subsequent public policy
decisions could then be adjusted for the present findings.

A third important finding related to the evaluation of within
level predictors such as person demographic characteristics. In
the present study the effects of gender were evaluated after
first establishing partial measurement invariance of the 4-factor
solution between males and females. Only four out of the 14
item parcels showed significant amounts of DIF, which, when
evaluated using practical means appeared to be very small and, in

that sense, insignificant. Consequently, measurement invariance
was assumed and, in a MIMIC, structural model all latent factors
were regressed onto the dummy gender variable. Results pointed
to the existence of minimal differences across gender, with one
significant effect observed for factor 1 (numbers/operations),
with females having a significantly lower mean on that construct.
Overall, these findings suggest that males and females are
comparable in their levels of math achievement across math
domains and contrasts earlier findings pointing to the existence
of gender differences with females having lower aptitude in math
compared to males across math domains (e.g., Régner et al.,
2016).

The present study is also limited for several reasons. First,
the most optimal simple structure was not consistently pursued
through deleting item parcels or persons as the goal of the present
study was not to purify and improve the instrument under
study. Furthermore, disaggregation was the preferred method
of analysis provided that the current measure was reflective
rather than formative. Thus, we deferred from this approach
of initially purifying the measure using aggregate data. A third
limitation pertains to the fact that several intraclass coefficients
were low, particularly since low ICC values (along with other
factors) have been implicated with biased estimates of factor
loadings (Muthén and Satorra, 1995; Hox and Maas, 2001; Wu
andKwok, 2012), non-convergence (Toland andDeAyala, 2005),
and/or inadmissible estimates such as the presence of negative
variance estimates (Li and Beretvas, 2013), leading to proposals
for involving Bayesian estimation approaches (Depaoli and
Clifton, 2015). In the present study, issues of non-convergence
were not present suggesting that the large cluster sizes (mean
cluster size = 247 participants) acted as a buffer to estimation
problems (Preacher et al., 2011) along with creating item parcels
as categorical data have been largely implicated with estimation
problems and non-convergence (Yang-Wallentin et al., 2010). As
Muthén (1991) pointed out, small ICC values are common in
educational and psychological research, as well as small cluster
sizes (e.g., with 5–20 participants, Mathisen et al., 2006), however,
research has shown that ignoring ICCs as low as 0.02 lead to
parameter inflation and a large number of Type-I errors (Murray
and Hannan, 1990; Siddiqui et al., 1996; Baldwin et al., 2011).
Another limitation pertains to the unbalanced samples in old and
new establishments, which, may have affected the generalizability
of the findings. Last, fit at the within level may suggest an
overidentified model, which potentially creates problems with
parameter estimation.

Nevertheless, the present study’s novelty lies on the fact
that proper measurement of many conceptual phenomena
likely involves “nesting.” The use of the factor model as
part of multilevel modeling further disattenuates measurement
error and provides improved accuracy of person scores. The
simultaneous modeling of the covariance structure at both levels
in the analysis allows for a proper disaggregation of variances
and covariances at each level. Under those lenses latent variable
models are the most appropriate means for assessing construct
validity and should be tested separately at each level in the
analyses as needed in order to more accurately measure the
constructs under study. However, despite the analytical benefits,
as Stapleton et al. (2016) have noted, if theoretically speaking the
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interest is at the person level and the construct being measured
also makes only sense to be assessed at that level only, modeling
level-2 structures, may not be appropriate.
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