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SUMMARY

Gene expression is controlled by transcription factors (TFs) that bind cognate DNA motif 

sequences in cis-regulatory elements (CREs). The combinations of DNA motifs acting within 

homeostasis and disease, however, are unclear. Gene expression, chromatin accessibility, TF 

footprinting, and H3K27ac-dependent DNA looping data were generated and a random-forest-

based model was applied to identify 7,531 cell-type-specific cis-regulatory modules (CRMs) 

across 15 diploid human cell types. A co-enrichment framework within CRMs nominated 

838 cell-type-specific, recurrent heterotypic DNA motif combinations (DMCs), which were 
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functionally validated using massively parallel reporter assays. Cancer cells engaged DMCs linked 

to neoplasia-enabling processes operative in normal cells while also activating new DMCs only 

seen in the neoplastic state. This integrative approach identifies cell-type-specific cis-regulatory 

combinatorial DNA motifs in diverse normal and diseased human cells and represents a general 

framework for deciphering cis-regulatory sequence logic in gene regulation.

In brief

The cis-regulatory logic encoded within DNA sequences that mediate cell-type-specific gene 

expression is undefined. Here Donohue et al. generate multi-omics data across 15 diploid 

human cell types and present a new integrative framework for identifying regulatory DNA 

motif combinations (DMCs). Specifically, they identify cell-type-and -state-specific DMCs and 

anticipate broad applicability of the approach.

Graphical Abstract

INTRODUCTION

The cis-regulatory logic encoded in the regulatory DNA sequences that control cell-

type-specific gene expression is undefined. Deciphering this logic has been challenging 

because many cis-regulatory sequences1 reside in non-coding elements2 distant from the 

transcription start sites (TSSs) of their targets.3–5 Additionally, the human genome contains 

millions of potential enhancers,6,7 with a specific active subset in any given cell type.8 Gene 
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dysregulation is a hallmark of disease,9,10 and whether diseased cells engage new regulatory 

logic as opposed to modulating the activity of normal logic is unknown. Integrating high-

resolution epigenomic profiling with computational modeling and functional assays across 

diverse human cell types and disease states may help address current knowledge gaps.

One approach to genome-scale mapping of cis-regulatory DNA sequence logic involves 

identifying the recurrent DNA motifs present in non-coding CREs of specific cell 

types, including promoters (P) and enhancers (E) associated with cell-type-specific gene 

expression.11–13 Promoters lie ~250 bp directly upstream of TSSs,14 and enhancers 

can directly contact promoters and other enhancers, forming E-E, E-P, and P-P loops 

in three-dimensional (3D) space.15 Active enhancers and promoters are marked by 

H3K27ac histones,16–18 which enables mapping of the 3D architecture of gene regulation. 

Transcription factors (TFs) act in a combinatorial fashion at CREs to modulate gene 

transcription by cooperatively binding specific DNA motifs.19 Cell-type-specific gene 

expression is hence believed to be dependent on cis-regulatory logic of TF motif 

combinations, referred to as the cis-regulatory lexicon.20,21 Computational efforts have 

attempted to predict this lexicon 22–27; however, these models rely on nearest gene 

annotations of the most proximal E to a given P along the linear DNA rather than known 

3D E-P linkages. While genome-wide regulatory maps have been generated across a number 

of human cell types,28,29 identifying functional cell-type-specific DNA motif combinations 

(DMCs) across E-P linkages for the vast majority of normal human cell types is not fully 

defined, nor is it known how such combinations are altered in disease.

Here, we generate chromatin accessibility, 3D chromatin looping, and gene expression data 

across 15 diploid human cell types to define cell-type-specific open chromatin peaks within 

enhancers looped to open chromatin peaks at target gene promoters of expressed transcripts, 

or peak-loop-transcripts (PLTs). TF footprinting analysis extracted DNA sequence motifs 

directly bound by TFs within these PLT-associated CREs and a random-forest model was 

applied to derive cell-type-specific DMCs for each of these 15 cell types. Statistical co-

enrichment analysis of TF footprint motifs produced activity predictions for cell-type-linked 

DMCs, which were validated by massively parallel reporter assays (MPRAs) in relevant cell 

types. Functionally, regulatory DMCs fell into four distinct classes: synergistic, buffering, 

redundant, and single driver. Applying this framework to parallel data generated in cancer 

cells demonstrated that malignant cells not only engage new DMCs but that they also 

differentially modulate normal lineage DMCs controlling cancer-relevant genes mediating 

proliferation, metabolism, and cell migration. This integrative approach uncovered a human 

DMC lexicon driving cell-type-specific gene transcription in a variety of normal cells and 

their malignant counterparts and provides a framework for future efforts to define the DNA 

sequence logic that enables cell-type-specific gene expression.

RESULTS

Characterizing epigenomic landscapes in 15 diploid human cell types

To map gene regulatory elements and their putative target genes in diverse cell types, 

chromatin accessibility, H3K27ac chromatin looping, and RNA sequencing (RNA-seq) 

data were generated in 15 primary human cell types, including cells of epithelial origin 
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from tissues in which 12 of the most common human cancers arise. These were lung 

airway, breast (human mammary epithelial cell [HMEC]), bladder, colon, esophageal, skin 

keratinocytes (KC), ovarian, pancreas, prostate, renal, thyroid, and uterine cells, as well as 

two cell types of neural origin, primary human astrocytes and melanocytes (MC), and the 

diploid human lymphoblastoid cell line, GM12878. Replicated 3′ mRNA-seq, ATAC-seq 

(assay for transposase-accessible chromatin followed by high-throughput sequencing), and 

H3K27ac HiChIP (Hi-C library preparation followed by a chromatin immunoprecipitation) 

data were generated for each cell type (Figure 1A). Principal-component analysis (PCA) 

showed high consistency between biological replicates (Figures S1A–S1C), although 

differences in read depth likely contributed to variance (Table S2). Publicly available 

data11,30–33 cover a portion of cell types studied here; however, primary human melanocytes 

and airway, bladder, esophageal, ovarian, thyroid, and uterine epithelial cells have been 

largely unprofiled. These data provide a resource to begin to decode the regulatory logic of 

active CREs in primary cells from distinct human tissues.

Epigenomic landscapes and molecular subtypes of diploid human cells

RNA-seq, ATAC-seq, and H3K27ac HiChIP data across these 15 human cell types were 

integrated to assess cell-type-specific features in regulatory DNA. RNA-seq identified 

14,098 total expressed genes, 7,531 of which were differentially expressed (Figure 

2A). Similar to PCA analysis, these differential RNA transcripts clustered into four 

distinct groups, including two epithelial cell groups: (1) Epithelial Cluster 1 (EC1), 

including colon, esophageal, ovarian, pancreas, renal, and thyroid epithelial cells; (2) 

Epithelial Cluster 2 (EC2), including airway, bladder, KC, HMEC, prostate, and uterine 

epithelial cells; (3) neuroendocrine/neural crest lineage (N) astrocytes and MC; and (4) 

hematopoietic lymphoblastoid GM12878 cells. Relevant expected genes for cell-lineage-

specific expression programs were associated with these differential clusters, such as IRF4 
in GM12878,34 RUNX2 in astrocytes,35 WT1 in EC1,36,37 and TP63 in EC238,39 (Figures 

2A and S1A). ATAC-seq identified 2,342,155 total accessible regions, of which 30,519 

(1.3%) exhibited significant variation across all 15 cell types. Chromatin accessibility 

separated the cell types into the same four clusters found by differential RNA transcripts, 

EC1, EC2, N, and GM12878 (Figures 2B and S1B). H3K27ac HiChIP data identified 

2,822,181 loop anchors, 46,540 (1.6%) of which were differential across all 15 diploid 

human cell types. Differential regulatory loops clustered into EC1, EC2, MC, astrocyte, and 

GM12878 (Figures 2C and S2C). Further characterization of these differential regulatory 

loops revealed expected putative target genes such as CD22 in GM12878,40 SYNDIG1 
in astrocytes,41 MLANA in MC,42 TFF1 in EC1,43 and KRT1 in EC244 (Figure 2C). 

Hierarchical clustering of differential regulatory loops revealed cell type relatedness, with 

broad clustering of the hematopoietic GM12878 B cells of mesoderm origin, endocrine 

and gastrointestinal system-related EC1 cells of mesoderm and endoderm origin, and the 

neuroendocrine astrocytes and MCs of neuroectoderm origin clustering more closely to 

exocrine-system-related EC2 cells, including keratinocytes and HMECs (Figure 2D). These 

data identified tens of thousands of putative enhancers physically linked to thousands of 

expressed genes.
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To characterize 3D genomic architecture across these cell types, significant looping 

interactions identified by H3K27ac HiChIP were investigated, and 10,117 common anchors 

were shared across all cell types. These linked to 453 commonly expressed target genes, 36 

of which are housekeeping genes45 and 112 are essential genes.46 Between 2.5% and 45% 

of HiChIP interactions detected in a given cell type were unique to that cell type (Figure 

2E), and 80% of all HiChIP interactions occurred between DNA regions within 180 kb of 

each other (Figure S1D). Significant loop anchors were classified into putative enhancers 

and promoters. Through integration of HiChIP and ATAC-seq data, a putative enhancer was 

defined as a promoter-interacting region (PIR) containing accessible chromatin peaks within 

matched datasets by cell type. Promoters were defined as regions containing accessible 

chromatin peaks and the TSS of a gene. Of the 1,175,428 total looping interactions, 58.4% 

were between putative enhancer loci (E-E), 33.6% were E-P, and 8.0% were P-P (Figure 

2F). A single promoter was assigned a median of two putative enhancers. Promoters linked 

to expressed genes had a greater number of E-P linkages than non-expressed genes (Mann-

Whitney U test, p value = 1 3 10−41). Within E-P interactions, 198,896 cell-type-unique 

putative enhancers were identified, of which 24,557 directly contact the promoter of the 

single nearest target gene only, 38,524 putative enhancers directly contact both the nearest 

target gene and distal gene(s), while 135,815 putative enhancers contact only distal genes 

(Figure 2G). P-P interactions have been identified at clusters of co-regulated genes,47,48 and 

recently promoters have also been shown to function in vivo as long-range enhancers.5,49 In 

32.0% of P-P interactions, both genes were expressed, in 45.8% one gene but not the other 

was expressed, and in 22.2% neither gene was expressed (Figure S1E), suggesting some 

promoters serve enhancer functions and highlighting the 3D complexity of CREs across 

human cell types.

Relevant biological process terms were enriched in cell-type-specific putative regulatory 

loops, such as B cell activation, differentiation, and proliferation in GM12878 cells, 

synapse organization and neuron axonogenesis in astrocytes, pigmentation and melanocyte 

differentiation in MC, maintenance of gastrointestinal epithelium and epithelial cell 

morphogenesis in EC1, and epidermis development in EC2 (Figure 2H). The association 

of cluster and cell-type-specific processes suggests that CREs harbor lineage-specific 

regulatory roles. Indeed, ZNF750, a known regulator of epidermal differentiation in KC,50,51 

was found to be an EC2-specific expressed gene contacted by two EC2-specific putative 

enhancers (Figures 2I and S1F). Two GM12878-specific putative enhancers were found to 

directly contact the cytokine IL10, important for B cell regulation52 (Figure 2J). TYRP1, 

which enables melanin biosynthesis,53 similarly displayed contact with an MC-specific 

putative enhancer in concert with MC-specific expression (Figure 2K). Integrated HiChIP, 

ATAC-seq, and RNA-seq data provide a putative map of physically linked regulatory 

elements to their biologically relevant target genes across diverse normal human cell types.

Consistent with prior work,54–56 cell-type-specific CREs identified contained risk-associated 

variants for diseases of their corresponding tissues. Cell-type-specific distal CREs were 

intersected with disease-linked variants from the genome-wide association studies (GWAS) 

catalog.57 HaploReg v4 58 was then used to identify linked single nucleotide variants 

(SNVs) above a linkage disequilibrium (LD) threshold of 0.8 for 55,202 SNVs linked to risk 

of developing 15 cancer types arising from the cell types profiled. Additionally, a total of 
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31,276 SNVS in LD with nine inflammatory diseases were also assessed, including systemic 

sclerosis, inflammatory bowel disease, and ulcerative colitis, and 82,610 unique SNVs at 

5% FDR were significantly enriched across all traits at identified CREs in a disease- and 

cell-type-specific manner (Figures S2A and S2B). For example, SNVs linked to risk for 

endometrial cancer and lymphoma were found to reside within putative enhancers that loop 

to the BUB1B mitotic checkpoint kinase gene, known to be important in cancer growth,58,59 

in uterine cells and GM12878 cells, respectively (Figure S2C); these lymphoma-associated 

SNVs also score as BUB1B tissue-selective eQTLs (expression quantitative trait loci) in 

GTEx whole-blood data and created motifs for several B cell-relevant TFs (Figure S2D). 

Additionally, the prostate cancer-linked SNV, rs6983267,60 and the renal carcinoma-linked 

SNV, rs35252396,61 were found to reside in CRE loci that loop to the MYC oncogene in 

their respective cell types (Figure S2E) and lymphoma- and pancreatic cancer-linked SNVs 

were also enriched in GM12878 and pancreas distal CREs, respectively. E-P-linked cell-

type-specific CREs thus contain disease-relevant variants with putative functional effects on 

target gene regulation, potentially through disruption of relevant TF motifs.

cis-Regulatory modules identify a lexicon across human cells

We next searched for cell-type-specific DMCs in cell-type-specific CREs. First, the HINT-

ATAC62 package performed TF footprinting to identify putative DNA bases bound by 

proteins in ATAC-seq data. TF position-weight matrices from HOCOMOCO v1163 were 

then used to match putative TFs to TF footprints (Figure S3A). Putative TF motif footprints 

were linked to CRE-based transcriptional regulation if the motif footprint’s corresponding 

putative TF was expressed in the relevant cell type. Next, we built a package called Pan-

omics to identify the TF motif footprints present in proximal and distally looped CREs to 

a cell-type-specific target gene’s TSS to nominate cis-regulatory modules (CRMs) (Figure 

S3B). In addition to the identity and number of expressed TF motifs, CRM attributes include 

the number of unique and total loops contained within the CRM, the number of ATAC 

peaks present in the CRM, and the identity and transcripts per million (TPM) expression of 

the target gene. Between 290,391 and 1,786,988 motif footprints were found per cell type. 

Expressed genes were found to have an increased number of footprints per CRE, with an 

average of 9.0 footprints for expressed genes (TPM > 1), 5.4 for lowly expressed genes 

(0 < TPM ≤ 1), and 1.6 for non-expressed genes (TPM = 0). Such gene-centric CRMs 

captured cell-type-specific 3D contact information, chromatin accessibility, and transcription 

machinery that may contribute to cell-type-specific transcription.

Consistent with this premise, using a random-forest, tree-based algorithm, the model 

successfully determined the cell type of a CRM (Figure 3A). When the CRM model 

features were selected based on assay of origin, it was found that the combination of 

RNA, ATAC, HiChIP, and TF footprinting was necessary to achieve the highest cell-type 

performance. Using one-dimensional (1D) RNA and ATAC information as a baseline (purple 

line), the addition of 3D HiChIP alone (orange line) contributed to a 0.17 increase in 

model performance (area under the receiver operating characteristic curve [auROC]), 1D 

putative TF motifs alone (red line) contributed to a 0.32 increase, yet the addition of distally 

located putative TF motifs (blue line) performed best, contributing to a 0.46 increase in 

model performance (Figures 3B and S3C–S3F). Thus, models lacking looping and TF motif 
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data performed poorly on the cell-type prediction task, indicating the importance of distal 

enhancers and TF motif identity in cell-type-specific CRMs. Interestingly, TF motifs in 

putative enhancers contributed the most to cell-type-specific prediction accuracy. While 

including putative enhancers decreases the sparsity of CRM motif matrix representations 

and thus augments model performance, models where the distal enhancer was linked to the 

HiChIP-identified gene promoter performed 24% better than models where enhancers were 

linked to the nearest gene and 10% better than models where enhancers were linked to 

random intrachromosomal genes (Figure S3F). This suggests that DNA looping data capture 

distal enhancers that mediate cell-type-selective gene expression.

Cell-type-specific CRMs may underlie transcriptional differences between cell types. For 

example, Gene Ontology (GO) enrichment analysis revealed cell-type-relevant biological 

terms, such as tumor necrosis factor signaling, linked to recurrent CRM motifs for known 

B cell TFs, IRF4 and IRF8,34 and IKZF164 in GM12878 cells (Figure 3E). In addition to 

enrichment for distinct putative TF motifs regulating the same target genes within a single 

cell type, the same motifs in distinct putative enhancers were looped to genes involved 

in specific cellular processes. (Figure 3E). For example, the POU2F2 motif lies within a 

putative enhancer looped to the KC differentiation gene, FLG65 (Figure 3C). The POU2F2 

motif was also found in a unique prostate CRM looped to UGDH, a regulator of androgen 

activity in prostate cells66 (Figure 3D). These results suggest that TF motifs in CRMs 

link to regulation of target gene expression programs important for establishing relevant 

cell-type-specific biological processes.

A cell-type-specific cis-regulatory logic of heterotypic motif combinations

The enrichment of commonly shared TF motifs across cell-type-specific expression 

programs suggested that specific combinations of motifs, distinct from cell-type-unique 

motifs, contribute to cell-type-specific transcription. To determine potential synergistic 

relationships between TF DNA motifs in cell-type-specific gene regulation, a co-enrichment 

test (Fisher’s exact, Bonferroni-corrected p <0.05) was done on all pairwise hetero motif-

motif combinations in the CRMs associated with each cell type. This analysis identified 838 

total DMCs, ranging from 12 to 106 per cell type, with an average of 55.9 (Figures 4A–4C; 

Table S4). These DMCs identify known co-regulators, such as keratinocyte differentiation 

cooperative TFs KLF4 and TP63, MAF and MAFB, among others in KC DMCs67–71 

(Figure 4A). This suggests that significantly co-occurring TF motifs are linked to distinct 

processes in cellular contexts.

Next, all genomic instances of the nominated TF regulatory DMCs within each cell type 

were identified and the genomic locations of the motifs within the pairwise combination 

determined. Interestingly, while some DMCs have a strong bias toward 1D intra-promoter 

interactions such as KLF4-SALL4 and EGR2-KLF4, others have a strong bias toward 1D 

putative intra-enhancer interactions, such as HBP1-RORA and EGR2-JUNB, and nearly 

all DMCs occur across a 3D putative inter-enhancer-promoter interaction (Figures 1B, 4B, 

and S4A). The statistical co-enrichment of TF motifs across these distinct epigenomic 

interactions suggest that identified DMC cis-regulatory logic acts at local proximal 
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promoters, distal putative enhancers, and across 3D E-P contacts to control cell-type-specific 

activity.

All three DMC interaction types were associated with cell-type-relevant target gene 

biological processes. For example, a DMC harboring the KLF5 KC differentiation 

motif,72 KLF5-HMGA1, resides in an intra-promoter genomic instance in KC at the 

SCNN1A gene, a subunit of the epithelial sodium channel important for body temperature 

regulation in skin73 (Figure 4D). Also in KC, an intra-enhancer genomic instance of KLF5-

HMGA1 looped to PPARD, which stimulates keratinocyte differentiation and improves skin 

barrier74,75 (Figure 4E). Finally, a 3D E-P genomic instance of KLF5-HMGA1 in KC links 

to FNBP1L,a regulator of another known skin barrier gene, N-WASP76,77 (Figure 4F). These 

findings suggest that the identified DMC cis-regulatory logic operates both distally and 

proximally to control cell-type-relevant gene expression.

Functional assessment of cell-type-enriched DMCs via MPRA

If the DMCs identified above capture the sequence logic of cell-type-specific gene 

regulation, then motif combinations should synergistically drive cell-type-specific 

transcription when tested in diverse cell types. To assess this quantitatively at scale, 

MPRAs were performed on a subset of cell-type DMCs derived from cells representative 

of each major cluster studied, including primary human colon (EC1), KC (EC2), MC 

(N), and GM12878 lymphoblastoid cells. Ten native genomic instances of 42 colon, 49 

KC, 26 MC, and 39 GM12878 heterotypic cis DMCs were selected, along with matched 

sequences in which one or both DNA motif nucleotide sequences were iteratively scrambled. 

These were cloned into a lentiviral MPRA library containing 62,400 sequences, including 

controls (Figure 5A). MPRA was performed in primary human colon, KC, MC, and diploid 

GM12878 cells; sample clustering demonstrated high reproducibility and clear separation 

between cell types (Figures S5A–S5E). Each native DMC genomic instance was compared 

with its corresponding scrambled controls (individual motifA, individual motifB, and jointly 

scrambled motifA and motifB). An expected additive change in MPRA signal, computed 

from individually scrambled motifs, was compared with the observed MPRA signal with 

both motifs present to assess the cell-type-specific activity of each DMC and the interaction 

between its constituent motifs.

Similar to previously identified TF interaction categories,78 four major patterns of motif 

interactions were observed within studied DMCs (Figure 5A). The expected pattern of 

synergy was observed for the MITF-ZNF589 DMC in MC where scrambling the motif for 

both MITF, a known MC master regulator,79 and ZNF589 had a greater combined negative 

impact than scrambling of each motif alone (Figure 5B). A pattern of redundancy was 

observed for an IRF4-PLAG1 DMC in GM12878 cells where scrambling either IRF4 or 

PLAG1 alone failed to alter transcription-directing activity (Figure S5F). A buffer pattern 

was observed for an ETV2-SP2 DMC in MC where mutation of either motif boosted 

expression over native DMC sequences (Figure S5G). Finally, a single-driver pattern was 

also observed in which only one DNA motif was necessary to achieve similar expression 

to that obtained with the native recurrent heterotypic motif combination. Examples of this 

included the EGR2-KLF4 DMC in KC (Figure S5H) and the FOXM1-PATZ1 DMC in colon 
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cells (Figure S5I). While all tested DMCs included TF motifs where the associated TF had 

a TPM > 1 in the relevant cell type, it remains a possibility for single-driver DMCs that 

one of the TFs is lowly expressed, such as FOXM1 compared with PATZ1 in colon (Figure 

3E), or that the annotated TF is not relevant for the given cell type. The frequencies of these 

four patterns of motif interactions within DMCs were significant against expected pattern 

simulations (Figures S5J–K), with synergy (32%) being the most common (Figure 5C; Table 

S5).

Combinatorial TF motifs within synergistic DMCs may be linked to cell-type-specific gene 

expression. Indeed, cell-type-specific synergistic DMCs correspond to known important 

lineage TFs and linked target genes are enriched in GO terms related to relevant cellular 

processes, such as colon synergistic DMCs harboring the KLF5 motif co-regulating terms 

related to transforming growth factor β (TGF-β) and Wnt signaling.80,81 Furthermore, the 

RORA motif was found to co-regulate keratinization and cornification terms in KC,82 EBF1 

and IZKF1 motifs co-regulate lymphocyte activation and proliferation in GM12878s,64 

and the MITF motif co-regulates intracellular transport in MC83 (Figure 5D). Previous 

studies modeled the configuration of TF binding motifs,22,84 thus we further investigated 

the spacing of combinatorial TF motifs within the 10 tested genomic instances of validated 

synergistic DMCs. While no global spacing-to-MPRA signal relationship was observed 

(Figure S5L), some DMCs did display recurrent spacing features. For example, some DMCs 

drove signal when <25 bp apart, such as HBP1-IRF8 in GM12878s (Figure S5M), while 

others drove signal when ~40 bp apart, such as PRDM1-RORA in KCs (Figure S5N). These 

results indicate that heterotypic TF motif pairs synergistically regulate transcription through 

a cis-regulatory logic and that this regulation occurs in the absence of a strict global pattern 

of TF motif spacing.

Synergistic KC and MC DMCs are differentially modulated in malignancy

Do diseased cells modulate the activity of normal lineage DMCs or do they engage 

entirely new DMCs? To explore this, the present framework was applied to malignant 

counterparts of two of the primary cell types studied here that give rise to some of the most 

common cancers in humans: keratinocytes and melanocytes. Replicate RNA-seq, ATAC-seq, 

and HiChIP data were generated across independent human malignant melanoma (MM) 

(WM-266–4 [WM] and COLO 829 [COLO]) and cutaneous squamous cell carcinoma 

(cSCC) (CAL27, SCC13, and A431) cell lines (Jung et al., in preparation) then DMCs 

identified as above. Fifty-three putative heterotypic DMC pairs were nominated in MM and 

155 in cSCC (Figure 6A). These findings suggest that DMC cis-regulatory logic is not only 

cell-type-specific but potentially cell-state specific, such as between a disease cell and its 

healthy cell of origin.

To address disease DMC commonalities and differences with their normal counterparts, 

wild-type native DMC genomic instances were selected from 40 MM and 43 cSCC 

heterotypic motif pairs, for a total of 33,200 sequences then lentiviral MPRA performed 

in COLO and A431 cells. MPRA readouts for the entire library were obtained and sample 

clustering demonstrated high reproducibility and clear separation between the two cancer 

types and normal primary human cells (Figure S5E). Of the MPRA-validated cancer DMCs, 
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36.4% were determined to be functionally synergistic (Figure 6B; Table S5). The spacing 

patterns between TF motifs of these synergistic cancer DMCs were then assessed. Similar to 

healthy cells, some DMCs drove MPRA signal when <25 bp apart, such as SOX10-SOX13 

in MM cells (Figure S6A). However, it was also observed that the EGR2 motif drove MPRA 

signal in KCs when 12–22 bp apart from the RARG motif (Figure S6B), while driving signal 

in MM cells when <10 bp or >27 bp apart from the NFE2L1 motif (Figure S6C), suggesting 

the spacing of several DMCs may be important for regulatory function in these cancer 

cells. Interestingly, comparing synergistic DMCs between cancer cells and their normal cell 

type of origin (MM versus MC and cSCC versus KC) revealed that, for the same target 

gene, DMCs were co-enriched for different combinatorial TF pairs, such as the 1P validated 

synergistic ETV-PRRX1 DMC in MC versus the 1P ZBTB49-NF2L1 DMC in MM at the 

MLANA locus, a gene involved in melanosome biogenesis85 (Figure S6D). These findings 

suggest that normal and disease-state cells might display a differential cis-regulatory lexicon 

to regulate gene expression programs that are biologically relevant for their given cell type 

of origin.

To investigate whether different cell states mediate gene expression through shared DMCs 

or through cell-state-specific DMCs, the relationship between synergistic regulatory DMCs 

in normal human cells versus their malignant counterparts was explored. The difference in 

synergy scores between the A431 cSCC line and primary KCs was calculated. A significant 

distributional shift in DMC synergy scores was observed in cSCC cells (Wilcoxon rank-

sum test, p = 5.16 × 10−5) (Figures 6C, S6G, and S6H), where cSCC DMCs had higher 

synergistic scores in the A431 cSCC line than in KCs and KC DMCs had higher synergistic 

scores in KCs than in the A431 cSCC cells. Due to the differential modulation of synergistic 

DMCs in a healthy cell type of origin versus a disease cell state, all functional DMCs were 

assessed by their global expression across all six cell types assayed by MPRA to compare 

DMC activity. Five synergistic DMCs were found to be cSCC specific and three were MM 

specific (Wilcoxon signed rank test, p value <0.10), suggesting different mechanisms may 

control this process in normal versus malignant cells (Figures 6D and S6F). These cSCC- 

and MM-specific synergistic DMCs implicate known cancer-associated TFs such as SP1 in 

cSCC86–88 and SOX10 in MM.89–91 Hence, cSCC- and MM-specific DMCs determined by 

the CRM model drive cSCC- and MM-specific expression.

To investigate whether validated cell-state-specific synergistic cancer DMCs regulate the 

same gene modules as their healthy cell type of origin or regulate new biological processes 

relevant to a disease state, GO enrichment analysis was performed on the putative target 

genes of normal and cSCC- and MM-specific DMCs. While synergistic DMCs in both 

cSCC and MM linked to processes identified in normal cell function, such as epidermis 

development and pigment metabolic processing, respectively, there is also a de-enrichment 

of terminal differentiation processes in cSCC-specific DMCs, such as keratinization and 

cornification, compared with their enrichment in KC-specific DMCs (Figures 6E and S6E). 

Furthermore, cSCC- and MM-specific processes were also enriched, such as regulation of 

nuclear division and stem cell population maintenance, respectively. Indeed, the cooperative 

SP1-ARNT cancer-associated DMC92 was found to be cSCC specific, and a 3EP genomic 

instance is linked to the ADAP1 gene, a mediator of TGF-b-induced invasion in cSCC93 

(Figure 6F). These results suggest that malignant-cell-type DMCs synergistically regulate 
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both normal cell types of origin as well as cancer-relevant target gene expression in MM and 

cSCC through distinctive patterns of disease-specific cis-regulatory logic.

DISCUSSION

Here, we describe a framework for identifying cell-type-specific DMCs that regulate cell-

type-specific transcription built on a newly generated resource of RNA-seq, ATAC-seq, 

and H3K27ac HiChIP in 15 diploid human cell types. This resource was designed to 

serve as a repository for further studies of cell-type cis-regulatory control. Modeling these 

data suggested a combinatorial lexicon of cooperative DNA motifs encoded in cell-type-

specific putative enhancers and promoters of actively expressed target genes to derive 

7,531 cell-type-specific CRMs. MPRA experiments validated predicted cell-type-specific 

cis-regulatory logic, helping account for regulation of cell-type-specific transcripts between 

primary human cell types and selected cancer cell counterparts. The functional synergy 

of regulatory DMCs was found to shift between normal cells and a disease state, namely 

cancer, identifying cell-type- and state-enriched DMCs. This suggested that pathogenic 

gene dysregulation engages disease-type-unique motif combinations while also modulating 

existing cell lineage lexicons relevant to pathogenesis. The present work thus suggests that 

cell-type-specific gene expression is mediated by a code of TF DMCs in regulatory DNA 

whose activity is modulated in disease.

Previous studies provided high-throughput chromatin looping datasets linking distal CREs 

to annotate functional target gene promoters across a diverse array of cell types.54–56,94 

The current integrative framework using cell-type-specific ATAC, HiChIP, and RNA-seq 

data extends these efforts to imply patterns of combinatorial, motif-based, cis-regulatory 

control. Including the looping-data-inferred location, proximal or distal, of CREs relative 

to the promoter enhanced model accuracy for cell-type-specificity in cis-regulatory logic. 

Moreover, cell-type-specificity predictions perform best when all features derived from 

ATAC, HiChIP, and RNA-seq of a CRM are present, demonstrating the value of epigenomic 

and transcriptomic data in relevant cellular contexts. This genome-wide map provides a 

resource of testable hypotheses on cell-type-specific transcription.

Additionally, while this work echoes previous efforts in model interpretation methods to 

catalog cis-regulatory logic and discover active motif instances and co-occurrence patterns, 

the present framework provides validation of extracted CRE logic. The epigenomic and 

transcriptomic data provided a genome-wide map of CREs for 15 human cell types and 

enabled resolution of CRE logic to the level of individual genes. Furthermore, cell-type-

specific, regulatory DMCs were validated functionally via MPRA. These DMCs could 

then be categorized into classes based on their cooperative patterns. Motifs for established 

transcriptional regulators, such as MITF in melanocytes,79 IKZF1 in lymphocytes,64 and 

KLF5 in colon epithelial cells,80,81 are found in concert with other cell-type-specific as well 

as more globally expressed TFs to drive cell-type-specific processes. These cooperative 

patterns of DMCs suggest that discrete logic patterns guide transcription regulatory 

mechanisms to achieve differential cell-type-specific gene transcription.

Donohue et al. Page 11

Cell Genom. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The present work also compared functional cis-regulatory logic between diseased cells and 

healthy human cells from which they arise. Specifically, MPRA enabled direct comparison 

of the transcription-driving activity of synergistic TF motif combinations between normal 

human skin cells and their malignant counterparts; the latter, namely cSCC and MM, 

represent two of the most common cancers in humans. This demonstrated that CRM-

predicted cell-state-specific TF regulatory DMCs are functionally synergistic in normal 

and cancer cells. These cell-state-derived synergistic regulatory DMCs were enriched for 

processes specific to cell state and cell type of origin, such as pigment metabolism, response 

to oxygen levels, regulation of amide metabolism in MM and epidermis development, 

Ras signal transduction, and mitotic nuclear division in cSCC. MM- and cSCC-specific 

processes were also linked to TFs with established roles in their corresponding tumors, 

such as SOX10 in MM and SP1 in cSCC, each associated with several paired TF motif 

co-regulators. Cell-state-specific synergistic TF regulatory DMCs were further functionally 

validated and found to be differentially modulated between healthy versus disease cell 

states. Finally, spacing of TF motifs within functional DMCs failed to exhibit strict global 

spatial patterns that could identify synergy, buffering, redundancy, and single driver patterns, 

but several spatial patterns were identified for specific synergistic DMCs in both healthy 

and disease cells. This suggests that, while a normal cell and a disease cell may retain a 

shared cis-regulatory logic linked to the originating cell lineage, cells in the pathogenic state 

shift toward using a disease-state-selective lexicon, thus altering the homeostatic balance of 

transcriptional regulation toward pathophysiological processes.

Limitations of the study

The information about DNA sequence lexicons underlying cell-type-specific gene 

expression provided here raises issues for future exploration. For example, due to the 

3D nature of the CRMs, synthesizing cooperative patterns across proximal and distal 

elements into a relatively high-throughput, unbiased, testable manner represents a future, 

albeit technically challenging, goal. The chosen MPRA of combinatorial DNA motifs was 

limited to two cooperative motifs found in pre-existing 145-bp genomic instances, likewise 

limiting the assay to 3D DMCs also found in a 1D context. Moreover, MPRA does not 

test candidate DMCs in their native context and does not functionally validate target 

gene expression. Additionally, MPRA tested heterotypic motifs only with a pre-existing 

spacing and orientation based on the genomic instances used. Future modeling efforts, 

however, could be designed in synthetic sequences to explore the CRE logic with finer 

granularity and for a wider range of combinatorial lexical patterns. Finally, the epigenomic 

and transcriptomic data are derived from a static snapshot of different human cell types, 

and extending these efforts to model dynamic developmental processes influenced by CRMs 

is a future extension of these efforts. High-throughput perturbational experimental assays, 

such as SPEAR-ATAC95 and Perturb-seq,96 may offer orthogonal means of identifying 

functionally active DMCs to help decipher additional patterns of cell-type-specific cis-

regulatory logic in development, homeostasis, and disease progression.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Paul A. Khavari (khavari@stanford.edu).

Material availability—Plasmid pD2-miniluc generated in this study has been deposited to 

Addgene, catalog number 174105.

Data and code availability

• RNA-seq (GEO: GSE186947), ATAC-seq (GEO: GSE188398), HiChIP (GEO: 

GSE188401) and MPRA (GEO: GSE188403) data have been deposited at GEO: 

GSE188405 and are publicly available as of the date of publication. Raw 

sequencing files for primary keratinocyte and melanocyte data are restricted 

and access is in accordance with NIH genomic data sharing policy. Accession 

numbers are listed in the key resources table.

• Original code to generate CRMs is available on Github: https://github.com/

mguo123/pan_omics and Zenodo: https://zenodo.org/record/6981951 (https://

doi.org/10.5281/zenodo.6981951). Analysis scripts are available as a series of 

jupyter notebooks used for generating figures for this paper. All code is publicly 

available as of the date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tissue samples—Primary human keratinocytes and melanocytes were isolated 

and cultured from fresh, surgically discarded neonatal foreskin. All human cells were 

collected and analyzed by protocols approved by the Stanford Human Subjects Institutional 

Review Board and in accordance with the NIH genomic data sharing policy. Keratinocytes 

were maintained in a 1:1 mixture of Keratinocyte-SFM (ThermoFisher, 17005042) and 

Medium 154 (ThermoFisher, M-154–500) supplemented with HKGS (ThermoFisher, 

S-001–5). Keratinocyte differentiation was induced by the addition of 1.2 mM calcium for 3 

or 6 days at full confluence. Melanocytes were maintained in Medium 254 (ThermoFisher, 

m-254–500) and supplemented with HMGS supplement (ThermoFisher, s-002–5) and 1% 

anti-mycoplasma and 1% pen/strep.

Human cell culture—Bronchial/Tracheal Epithelial Cells (Airway) were obtained from 

ATCC (PCS-300–010) and grown in Airway Epithelial Cell Basal Medium (ATCC, 

PCS-300–030) supplemented with Bronchial Epithelial Cell Growth Kit (ATCC, PCS-300–

040). Cells were grown in 15 cm dishes.

Human astrocytes (astrocytes) were obtained from Lonza (N7805–100) and grown in Gibco 

Astrocyte Medium (ThermoFisher, A1261301). Cells were grown in 15 cm dishes.
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Primary Human Bladder Epithelial Cells (A/T/N) (Bladder) were obtained from ATCC 

(PCS-420–010) and grown in Bladder Epithelial Cell Basal Medium ((ATCC PCS-420–032) 

supplemented with Bladder Epithelial Cell Growth Kit (ATCC PCS-420–042). Cells were 

grown in 15 cm dishes.

Human Primary Colonic Epithelial Cells (Colon) were obtained from CellBiologics 

(H-6047) and grown in Complete Human Epithelial Cell Medium supplemented with 

Human Epithelial Cell Medium Supplement Kit (CellBiologics, H6621). Cells were grown 

in 15 cm dishes.

Human Primary Esophageal Epithelial Cells (Esophageal) were obtained from CellBiologics 

(H-6046) and grown in Complete Human Epithelial Cell Medium supplemented with 

Human Epithelial Cell Medium Supplement Kit (CellBiologics H6621). Cells were grown in 

15 cm dishes.

Human Mammary Epithelial Cells (HMECs) were obtained from Lonza (CC-2551) and 

grown in MEGM Mammary Epithelial Cell Growth Medium BulletKit (Lonza, CC-3150). 

Cells were grown in 15 cm dishes.

Human Primary Ovarian Epithelial Cells (Ovarian) were obtained from CellBiologics 

(H-6036) and grown in grown in Complete Human Epithelial Cell Medium supplemented 

with Human Epithelial Cell Medium Supplement Kit (CellBiologics, H6621). Cells were 

grown in 15 cm dishes.

Human Primary Pancreatic Epithelial Cells (Pancreas) were obtained from CellBiologics 

(H-6037) and grown in Complete Human Epithelial Cell Medium supplemented with 

Human Epithelial Cell Medium Supplement Kit (CellBiologics, H6621). Cells were grown 

in 15 cm dishes.

Human Prostate Epithelial Cells (Prostate) were obtained from Lonza (CC-2555) and grown 

in Prostate epithelial basal medium (Lonza, CC-3165) and supplemented with PrEGM 

Prostate Epithelial Cell Growth Medium SingleQuots Supplements and Growth Factors 

(Lonza, CC-4177)

Human Primary Proximal Tubular Epithelial Cells (Renal) were obtained from 

CellBiologics (H-6015) and grown in Complete Human Epithelial Cell Medium 

supplemented with Human Epithelial Cell Medium Supplement Kit (CellBiologics, H6621). 

Cells were grown in 15 cm dishes.

Human Primary Thyroid Epithelial Cells (Thyroid) were obtained from CellBiologics 

(H-6040) and grown in Complete Human Epithelial Cell Medium supplemented with 

Human Epithelial Cell Medium Supplement Kit (CellBiologics, H6621). Cells were grown 

in 15 cm dishes.

Endometrial (Uterine) Primary Epithelial Cells were obtained from Lifeline Cell Technology 

(FC-0078) and grown in ReproLife™ Reproductive Medium Complete Kit (Lifeline Cell 

Technology, LL-0068). Cells were grown in 15 cm dishes.
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Cell lines—GM12878 were obtained from Coriel (Catalog # GM12878) and grown in 

RPMI-1640 supplemented with 2mM L-glutamine (Thermo Fisher 25030149), 15% non-

heat-activated FBS (HyClone, ThermoFisher) and 1% pen/strep. Cells were grown in T-25 

or T-75 flasks in accordance with ENCODE guidelines.

Lenti-X 293T cell line was obtained from Takara (Catalog # 632180) and grown in DMEM 

F:12 (ThermoFisher, 11995–065) supplemented with 10% FBS (HyClone, ThermoFisher) 

and pen/strep.

SK-MEL-5 human malignant melanoma cell line was obtained from ATCC (HTB-70) and 

grown in DMEM F:12 (ThermoFisher, 11995–065) supplemented with 10% FBS and 1% 

Pen/Strep. Cells were grown in T-75 flasks.

WM-266–4 human malignant melanoma cell line was obtained from ATCC (CRL-1676) 

and grown in DMEM F:12 (ThermoFisher, 11995–065) supplemented with 10% FBS. Cells 

were grown in T-75 flasks.

COLO 829 human melanoma cell line was obtained from ATCC (CRL-1974) and grown 

in RPMI 1640 Media (ThermoFisher, A1049101) supplemented with 10% FBS. Cells were 

grown in T-75 flasks.

A-431 human epidermoid carcinoma cell line was obtained from ATCC (CRL-1555) and 

grown in DMEM F:12 (ThermoFisher, 11995–065) supplemented with 10% FBS. Cells 

were grown in 15 cm dishes.

CAL27 human squamous cell carcinoma cell line was obtained from ATCC (CRL-2095) 

and grown in DMEM F:12 (ThermoFisher, 11995–065) supplemented with 10% FBS. Cells 

were grown in 15 cm dishes.

SCC-13 human squamous cell carcinoma cell line was a generous gift from J.G. Rheinwald, 

Dana-Farber/Harvard Cancer Center and grown in Keratinocyte-SFM (Thermo Fisher, 

17005042) supplemented with HKGS (ThermoFisher, S-001–5). Cells were grown in 15 

cm dishes.

All cells were grown at 37◦C in a humidified chamber with 5% CO2. All cell lines were 

negative for mycoplasma with MycoAlert (Lonza, Basel, Switzerland) immediately before 

use.

METHOD DETAILS

RNA-seq library preparation and sequencing—RNA-seq was performed on 

biological replicates using the Lexogen Quant-seq 3′ mRNA-seq Library Prep Kit FWD 

for Illumina protocol (Lexogen, 015.96). Briefly, total RNA was extracted from cells using 

the RNeasy Mini Kit (QIAGEN, 74104). 1 ug of total RNA was hybridized with an oligo-dT 

primer containing an Illumina-compatible sequence at its 5′ end and reverse transcription 

is performed. Following first strand cDNA synthesis, RNA is removed. Double-stranded 

cDNA was synthesized followed by a purification step. qPCR was performed to determine 

optimal PCR cycle number using the PCR Add-on Kit for Illumina (Lexogen, 020.96). 
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i7 adapters for Illumina sequencing were added during PCR amplification (see Table S1, 

Primers and oligos, for RNA-seq adapter sequences). Following purification, RNA-seq 

libraries were quantified using the BioAnalyzer High Sensitivity DNA Kit (Agilent, 5067–

4626) prior to sequencing using 1 × 150 bp single-end reads on an Illumina HiSeq 4000 

instrument at a depth of 50 million reads per sample (see Table S2, Sequencing QC, for 

RNA-seq read depth information).

ATAC-seq library preparation and sequencing—Fast-ATAC sequencing on 

biological replicates was performed as previously described.120 Briefly, 55,000 viable cells 

were pelleted and resuspended in 50 uL of ATAC resuspension buffer (RSB) with 0.1% 

Igepal CA-630 (NP-40), 0.1% Tween 20, and 0.01% digitonin (Promega, G9441). After 3 

min on ice, 1 mL of ATAC RSB with 0.1% Tween 20 was added, tubes were inverted, and 

nuclei pelleted by centrifugation at 500 RCF for 10 min at 4C. Supernatant was carefully 

removed and the nuclei pellet was resuspended in 50 uL of transposition mixture (25 uL TD 

buffer, 2.5 uL of TDE1 (Illumina, 20034197), 16.5 uL PBS, 0.5 uL 1% digitonin, 0.5 uL 

10% Tween 20, 5 uL nuclease-free water). Transposition reactions were incubated at 37◦C 

for 30 min in an Eppendorf ThermoMixer with agitation at 1000 RPM. Transposed DNA 

was purified using a Zymo DNA Clean and Concentrator-5 Kit (Zymo, D4014) and purified 

DNA was eluted in 20 ul elution buffer (10 mM Tris-HCl, pH 8). Transposed fragments 

were amplified and purified as described previously121 (briefly, transposed fragments were 

amplified for 5 cycles, then 5 uL of the pre-amplified mixture was run in a 15 uL qPCR and 

the amplification profiles assessed manually to determine the required number of additional 

cycles to amplify the remainder of the pre-amplified DNA.) with modified primers122 

(see Table S1 for ATAC-seq adapter sequences). Libraries were quantified using qPCR 

(Kapa Library Quantification Kit for Illumina, Roche, #KK4854) prior to sequencing. All 

Fast-ATAC libraries were sequenced using paired-end 2 × 75 bp, dual-index sequencing 

on an Illumina HiSeq 4000 at a depth of 50 million reads per sample (see Table S2 for 

ATAC-seq read depth information).

HiChIP library preparation and sequencing—The HiChIP protocol was performed as 

previously described.123 Briefly, 5 million live cells were crosslinked using freshly prepared 

1% formaldehyde. The reaction was quenched using 125 mM glycine and cells were stored 

in −80C prior to performing the HiChIP protocol. Crosslinked cells were resuspended in 500 

uL Hi-C Lysis Buffer and rotated at 4C for 30 min. Cells were spun down at 2500 rcf for 5 

min at 4C. Supernatant was removed and the pelleted nuclei were resuspended in 500 uL Hi-

C Lysis Buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% NP-40, 1X protease inhibitors, 

water). Spin down and wash steps were performed twice. The pellet was resuspended in 100 

uL of 0.5% SDS, split in half, and incubated at 62 for 10 min. SDS was quenched using 

285 uL H20 and 50 uL 10% Triton X-100 with rotation at 37C for 15 min. Chromatin was 

digested using 50 uL NEBuffer 2 (NEB, B7002S) and 8 uL of 375 U of MboI restriction 

enzyme (NEB, R0147) with rotation at 37C for 15 min. Digested chromatin was spun 

down for 5 min at 2500 rcf, supernatant was removed, and the pellet was resuspended 

in 500 uL 1X NEBuffer 2. This step was repeated twice. Restriction fragment overhangs 

were filled in and DNA ends were marked with biotin through addition of 52 uL of fill-in 

master mix (37.5 uL 0.4mM biotin-ATP (Jena Bioscience, NU-835-BIO14-L), 1.5 uL 10 
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mM dCTP, 1.5 uL 10 mM dGTP, 1.5 uL 10 mM dTTP (ThermoFisher, 10297018), and 

10 uL 5U/uL DNA Polymerase I, Large Klenow Fragment (NEB, M0210) and rotation at 

37C for 1 h. 948 uL ligation master mix (150 uL 10X NEB TF DNA ligase buffer with 

10 mM ATP (NEB, B0202), 125 uL 10% Triton X-100 (Sigma, T8787–100ML), 3 uL 50 

mg/mL BSA (ThermoFisher, AM2616), 10 uL 400 U/uL T4 DNA Ligase (NEB, M0202) 

and 660 uL water) was added and chromatin was resuspended before incubation at RT for 

4 h with rotation. Nuclei was pelleted at 2500 rcf for 5 min, supernatant was removed, 880 

uL Nuclease Lysis Buffer (50 mM Tris-HCl pH7.5, 10 mM EDTA, 1% SDS, 1X protease 

inhibitors, water) was added, and nuclei were moved to 1 mL Covaris tubes (milliTUBE 

1 mL AFA Fiber(100), Covaris). Samples were sheared using a Covaris E220 using the 

following parameters: Fill Level = 10, Duty Cycle = 5, PIP = 140, Cycles/Burst = 200, Time 

= 4 min and then clarified by centrifugation for 15 min at 16100 rcf at 4◦C. 10X volume 

of ChIP Dilution Buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris 

pH 7.5, 167 mM NaCl, water) was added to achieve an SDS concentration of 0.1%. 4 ug of 

H3K27ac antibody was added (Abcam, ab4729) and chromatin was incubated overnight at 

4C with rotation. We captured the chromatin-antibody complex with 34 uL Protein A beads 

(Thermo Fisher, 10001D) and rotation at 4C for 2 h. Beads were washed three times each 

with 500 uL Low Salt Wash Buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM 

Tris-Hcl, 150 mM NaCl, water), High Salt Wash Buffer (0.1% SDS, 1% Triton X-100, 2 

mM EDTA, 20 mM Tris-HCl, 500 mM NaCl, water), and LiCl Wash Buffer (10 mM Tris 

pH 7.5, 250 mM LiCl, 1% NP-40, 1% Na-DOC, 1 mM EDTA, water) at RT using magnet 

swishing and removing the supernatant. Split samples were recombined when adding the 

first Low Salt Wash Buffer.

ChIP samples were resuspended in 100 uL Elution Buffer (50 mM NaHCO3, 1% SDS, 

water) and incubated for 10 min at RT with rotation, followed by 3 min at 37C shaking. 

Samples were placed on a magnet and the supernatant was moved to a new tube. This 

step was repeated twice for a final volume of 200 uL ChIP DNA. 10 uL Proteinase K 

(ThermoFisher, AM2546) was added and samples were incubated at 55C for 45 min. The 

temperature was then increased to 67C for 1.5 h with shaking. Samples were purified using 

Zymo ChIP DNA Clean & Concentrator (Capped Columns) (Zymo, D5205) and eluted in 10 

uL of water. Qubit quantification following ChIP ranged from 125–150 ng. (ThermoFisher, 

Q32851) Up to 150 ng DNA was resuspended with 5 uL Streptavidin C-1 (ThermoFisher, 

65001) beads resuspended in 10 uL Binding Buffer (10 mM Tris-HCl pH 7.5, 1mM EDTA, 

2M NaCl, water) and incubated at RT for 15 min with rotation. Beads were separated on a 

magnet and the supernatant removed. Beads were washed twice with 500 uL Tween Wash 

Buffer (5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 1 M NaCl, 0.05% Tween 20, water) and 

incubated at 55C for 2 min shaking. Beads were washed with 100 uL 1X TD Buffer. Beads 

were resuspended in 25 uL of 2X TD Buffer (20 mM Tris-HCl pH 7.5, 10 mM MgCl2, 

20% Dimethylformamide, water), the appropriate amount of Tn5 used and number of PCR 

cycles performed were based on the post-ChIP Qubit amounts, as previously described123 

(briefly, a maximum of 4 uL Tn5 was used for samples with 125 ng of DNA transpose and 

then amplified in 5 cycles), and water up to 50 uL. Samples were incubated at 55C with 

interval shaking for 10 min, placed on a magnet, and the supernatant removed. 300uL of 

50 mM EDTA (ThermoFisher, 15575020) was added and samples were incubated at 50C 
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for 30 min. Samples were placed on a magnet and the supernatant removed, washed twice 

with 300 uL 50 mM EDTA, and incubated at 50 for 3 min with interval shaking and the 

supernatant removed. Samples were then washed twice with 500 uL Tween Wash Buffer and 

incubated at 55C for 2 min with interval shaking, removing the supernatant on the magnet. 

Samples were washed once with 500 uL 10 mM Tris. Beads were resuspended in 50 uL 

PCR master mix in a strip tube (25 uL Phusion HF 2X (NEB, M0531S), 1 uL 12.5 uM 

Ad 1.x, 1 uL 12.5 uM Ad2.x100 (see Table S1 for H3K27AC HiChIP adapter sequences), 

and 23 uL water) and run at 72C for 5 min, 98C for 1 min, and for 5 cycles of 98C for 

15 s, 63C for 30 s, and 72C for 1 min. Supernatant was transferred to fresh tubes. Samples 

were purified using the Zymo kit (Zymo, D4013) and eluted in 10 uL of water. 1 uL of 

10X BlueJuice loading buffer (ThermoFisher, 10816015) was added and samples were run 

on a 6% PAGE gel (ThermoFisher, EC6265BOX) for 30 min at 160V. The gel was soaked 

in SYBR Safe (ThermoFisher, S33102) and TBE buffer (ThermoFisher, LC6675)) for 5 

min. HiChIP samples were size selected by PAGE purification (300–700 bp) for effective 

paired-end tag mapping and were therefore removed of all primer contamination. Gel slices 

were placed in doubled tubes with a hole in the smaller one and tubes were centrifuged 

for 3 min at max speed. 300 uL Crushed Salt Buffer (500 mM NaCl, 1 mL EDTA, 0.05% 

SDS, water) was added to each tube and incubated at 55C overnight. CSB buffer and gel 

slurry were transferred to Spin-X columns (Sigma, CLS8162–24EA) and spun down at max 

speed for 2 min. Samples were Zymo purified using the DNA Clean & Concentrator-5 kit 

(Zymo, D4013) and eluted in 10 uL elution buffer. Libraries were quantified using qPCR 

(Kapa Library Quantification Kit for Illumina, Roche) prior to sequencing. All libraries 

were sequenced using 2 × 150 bp reads on the Illumina NovaSeq 6000 instrument to an 

average read depth of 300 million total reads (see Table S2 for H3K27ac HiChIP read depth 

information).

MPRA

Oligo design and selection: TF DMCs were selected from the co-enrichment analysis. A 

total of 49 keratinocyte, 42 colon, 39 GM12878, and 26 melanocyte normal DMCs were 

curated based on literature search, which prioritized TF’s with cell type-specific function 

in the corresponding cell type. Additionally, 43 squamous cell carcinoma and 40 melanoma 

DMCs were curated, for a total of 239 DMCs to be tested. For each DMC, 10 genomic 

instances of the DMCs in a 135 bp segment were selected. Segments where the DMCs 

were closer than 50 bp apart were prioritized. Positive and negative control sequences 

were added. Positive controls were genomic sequences of the 150 bp upstream of the TSS 

of the 72 highest expressed genes in selected cell type DMCs. Negative controls were 

genomic sequences of the 150 bp upstream of the TSS of 89 genes that were not expressed, 

had no looping, and had no accessible sites in any of the selected cell types. A list of 

the 239 selected DMCs can be found in Table S5, MPRA DMC categories. All genomic 

sequences were extracted via API querying of hg19 version of the UCSC browser.124 

Scrambling of the motif instances of the two motifs within the DMC were done so that 

four configurations existed for each DMC: both motifs scrambled, motif A scrambled, motif 

B scrambled, and no motifs scrambled. The scrambling was done iteratively. After each 

iteration, the sequences were scanned for via the MOODs python package,114 to ensure that 

the scrambled version did not contain the motif of interest and to minimize the possibility 
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that other possible motifs were introduced. To design the MPRA sequences for synthesis 

and subsequence cloning, sequences first were filtered to ensure the restriction sites for 

EcoRI, BamHI, XhoI, and NheI were not present. Each MPRA library oligo included, 

in order: a forward PCR primer binding site (5′-ACTGGCCGCTTCACTG-3′), the 145 

bp genomic instance sequence, a XhoI restriction site, a 10bp randomly generated spacer 

sequence, a NheI restriction site, a 20bp barcode, and a reverse PCR primer binding site 

(5′-AGATCGGAAGAGCGTCG-3′) (see Table S1 for complete MPRA oligo and primer 

information). The 10bp spacer sequence was included to improve restriction enzyme cutting 

efficiency and to reduce template switching in the initial PCR amplification cloning step, 

and is later removed following digestion with NheI and XhoI. The 20bp barcodes are all a 

minimum Hamming distance of 3 apart. Each unique genomic instance is barcoded 10 times. 

The smaller number of barcodes may reduce sensitivity,125 but 10 barcodes were sufficient 

to identify active time-dependent combinatorial DNA motifs.20 This yields a 97,210–221bp 

oligo library that was synthesized by the Agilent oligo synthesis process.

Cloning: Cloning proceeded in 2 steps. Agilent oligo library was resuspended 

in Ultra-Pure H2O then diluted to make a 10 pg/ul stock. Resuspended oligo 

pool was amplified 24 cycles using PrimeSTAR Max DNA Polymerase (Takara, 

R045B) with a forward primer 5′-GCTAAGGAATTCACTGGCCGCTTCACTG-3′ 

and reverse primer 5′-GCTAAGGGATCCCGACGCTCTTCCGATC-3′ to introduce 

the EcoRI and BamHI restriction sites upstream and downstream of the oligo, 

respectively. Product was gel purified using a 2% agarose gel then using an 

MN nucleospin kit (Takara, 740609.250). A BamHI site was added to the 

pGreenFire1-mCMV (EF1a-puro) plasmid (System Biosciences, TR010PA-P) between 

the luciferase and WPRE element by mutagenesis with the following primer: 

GAGGTTGATTGTCGAGTCGAGGATCCTTACAATTTGGACTTTCCGCCC. This is 

referred to as the pGreenFire-MPRA plasmid. 64ug of pGreenFire-MPRA plasmid (32 

reactions) and the purified PCR library product (6 reactions) were digested with EcoRI-

HF (NEB, R3101L) and BamHI-HF (NEB, R3136L) for 1 h at 37C. The pGreenFire 

plasmid was also simultaneously rSAP (NEB, M0371L) treated. The pGreenFire-MPRA 

plasmid gel purified using a 0.7% agarose gel, while the digested oligo library was PCR 

purified using the same MN kit. Digested library and pGreenFire-MPRA vector were 

ligated using T4 Ligase (NEB, #M0202L) at a 2:1 insert:vector ratio for 2 h at room 

temperature (10–20ul reactions). All of the ligation product was transformed into Stellar 

Competent cells (Takara, 636766) with 2 ul of ligation mix per 50 ul of cells and a 

total of 80 transformation reactions. Reactions were done in two sets of 40, with a test 

transformation followed by Sanger sequencing to confirm the ligation was a success. 

Full scale transformation was done in large volume liquid cultures, allowed to recover 

for 1 h-post heat shock, and incubated at 37C for 8 h in ampicillin-treated LB. The 

expanded library was isolated by Qiagen Plasmid Plus Max Kit (Qiagen, 12963). This 

pGreenFire-library vector was then digested with XhoI (NEB, R0146L) and NheI-HF (NEB, 

R3131L) and rSAP treated for 90 min at 37C. The pMPRA-d2-miniluciferase plasmid 

was simultaneously PCR amplified with 5′-TTGTAAAACGACGGCCAGTGAATTCG-3′ 

and 5′-ACATCATGGTCGC TAGCGGGCGTAGCGCTTCATGGCT-3′ for 34 cycles and 

then subsequently digested with XhoI and NheI-HF for 90 min at 37C. Both the digested 
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pGreenFire-library vector and the minluc insert products were gel purified using 0.5 and 

1.6% agarose gel respectively. Purified miniluc and pGreenFire-library vector were ligated 

using T4 Ligase at a 3:1 insert:vector ratio for 2 h at room temperature (5–20ul reactions). 

A similar round of 40 transformations using Stellar Competent cells was performed, 

as done in the previous cloning step with an 8 h incubation of liquid cultures. The 

final plasmid library was isolated by Qiagen Plasmid Plus Maxi Kit (Qiagen, 12963). 

Plasmid library was sequenced to ensure adequate coverage of the designed oligo library 

pool, according to manufacturer instructions. Briefly, Plasmid was amplified on a qPCR 

Stratagene MX3005P machine using the PrimeSTAR MAX polymerase and SYBR green 

(ThermoFisher, S7567) until the linear phase (around cycles 10–15) on the qPCR machine 

was achieved. PCR product was PCR purified then gel purified with a 549 bp band using the 

MN Nucleospin kit (Takara, 740609.250). Library concentration was determined using Kapa 

Library Quantification Kit (Roche Diagnostics Corporation, KK4854) and Bioanalyzer. 

Sequencing was done using an Illumina Miseq (Illumina, MS-102–3001), and the number 

of barcodes present in the library was determined. Multiple iterations of the cloning process 

were done and pooled to form the final plasmid library to obtain near complete coverage of 

the library.

Virus generation: LentiX cells (passage < P8) were grown in 15cm plates until ~80% 

confluent. Plasmids pCMV R d8.91126 (25 ug/plate), pUC-MDG VSVG (Addgene, 12259) 

(10 ug/plate), and the plasmid library (25 ug/plate) were transfected using Lipofectamine 

3000 (ThermoFisher, L3000015) (2ul/ug DNA) in Optimem (ThermoFisher, 31985062) 

(7mL/plate). Supernatant was harvested 48 and 72 h post transfection. Supernatant was 

concentrated using Lenti-X concentrator (Takara, 631232) at a 3:1 vol:vol ratio of 

supernatant: concentrator, then aliquoted and frozen down to −80C.

Infection and cell collection: In each cell type, optimal puromycin concentration was 

determined, and the virus was titrated using CellTiterBlue (Promega, G8080) assays to 

minimize virus toxicity and maximize infection efficiency for each cell type. Additionally, 

average integrants per cell was determined for infected cells. Briefly, gDNA was extracted 

from infected cells post-selection via Qiagen tissue extraction kits (Qiagen, 69504). Serial 

dilutions of the original plasmid library and the gDNA were made. qPCR was performed 

on all serial dilutions using primers designed for the oligo library sequences to determine 

the number of copies of the integrants present in each gDNA sample, using the formula: 

log10(copies) = PLASMID_INTERCEPT * Cq + PLASMID_SLOPE. Cell number for each 

gDNA sample was approximated based on the assumption that there is roughly 6.6 pg of 

gDNA per cell. The average integrants per cell was calculated by dividing the number of 

copies present in a gDNA sample by the number of estimated cells. Average number of 

integrants per cell greater than 4 were desired.

For non-GM12878 cell types, cells were infected by trypsinizing then counting cells. At 

least 12.2 million cells per replicate were desired for infection. A virus-polybrene-cell-media 

mix of 8 ul/mL of polybrene (Sigma, H9268–5G) and 100,000 cells/mL of media was 

made to seed the cells in 6 15-cm plates. The amount of virus/200,000 cells was previously 

determined using a CellTiterBlue (Promega, G8080) toxicity screen (see Table S3, MPRA 
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cell culture conditions, for concentrations for each cell type). 2 wells of a 6-well plate were 

also seeded, one with virus and the other without, for monitoring the antibiotic selection. 

Plates were returned to the 37C incubator and allowed to recover for 24 h. For GM12878 

cells, virus was not concentrated and fresh virus suspended in RPMI-1640 media was used. 

Cells were counted and at least 26 millions cells per replicated were desired for infection. 

A virus-polybrene-cell-media mix of 4 ul/mL polybrene was plated onto 6-well plates and 

spun at 731g (2000 rpm) at room temp for 2 h. Plates were incubated at 37C for 6 h 

before the cells were pelleted and resuspended into the T-25 flasks in normal media. Media 

was changed 24 h post-infection. 48 h post-infection, cells were selected using puromycin 

(1.0 ug/mL for keratinocytes) for 48–72 h. CellTiterBlue (Promega, G8080) assays were 

used to ensure all noninfected, antibiotic-treated cells were dead. Cells were changed to 

normal media and allowed to divide until the desired number of cells was achieved (usually 

2–4 days post-selection). Cells were lysed on plate using the Lysis/binding buffer from the 

Dynabeads mRNA direct kit (ThermoFisher, 61012). Cells were homogenized using a 2gg 

needle and syringe and stored at −80C for sequencing library preparation.

Sequencing library preparation: mRNA from the cells was extracted using the Dynabeads 

mRNA direct kit (ThermoFisher, 61012) per manufacturer’s instructions and eluted to 30 

ul per replicated. Extracted mRNA was Turbo DNase treated (ThermoFisher, AM1907) for 

1 h at 37C and then subsequently purified using Ampure XP beads (Beckman Coulter, 

A63881) at a 1:1.9 sample:Ampure bead ratio. cDNA was generated using Super-Script 

IV Reverse Transcriptase (ThermoFisher, 18090050) in 500 ng RNA reactions using a P5 

primer (see Supplemental Information Table S1 for full MPRA primer sequences), per 

manufacturer’s instructions. No RT enzyme conditions were included as a control. Reaction 

were treated with 1ul of thermolabile exonuclease I (NEB, M0293) and incubated at 37C 

for 10 min then heat inactivated. A second Ampure XP purification step was done, using 

a 1:1.1 sample to beads ratio. Test qPCR assays using PrimeStar Max Polymerase, the 

Illumina P7 primer and 5′-AATGATACGGCGACCACCGAGATCTAC-3′ (see Table S1 for 

full MPRA primer sequences) and were run to determine the optimal number of cycles with 

a 50C annealing temperature for 15 s and a 72C extension temperature for 20 s. Samples 

were removed when qPCR reached a linear phase (typically cycle 20–25). Care was taken 

to ensure the cycle stopped prior to when the NRT negative control began to rise. qPCR 

amplification product was gel purified on a 2% agarose gel and the resultant amplicon was 

277 bp. Library concentration of the cDNA libraries was determined using Kapa Library 

Quantification Kit (Roche Diagnostics Corporation, KK4854) and BioAnalyzer prior to 

pooling for sequencing.

Sequencing: cDNA libraries were sequenced using 2 × 150 bp reads on the Illumina 

NovaSeq 6000 instrument to an average read depth of 200 million reads per sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Coding platform—Statistical analyses were performed with R version 3.6.1 and Python 

3.7.4 in Jupyter Notebook. Parameters such as number of replicates, the number of 

independent experiments, measures of center, dispersion, and precision (mean ± SD or 

SEM), statistical test and significance, are reported in Figures and Figure Legends. Raw 
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sequencing data were processed on Stanford’s Sherlock cluster. RNA-seq (GSE186947), 

ATAC-seq (GSE188398), HiChIP (GSE188401) and MPRA (GSE188403) data have been 

deposited at GEO (GSE188405) and are publicly available as of the date of publication. 

Raw sequencing files for primary keratinocyte and melanocyte data are restricted and access 

is in accordance with NIH genomic data sharing policy. Python packages pandas, numpy, 

scipy, statsmodel, and matplotlib were also used for modeling. The seaborn Python package 

was used for visualization using viridis color palettes. Plots in R were made with tidyverse, 

ggplot2, RColorBrewer, and pheatmap packages.

Computational pipeline for RNA-seq—To quantify gene expression, single end reads 

were mapped to the hg19 reference genome with GRCh37 Ensembl annotations using STAR 

aligner (version 2.5.4b)111 using default parameters and the Gencode V19 gene annotation 

gtf. Sample expression counts and transcripts per million (TPM) values were generated 

using RSEM (version 1.3.0)110 and default parameters. Conversion between Ensemble IDs 

and HGNC symbols was performed using the biothings api client python package. Cell 

type-specific genes were defined as genes expressed at a TPM>1 across both biological 

replicates in a single cell type and at a TPM <1 in all other cell types.

Computational pipeline for ATAC-seq—ATAC-seq read alignment, quality filtering, 

duplicate removal, transposase shifting, peak calling, and signal generation were all 

performed through the ENCODE ATAC-seq pipeline (https://github.com/ENCODE-DCC/

atac-seq-pipeline). Briefly, adapter sequences were trimmed, sequences were mapped 

to the hg19 reference genome using Bowtie2 (-X2000),103 poor quality reads were 

removed (params), PCR duplicates were removed (Picard Tools MarkDauplicates, http://

broadinstitute.github.io/picard/), chrM reads were removed, and read ends were shifted +4 

on the positive strand or −5 on the negative strand to produce a set of filtered high-quality 

reads. These reads were put through MACS2115 to get peak calls and signal files. Finally, 

IDR analysis was run on the two replicate peak files to produce an IDR peak file that is 

the reproducible set of peaks across both replicates. Cell type-specific ATAC-seq peaks were 

identified using the IDR peak files across both biological replicates that were unique to a 

single cell type. The full pipeline can be found on the ENCODE portal. ATAC Footprinting 

was performed using the HINT-ATAC62 package. Transcription factor motif position-weight 

matrices (PWMs) from the HOCOMOCO v1163 database were processed to remove non-

informative bases. Additionally, motifs were matched to transcription factors using the 

annotations provided. Ends of the PWMs were trimmed by an information content (IC) 

threshold at the end of IC > 0.4. Overall 770 PWMs remained post-processing. Footprinting 

using the “rgt-hint footprinting” and “rgt-motifanalysis matching” commands were done 

using default parameters over the filtered ATAC bam file and the IDR peak file derived from 

ATAC processing. A TF motif footprint was considered present within a cell type-specific 

regulatory region if the associated TF had a TPM >1.

Computational pipeline for HiChIP—HiChIP paired-end reads were aligned to the 

hg19 genome using the HiC-Pro pipeline.116 Default settings were used to remove duplicate 

reads, assign reads to MboI restriction fragments, filter for valid interactions, and generate 

binned interaction matrices. HiC-Pro filtered reads were then processed using hichipper117 
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using the {EACH, ALL} settings to call HiChIP peaks to MboI restriction fragments. 

HiC-Pro valid interaction pairs and hichipper HiChIP peaks were then processed using 

FitHiChIP118 to call significant chromatin contacts using the default settings except for 

the following: MappSize = 500, Int-Type = 3, BINSIZE = 5000, QVALUE = 0.01, 

UseP2PBackgrnd = 0, Draw = 1, TimeProf = 1. Significant HiChIP interactions from either 

biological replicate were used to identify unique interactions to a single cell type. Cell 

type-specific HiChIP data were analyzed. The distribution of loop width was determined. 

The number of unique, total, common across cell types loops and anchors (anchors are 

defined as one of two 5 kb regions a loop is connecting) was found. The distribution of loop 

types (promoter:promoter, promoter:promoter-interacting, promoter-interacting:- promoter-

interacting) was determined. An “enhancer” was determined as a promoter-interacting 

region, or HiChIP anchor, that contained at least one ATAC peak in the match cell type 

data. Results were compared with HiChIP data from previous studies.

Differential “omics” analysis

Differential RNA-seq analysis: Differential RNA-seq was performed using the limma112 

package using cell type as the grouping variable and an absolute log fold change >0.1 and 

an FDR-adjusted p value < 0.05 as thresholds. Hierarchical clustering was used to determine 

the four main clusters (Epithelial C1 (Airway, Bladder, Keratinocytes, HMEC, Prostate, 

and Uterine), Epithelial C2 (Colon, Esophageal, Ovarian, Pancreas, Renal, and Thyroid), 

neurogenic (Melanocytes and astrocytes), and immune (GM12878)). biomaRt107 was used 

to obtain gene identifiers. Differential expression by cluster (Epithelial C1, Epithelial C2, 

neurogenic, and immune) revealed 7531 differentially expressed genes which was further 

filtered down to 2952 prioritized differential genes. Results were plotted as a heatmap 

using R package pheatmap and the R function scale to Z score by column (cell type). 

ClusterProfiler R package108 was used to functionally characterize the different genesets 

using GO Term enrichment.

Differential ATAC-seq analysis: Differential ATAC-seq analysis was performed on the IDR 

filtered ATAC peak files for each tissue and in accordance with the RNA-seq extracted 

groups. Consensus peak regions were established using the R package Granges.106 Counts 

of reads within consensus regions were determined using the R package Rsubread.105 The 

R package DESeq2113 was used to determine differentially accessible peak regions between 

the groups for a total of 34253 peak regions, and results were plotted using R package 

pheatmap and the R function scale to Z score by column (cell type).

Differential HiChIP analysis: Differential loop regions were determined by first creating 

a loop Object in R using package diffloop.119 Loop objects are matrix-like with rows as 

loops, columns as cell type samples and values as the number of read counts part of the loop. 

Differential loops are called using limma,112 similar to how differential RNAseq analysis is 

done with 46,540 unique loops. Heatmap of results is plotted using R package pheatmap and 

the R function scale to Z score by column (cell type).

Integrative pairwise comparison: Differential analyses from the different “omics” datasets 

were compared by determining the Jaccard similarity and odds ratio (via Fisher exact test) 
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for the genesets extracted from differential analysis of different methods. Genesets for the 

different groups for RNA-seq are trivially determined. Genesets for the differential ATAC 

peaks and the differential HiChIP loops are determined by annotating peaks with the R 

packages ChIPseeker104 and ChIPpeakAnno98

Tracks visualization: HiChIP HiC-Pro interaction matrices were generated as described 

above. v4C visualization plots were generated from HiChIP interaction matrices by filtering 

the matrix for all bin pairs in which one bin matched a single anchor bin. The interaction 

profile of a specific 5-kb bin containing the anchor of a loci of interest was then plotted 

in R and smoothed with the rollmean function of the zoo package. Depth normalization 

was achieved by scaling counts by the total number of filtered reads in each sample. 

High-confidence FitHiChIP loop calls were loaded into the WashU Epigenome Browser 

(http://epigenomegateway.wustl.edu/browser/) along with corresponding RNA and ATAC-

seq profiles. Browser shots from WashU track sessions were included in v4C and interaction 

map anecdotes. RefSeq gene track locations were also shown. Samtools99 and bedtools100 

were used for formatting gene track locations and sequencing profiles. Pybedtools101 was 

used for processing bedfiles in python environment.

Cis-regulatory module analysis

Generation: cis-Regulatory Modules (CRMs) are defined as the transcription factors motif 

footprints present in proximal or distally looped regions to a target gene’s transcription start 

site (TSS). The proximal region, or promoter region, is defined as 500 bp downstream and 

2 kb upstream of the TSS, or the entire H3K27ac HiChIP anchor region, if it includes the 

promoter region, if one is present. CRMs attributes include the number of unique and total 

loops contained within the CRM, the number of ATAC peaks present in the CRM, and 

the identity and TPM expression of the target gene. Since each RNA, ATAC, and HiChIP 

information is cell type-specific, the CRM for a target gene is also cell type specific. CRMs 

were extracted from the processed ATAC, HiChIP, and RNA data using a package we built 

pan-omics. In addition to the actual CRMs for a target gene, randomly looped CRMs were 

generated as a proxy for model testing, by randomly scrambling HiChIP anchor regions 

with a fixed number of total and unique loop counts. HiChIP anchor regions were also 

linked to the nearest TSS promoter. Original code to generate CRMs is available on Github 

at https://github.com/mguo123/pan_omics and Zenodo at https://zenodo.org/record/6981951 

(https://doi.org/10.5281/zenodo.6981951).

Cell type specificity prediction: Various combinations of CRM attributes, pending on 

whether the attribute was derived from ATAC, ATAC footprinting, and/or HiChIP data 

were used to predict cell type using various machine learning architectures. Random forest 

classifiers from Python package scikit-learn with minimal hyperparameter tuning (number of 

estimators = 200, features are square-rooted) was found to have the best performance and 

confusion matrices showing positive predictive values were created. Additional performance 

metrics such as auROC, auPRC, sensitivity, specific, and accuracy were determined. 

Additionally, the % of CRM’s needed to achieve a given level of performance was 

determined.
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Cooperativity of TF DMC analysis: Pairwise enrichment from the CRM setup between 

motifs was calculated using a Fisher Exact test and a Bonferroni-corrected p value < 0.05 

was used to determine putatively cooperative motif pairs. Genesets connected to DMCs from 

the different configurations (promoter-promoter, promoter-enhancer, enhancer-enhancer) 

were determined, and distribution of configurations across motif pairs was determined. 

DMCs were determined based on the genomic presence in cis of the motif pairs occurring 

on more than 20 genomic instances for the differentially expressed genes in the matching 

RNA-seq cell type data. A total of 838 DMCs across the 15 normal cell types, 155 DMCs 

from the 3 squamous cell carcinoma cell lines, and 53 DMCs from the 2 melanoma cell lines 

were extracted (see Table S4, MPRA DMC categories, for a full list of the 838 extracted 

DMCs). This list was further curated down to 239 DMCs to be tested for 6 of the different 

cell types in an MPRA setup (see Table S5, MPRA DMC categories, for a list of the 239 

DMCs tested via MPRA).

GWAS enrichment method: GWAS SNV information was downloaded from GWAS 

catalog57 in January 2019. SNVs associated with major cancer types (esophageal squamous 

cell carcinoma, cutaneous squamous cell carcinoma, ovarian cancer, lymphoma, renal cell 

carcinoma, pancreatic cancer, breast cancer, lung cancer, colon cancer, prostate cancer, 

bladder cancer, endometrial cancer, thyroid cancer, basal cell carcinoma, melanoma), 

autoimmune diseases (dermatomyositis, eosinophilic esophagitis, systemic sclerosis, 

systemic lupus erythematosus, rheumatoid arthritis, asthma, inflammatory bowel disease, 

ulcerative colitis, and type 1 diabetes mellitus), and skin diseases (cutaneous inflammation, 

acne, psoriasis, basal cell carcinoma, cutaneous squamous cell carcinoma, alopecia areata, 

atopic dermatitis, and rosacea) were retrieved and defined as index SNVs. The SNV list 

was then expanded by adding SNVs within a linkage disequilibrium (LD) block of r2 > 

0.8 to the GWAS SNVs. The LD information was obtained from Haploreg v458 (http://

archive.broadinstitute.org/mammals/haploreg/data/). The SNVs located in exon or UTR 

regions were removed, to yield 254960 SNVs for this analysis. To perform the enrichment, 

regions of cell type-specific HiChIP anchors overlapped with ATAC peaks were defined 

as cell type-specific regulatory regions. bwa102 was used to preformat sam files. “bedtools 

shuffle” was used to create 1000 permutations of the cell type specific regulatory regions, 

excluding blacklisted regions on ENCODE. The number of SNVs that fall in the permuted 

regions were recorded and used to construct a null distribution. Empirical p values were 

calculated by counting the times where the number of SNVs in the original regulatory 

regions were less than the number of SNVs in a given permutation, then dividing by 1000. 

5% FDR cutoff was used as the significance threshold (Benjamin-Hochberg method). Fold 

changes were determined by finding the ratio of the number of SNVs in the original 

regulatory regions to the mean of the number of SNVs in the permuted data. Motifs 

present at SNP loci with the reference and alternate allele were determined using R package 

motifBreakR.109

MPRA analysis

RNA/DNA read analysis: DNA plasmid library and MPRA library reads were sequenced 

and analyzed using the same approach. Fastq read files from MPRA sequencing were 

pre-processed as such: reads were trimmed to only include the 20 bp barcode section in 
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the correct orientation. The UMI from index 2 was processed and joined to the barcode. 

The barcode + UMI sequences were collapsed to remove PCR duplicates. The 20 bp 

barcode sequences were saved, and aligned to the MPRA library using bowtie2.110 Counts 

for each barcode were determined and summed across all sequencing lanes performed 

through Novogene. RNA counts were normalized to plasmid fractions as done previously.20 

Briefly, MPRA counts were multiplied by the plasmid fractions, converted to fractions, then 

multiplied by the total count across the MPRA library for the sample. These processed 

counts were then run through the regularized log transformation (rlog) from DESeq2113 to 

get a normalized MPRA signal for each barcode in each cell type. Normalized counts were 

used in further downstream analysis and visualization.

DMC GO terms: GO biological process enrichment for the DMCs was performed by 

extracting target genes for each DMC in the corresponding cell type-specific CRMs. GO 

analysis was performed using ClusterProfiler108 and a hypergeometric test p value cut off of 

p < 0.05 was used. Panels were plotted using R ggplot2 and pheatmap packages.

DMC class determination: For each DMC genomic instance in the corresponding cell type, 

a Mann-Whitney U test was used, with an fdr-corrected significance threshold of 0.05, to 

determine the significance for the following DMC mutation configurations:

1. A_B > scrA_scrB.

2. scrA_B > scrA_scrB.

3. A_scrB > scrA_scrB.

Each DMC instance was graded as synergy, redundancy, buffer, or driver motif A or driver 

motif B (the driver motif A and B were merged into a single category in subsequent 

analysis), using the following rules:

• Synergy (AND) = (A_B > scrA_scrB) AND NOT(scrA_B > scrA_scrB) AND 

NOT(A_scrB > scrA_scrB)

• Redundancy (OR) = (A_B > scrA_scrB) AND (scrA_B > scrA_scrB) AND 

(A_scrB > scrA_scrB)

• Buffer (XOR) = NOT(A_B > scrA_scrB) AND (scrA_B > scrA_scrB) AND 

(A_scrB > scrA_scrB)

• Single Driver A = (A_B > scrA_scrB) AND NOT(scrA_B > scrA_scrB) AND 

(A_scrB > scrA_scrB)

• Single Driver B = (A_B > scrA_scrB) AND (scrA_B > scrA_scrB) AND 

NOT(A_scrB > scrA_scrB)

If a DMC instance failed to meet any of the above classifications, then it was labeled as 

“other.” Simulations were then run for a given category from a particular cell type. First, 

we randomly assigned the actual MPRA value to a DMC configuration (A_B, scrA_B, 

A_scrB, or scrA_scrB). Then we classified each simulated DMC interaction into the defined 

groupings (Synergy, Redundancy, Buffer, Single Driver, or No deterministic relationship 

(‘other’). Pie charts of simulations versus observed DMC genomic instance categories 
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were plotted using R. The mode class for each DMC across all instances was used to 

determine DMC class determination, where ties were broken by manual inspection to ensure 

subthreshold significant trends were observed. See Table S5 for the annotated consensus 

classification for the 239 DMCs tested via MPRA.

DMC cancer versus normal synergy score—Normalized MPRA RNA counts for 

each genomic instance from corresponding cancer versus normal cell types were used to 

calculate a synergy score difference. First, synergy scores for cancer (Sc) and normal (Sn) 

cell types were determined by subtracting the MPRA signal from the configuration of 

the native genomic sequence (A_B) to the motif configuration where both motifs were 

scrambled (scrA_scrB). The difference between normal cell type and cancer synergy scores 

(Sdiff = Sc - Sn) was calculated and represents the putative modulation of DMC activity due 

to disease. A one-sided Wilcoxon signed rank test (p < 0.10) was used to determine if there 

is a significant difference in sign and magnitude of Sdiff for cancer versus normal DMCs.

DMC cell type and state-specificity determination—Normalized MPRA RNA 

counts for each genomic instance, averaged across the 10 respective barcodes, was 

calculated for each cell type in the MPRA assay (colon, MC, KC, GM12878, A431, and 

COLO). These MPRA signals for each genomic instance were used to calculate a cell 

type-specificity score. The MPRA signal from the cell type from which the DMC was 

originally identified was compared against the mean MPRA signal from the other five 

cell types via a one-sided Wilcoxon signed rank test (p < 0.10) to determine if there is a 

significant difference in MPRA signal between cell types.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Profiling of 15 diploid human cell types via RNA-seq, ATAC-seq, and 

H3K27ac HiChIP

• Identification of 838 cell-type-specific, recurrent heterotypic DNA motif 

combinations

• Functional validation of regulatory DMCs via massively parallel reporter 

assays

• Cancer-type-specific DMCs are linked to neoplasia-enabling processes
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Figure 1. An integrated multi-omic resource in 15 diploid human cell types
(A) Workflow for cell-type-specific ATAC peaks, HiChIP loops, and target gene transcripts 

(PLTs) across 15 diploid human cell types.

(B) Schematic of transcription factor (TF) footprinting analysis within PLTs to identify 

inputs for a random-forest model to derive cell type CRMs. Co-enrichment analysis within 

CRMs extracted DMCs.
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(C) Native genomic instances of putative intra-enhancer and intra-promoter DMCs were 

tested via MPRA. Combinatorial mutations were used to assess cooperativity of DMCs in a 

lentiviral setup.

(D) Schematic of MPRA-validated functional categories of DMC interactions.

(E) Schematic bar plot comparing synergistic DMC MPRA activity of normal and cancer-

derived DMCs in corresponding cell types.
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Figure 2. Epigenomic landscape reveals distinct molecular subtypes of human cells
(A) RNA transcripts (rows) versus cell types (columns) of differential gene expression (log2 

fold change >0.1, t test, FDR-adjusted p value <0.05).

(B) Heatmap of accessible peaks (rows) versus cell types (columns) indicating differential 

ATAC peaks. ATAC peaks with the highest inter-group SD shown.

(C) Heatmap of H3K27ac HiChIP loops (rows) versus cell types (columns) indicating 

differential loops. Differential loops with the highest inter-group SD shown.

(D) Hierarchical clustering of differential H3K27ac HiChIP loops.
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(E) Bar plot depicting cell-type-specific 3D chromatin architecture and overlap between the 

15 different cell types.

(F) Bar plot depicting distribution of P-P, E-P, and E-E interactions by cell type.

(G) Bar plot depicting putative enhancers and target genes identified in different E-P 

interaction types.

(H) Regulatory loop module functional enrichment using GO biological processes. EC1 

and EC2 are grouped together. Dot color corresponds to the p value of the GO enrichment 

(hypergeometric test).

(I) Virtual 4C visualization at 5-kb resolution and RNA and ATAC-seq tracks centered at the 

ZNF750 TSS. > and < denote gene orientation on plus and minus DNA strand respectively.

(J) Virtual 4C visualization for IL10.

(K) Virtual 4C visualization for TYRP1. Related to Figures S1, S2, and Table S2.
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Figure 3. TF motif enrichment via footprinting cell-type CRMs
(A) Confusion matrix depicting the positive predictive value (PPV) for the cell type 

prediction model.

(B) Scatterplot showing auROC versus percentage of CRMs learned in the random-forest-

based cell-type prediction model. Lines are fitted to the points using logistic regression.

(C) Virtual 4C visualization along with the POU2F2 position-weight matrix (PWM), TF 

footprint sequence, and surrounding ATAC peak centered at FLG.
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(D) Virtual 4C visualization along with the POU2F2 PWM, TF footprint sequence, and 

surrounding ATAC peak centered at UGDH.

(E) Heatmap (left) depicts normalized log2(TPM) values for nominated TFs corresponding 

to motifs derived from TF footprinting analysis (rows) in the 15 cell types (columns). TFs 

are ordered by expression similarity. Dot plot (right) depicts GO enrichment for target genes 

(x axis) proximal or distally looped to TF footprint motifs in cell-type-specific CRMs (y 

axis). Dots are colored by cell type. Size corresponds to the −log10(p value) of the GO 

enrichment (hypergeometric test). Related to Figure S3.
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Figure 4. Co-enrichment analysis reveals DMCs
(A) Co-enrichment dot plot of TF motifs within KC CRMs depicting putative cooperativity 

(Fisher’s exact, Bonferroni-corrected p < 0.05). Dots are colored by −log10(p value). Size 

corresponds to normalized number of shared genes. Red outlined dots indicate known 

cooperative KC TFs.

(B) Bar plot depicting the distribution of DMCs based on CRM epigenomic interactions for 

MPRA-tested KC DMCs.

(C) Bar plot of number of cell-type-specific DMCs in the 15 cell types.
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(D) Genomic instance of intra-promoter KC DMC HMGA1+KLF5 at the SCNN1A TSS.

(E) Genomic instance of putative intra-enhancer KC DMC HMGA1+KLF5 looping to 

PPARD. RC, reverse complement.

(F) Genomic instance of putative inter-enhancer-promoter KC DMC HMGA1+KLF5 

proximal to FNBP1L. Related to Figure S4 and Table S4.
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Figure 5. MPRAs validate TF DMCs in human cells
(A) Schematic representation of MPRA design and validated functional categories of DMC 

interactions.

(B) Box-and-whisker plot showing the normalized log2 MPRA signal for the different 

motifA-motifB combinations in the synergy DMC MITF + ZNF589 in MC. Each point on 

the plot represents the signal value in one genomic instance in one replicate. *p < 0.05 

(Mann-Whitney U test).

(C) Pie chart depicting percentage of DMCs by functional category.
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(D) Top left: heatmap shows log2(TPM + 1) values for TFs involved in the functional 

synergistic DMC combinatorial motifs (columns) by cell type (rows). Left: combinatorial 

TFs of DMCs (rows). Motifs (columns) that make up the DMC are circles connected by 

a black line. Circles are colored based on DMC cell type. Right: dot plot shows the GO 

terms enriched for target genes (x axis) that utilize the DMC (y axis). Dots are colored by 

log2(target gene count). Dot sizes are the −log10(p value) of the GO enrichment. GO terms 

are colored by cell-type biological processes (hypergeometric test). Related to Figure S5 and 

Table S5.
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Figure 6. MPRAs identify regulatory DMCs in cancer
(A) Upset plot depicting number of DMCs determined from MM and cSCC cell lines and 

the size of their overlapping sets.

(B) Pie chart depicting percentage of functional DMC categories by MPRA in cSCC and 

MM cells.

(C) Bar plot showing the synergy score difference for KC- and cSCC-identified DMCs; p 

value based on a rank-sum Wilcoxon test.
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(D) Left to right: panel colored by cell type/state; panel colored by functional DMC 

category; heatmap panel of −log10(p value) cell-type-/state-specificity score (STAR 

Methods); panel colored by cell-type-/state-specific expression (Wilcoxon rank-sum test p 

value <0.10).

(E) Top left: heatmap shows log2(TPM + 1) values for TFs in synergistic DMCs (columns) 

by normal KC- and cSCC-specific cell state (rows). Left: combinatorial TFs of the DMC 

(rows). Motifs that make up the DMC (columns) are circles with a black line connecting 

them. Circles are colored based on DMC cell state. Right: dot plot shows GO terms enriched 

for target genes (x axis) that utilize the DMC (y axis). Dots are colored by log2(target gene 

count). Dot sizes are the −log10(p value) of the GO enrichment. GO terms are colored by 

cell state biological processes.

(F) Genomic instance of putative inter-enhancer-promoter cSCC-specific synergistic DMC 

SP1+ARNT at ADAP1. Related to Figure S6 and Table S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-H3K27ac Abcam Cat#Ab4729; RRID:AB_2118291

Bacterial and virus strains

Stellar Competent Cells Takara Cat#636766

Biological samples

Primary Keratinocytes Stanford University School of 
Medicine

De-identified

Primary Melanocytes Stanford University School of 
Medicine

De-identified

Human Bronchial/Tracheal Epithelial Cells 
(Airway)

ATCC Cat#PCS-300–010

Human Astrocytes (astrocytes) Lonza Cat#N7805–100

Primary Human Bladder Epithelial Cells (Bladder) ATCC Cat#PCS-420–010

Human Primary Colonic Epithelial Cells (Colon) CellBiologics Cat#H-6047

Human Primary Esophageal Epithelial Cells 
(Esophageal)

CellBiologics Cat#H-6046

Human Mammary Epithelial Cells (HMECs) Lonza Cat#CC-2551

Human Primary Ovarian Epithelial Cells (Ovarian) CellBiologics Cat#H-6036

Human Primary Pancreatic Epithelial Cells 
(Pancreas)

CellBiologics Cat#H-6037

Human Prostate Epithelial Cells (Prostate) Lonza Cat#CC-2555

Human Primary Proximal Tubular Epithelial Cells 
(Renal)

CellBiologics Cat#H-6015

Human Primary Thyroid Epithelial Cells (Thyroid) CellBiologics Cat#H-6040

Endometrial Epithelial Cells (Uterine) Lifeline Cell Technology Cat#FC-0078

Chemicals, peptides, and recombinant proteins

PrimeSTAR® Max DNA Polymerase Takara Cat#R045B

EcoRI-HF NEB Cat#R3101L

BamHI-HF NEB Cat#R3136L

XhoI NEB Cat#R0146L

NheI-HF NEB Cat#R3131L

rSAP: shrimp alkaline phosphatase NEB Cat#M0371L

T4 DNA ligase NEB Cat#M0202L

SuperScript™ IV Reverse Transcriptase Thermo Fisher Cat#18090200

Thermolabile Exonuclease I NEB Cat#M0568L

Lenti-X Concentrator Takara Cat#631231

Turbo DNase Thermo Fisher Cat#AM2239

Optimem Thermo Fisher Cat#31985062

Lipofectamine 3000 Thermo Fisher Cat#L3000015
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REAGENT or RESOURCE SOURCE IDENTIFIER

SYBR™ Green I Nucleic Acid Gel Stain, 10,000X 
concentrate in DMSO

Thermo Fisher Cat#S7567

Polybrene Sigma-Aldrich Cat#H9268–5G

Keratinocyte-SFM Thermo Fisher Cat#17005042

Medium 154 Thermo Fisher Cat#M-154–500

HKGS Supplement Thermo Fisher Cat#s-002–5

Medium 254 Thermo Fisher Cat#M-254–500

HMGS Supplement Thermo Fisher Cat#s-002–5

Airway Epithelial Cell Basal Medium ATCC Cat#PCS-300–030

Airway Epithelial Cell Basal Medium supplement ATCC Cat#PCS-300–040

Gibco Astrocyte Medium ThermoFisher Cat#A1261301

CComplete Human Epithelial Cell Medium 
supplemented with Human Epithelial Cell Medium 
Supplement Kit

CellBiologics Cat#H6621

MEGM Mammary Epithelial Cell Growth Medium 
BulletKit

Lonza Cat#CC-3150

Prostate Epithelial Basal Medium Lonza Cat#CC-3165

Renal Epithelial Cell Basal Medium ATCC Cat#PCS-400–030

Renal Epithelial Cell Growth Kit ATCC Cat#PCS-400–040

ReproLife™ Reproductive Medium Complete Kit Lifeline Cell Technology Cat#LL-0068

RPMI-1640 A1049101 Cat#A1049101

L-glutamine Sigma-Aldrich Cat#G8540–25G

DMEM F:12 Thermo Fisher Cat#11995–065

Digitonin Promega Cat#G9441

MboI NEB Cat#R0147

Large Klenow Fragment NEB Cat#M0210

Proteinase K Thermo Fisher Cat#AM2526

BlueJuice loading buffer Thermo Fisher Cat#10816015

Critical commercial assays

Miseq Reagent kit v3 (150-cycle) Illumina Cat# MS-102–3001

Lexogen Quant-seq 3′ mRNA-seq Library Prep Kit Lexogen Cat#015.96

BioAnalyzer High Sensitivity DNA Kit Agilent Cat#5067–4626

Zymo DNA Clean and Concentrator-5 Kit Zymo Cat#D4014

Turbo DNA-free kit Thermo Fisher Cat#AM1907

Dynabeads mRNA direct kit Thermo Fisher Cat#61012

Kapa Library Quantification Kit Roche Cat#KK4854

NucleoSpin Gel and PCR Clean-Up Takara Cat#740609.25

Deposited data

RNA-seq This paper GEO: GSE186947

ATAC-seq This paper GEO: GSE188398

HiChIP This paper GEO: GSE188401

MPRA This paper GEO: GSE188403
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REAGENT or RESOURCE SOURCE IDENTIFIER

HOCOMOCO PWMs v11 (Kulakovskiy et al., 2018)63 #0000FF; https://hocomoco11.autosome.ru/

Housekeeping genes (Hsiao et al., 2001)45 #0000FF; https://www.gsea-msigdb.org/gsea/msigdb/
cards/HSIAO_HOUSEKEEPING_GENES

Essential genes (Wang et al., 2015)46 #0000FF; https://doi.org/10.1126/science.aac7041

Haploreg v4 (Ward and Kellis, 2016)97 #0000FF; https://pubs.broadinstitute.org/mammals/
haploreg/haploreg.php

GWAS Catalog (Buniello et al., 2019)57 #1155CC; https://www.ebi.ac.uk/gwas/home

Experimental models: Cell lines

Human: GM12878 Coriel Cat#GM12878

Human: A-431 ATCC Cat#CRL-1555; RRID:CVCL_0037

Human: CAL27 ATCC Cat#CRL-2095; RRID:CVCL_1107

Human: SCC-13 Harvard Human Skin Disease 
Resource Center, James 
Rheinwald Lab

RRID:CVCL_4029

Human: WM-266–4 human malignant melanoma 
cell line

ATCC Cat#CRL-1676

Human: COLO-823 human malignant melanoma 
cell line

ATCC Cat#CRL-1974

Human: SK-MEL-5 human malignant melanoma 
cell line

ATCC Cat#HTB-70

Human: HEK293T Lenti-X Takara Cat#632180

Oligonucleotides

Primers for RNAseq: Please see Table S1 This paper N/A

Primers for ATAC-seq: Please see Table S1 This paper N/A

Primers for HiChIP: Please see Table S1 This paper N/A

Primers for MPRA: Please see Table S1 This paper N/A

Recombinant DNA

pGreenFire1-mCMV (EF1α-puro) System Biosciences Cat# TR010PA-P

pD2-miniluc This paper AddGene:174105

pCMV R d8.91 (Stewart et al., 2003)98 AddGene:2221

pUC-MDG VSVG EPFL Laboratory of Virology 
and Genetics, Didier Trono Lab

AddGene:12259

Software and algorithms

CRM code This paper GitHub: https://github.com/mguo123/pan_omics; 
Zenodo: https://zenodo.org/record/6981951

Samtools (Li et al., 2009)99 http://www.htslib.org/; RRID:SCR_002105

Bedtools (Quinlan and Hall, 2010)100 http://bedtools.readthedocs.io/en/latest/; 
RRID:SCR_006646

Pybedtools (Dale et al., 2011)101 #72C02C; https://daler.github.io/pybedtools/#; 
RRID:SCR_021018

BWA (Li and Durbin, 2009)102 https://sourceforge.net/projects/bio-bwa/

Bowtie2 (Langmead and Salzberg, 
2012)103

http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml; RRID:SCR_016368
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REAGENT or RESOURCE SOURCE IDENTIFIER

Picard Tools #1155CC; http://
broadinstitute.github.io/picard/

RRID:SCR_006525

ENCODE ATAC pipeline (2008)33 https://github.com/ENCODE-DCC/atac-seq-pipeline

ChIPSeeker (Yu et al., 2015)104 https://bioconductor.org/packages/release/bioc/html/
ChIPseeker.html

ChIPpeakAnno (Zhu et al., 2010)98 https://bioconductor.org/packages/release/bioc/html/
ChIPpeakAnno.html

Rsubread (Liao et al., 2019)105 https://bioconductor.org/packages/release/bioc/html/
Rsubread.html

GRanges (Lawrence et al., 2013)106 https://bioconductor.org/packages/release/bioc/html/
GenomicRanges.html

BiomaRt (Durinck et al., 2009)107 https://bioconductor.org/packages/3.8/bioc/html/
biomaRt.html

ClusterProfiler (Wu et al., 2021)108 https://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html

MotifBreakR (Coetzee et al., 2015)109 https://bioconductor.org/packages/release/bioc/html/
motifbreakR.html

RSEM (Li and Dewey, 2011)110 #0000FF; https://deweylab.github.io/RSEM/; 
RRID:SCR_013027

STAR (Dobin et al., 2013)111 https://github.com/alexdobin/STAR

Limma (Ritchie et al., 2015)112 #0000FF; https://bioconductor.org/packages/release/
bioc/html/limma.html; RRID:SCR_010943

DEseq2 (Love et al., 2014)113 #0000FF; https://bioconductor.org/packages/release/
bioc/html/DESeq2.html; RRID:SCR_015687

MOODs (Korhonen et al., 2009)114 https://pypi.org/project/MOODS-python/

MACS2 (Zhang et al., 2008)115 https://github.com/taoliu/MACS; RRID:SCR_013291

HINT-ATAC (Li et al., 2019)62 #0000FF; http://www.regulatory-genomics.org/hint/
introduction/

HiC-Pro (Servant et al., 2015)116 #0000FF; https://github.com/nservant/HiC-Pro; 
RRID:SCR_017643

Hichipper (Lareau and Aryee, 2018a)117 #0000FF; https://github.com/aryeelab/hichipper

FitHiChIP (Bhattacharyya et al., 2019)118 #0000FF; https://github.com/ay-lab/FitHiChIP

Diffloop (Lareau and Aryee, 2018b)119 #0000FF; http://bioconductor.org/packages/release/
bioc/html/diffloop.html

Pandas #0000FF; https://
pandas.pydata.org/

RRID:SCR_018214

Numpy #0000FF; http://
www.numpy.org/

RRID:SCR_008633

Scipy #0000FF; https://
www.scipy.org/

RRID:SCR_008058

scikit-learn #0000FF; http://scikit-
learn.org/

RRID:SCR_002577

Statsmodel #0000FF; http://
www.statsmodels.org/

RRID:SCR_016074

Matplotlib #0000FF; http://
matplotlib.sourceforge.net/

RRID:SCR_008624

Seaborn #0000FF; https://
seaborn.pydata.org/

RRID:SCR_018132

ggplot2 #0000FF; 
https://cran.r-project.org/web/
packages/ggplot2/index.html

RRID:SCR_014601
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REAGENT or RESOURCE SOURCE IDENTIFIER

RColorBrewer #0000FF; https://cran.r-
project.org/web/packages/
RColorBrewer/index.html

RRID:SCR_016697

Pheatmap #0000FF; https://
www.rdocumentation.org/
packages/pheatmap/
versions/0.2/topics/pheatmap

RRID:SCR_016418

Viridis #0000FF; 
https://cran.r-project.org/web/
packages/viridis/vignettes/
intro-to-viridis.html

RRID:SCR_016696
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