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Abstract

Background and Aims: This systematic review aimed to evaluating the effectiveness

of machine learning (ML) algorithms for the prediction and diagnosis of meningitis.

Methods: On November 12, 2022, a systematic review was carried out using a

keyword search in the reliable scientific databases PubMed, EMBASE, Scopus, and

Web of Science. The recommendations of Preferred Reporting for Systematic

Reviews and Meta‐Analyses (PRISMA) were adhered to. Studies conducted in

English that employed ML to predict and identify meningitis were deemed to match

the inclusion criteria. The eligibility requirements were used to independently review

the titles and abstracts. The whole text was then obtained and independently

reviewed in accordance with the eligibility requirements.

Results: After all the research matched the inclusion criteria, a total of 16 studies

were added to the systematic review. Studies on the application of ML algorithms in

the three categories of disease diagnosis ability (8.16) and disease prediction ability

(8.16) (including cases related to identifying patients (50%), risk of death in patients

(25%), the consequences of the disease in childhood (12.5%), and its etiology

[12.5%]) were placed. Among the ML algorithms used in this study, logistic

regression (LR) (4.16, 25%) and multiple logistic regression (MLR) (4.16, 25%) were

the most used. All the included studies indicated improvements in the processes of

diagnosis, prediction, and disease outbreak with the help of ML algorithms.

Conclusion: The results of the study showed that in all included studies, ML

algorithms were an effective approach to facilitate diagnosis, predict consequences

for risk classification, and improve resource utilization by predicting the volume of

patients or services as well as discovering risk factors. The role of ML algorithms in

improving disease diagnosis was more significant than disease prediction and

prevalence. Meanwhile, the use of combined methods can optimize differential

diagnoses and facilitate the decision‐making process for healthcare providers.
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1 | INTRODUCTION

Meninges are the membranes that surround the brain and spinal cord.

Meningitis is an inflammatory disease that affects these membranes. It

can be brought on by bacteria, mycobacteria, viruses, fungus, parasites,

autoimmune, neoplastic, or drug‐related reactions, as well as by a variety

of infectious agents.1 Meningitis is mostly brought on by bacterial, viral,

and fungal diseases, according to earlier research.2,3 However, it's

primarily brought on by bacterial and viral illnesses that spread to the

cerebrospinal fluid from other regions of the body. Even in areas with

plenty of resources, meningitis reduction represents a worldwide health

issue, and a clinical emergency.4 Asian meningococcal disease outbreaks

have been widespread over the past 30 years, according to studies from

the World Health Organization.5,6 A common and pandemic illness,

meningococcal infection poses a serious threat to the entire world. 2.51

million new cases of meningitis were anticipated to have occurred

globally in 2019 due to all causes, with an incidence rate of 32.4 cases

per 100,000 people worldwide.7 It is critical to diagnose the condition as

soon as possible, particularly to distinguish between the two primary

types of meningitis—bacterial and viral—in particular.8 Failure to provide

appropriate antibiotic treatment for bacterial meningitis can lead to

severe and permanent consequences, invasive disease, and even death.9

Overtreating viral meningitis instances or prescribing antibiotics

without a warrant can result in alterations to the human microbiome,

antimicrobial resistance, higher healthcare expenditures, and a great

deal of stress for the patients.10 Furthermore, the most severe type of

tuberculosis that results in meningeal inflammation is called tubercu-

lous meningitis (TBM). Nonetheless, TBM diagnosis is quite difficult.

The biochemical and pathological features of cerebrospinal fluid (CSF)

and clinical manifestations of TBM are generally comparable to those

of numerous other CNS infections, particularly partially treated

purulent meningitis (PM) and noninfectious inflammatory diseases of

the central nervous system (CNS).11,12 Due to their comparable clinical

symptoms, TBM and viral meningitis (VM) may be challenging to

distinguish from one another. Because of their deadly nature, prompt,

accurate diagnosis, and appropriate treatment are imperative. If the

patient has acute bacterial meningitis, delaying the start of proper

treatment increases the risk of morbidity and fatality.13 In this case,

polymerase chain reaction (PCR) analysis can be used as a diagnostic

tool, although it is time‐consuming because it requires a direct CSF

culture. It should be highlighted that not every clinic, particularly in less

developed nations, has the necessary tools and competencies to

conduct PCR analysis in CSF.14

Consequently, to facilitate decision‐making and reduce avoidable

hospital admissions and extended antibiotic usage, highly accurate

clinical decision support systems (CDSS) are required. The use of

digital technologies is not a new issue in the management of diseases

today.15–23 Over the past six decades, artificial intelligence (AI) has

been widely used in many areas of medical research and clinical

practice.24,25 These days, AI methods like artificial neural networks

(ANN) are being used by healthcare organizations to enhance data

analysis, clinical diagnosis, cancer and other illness prediction, image

analysis and interpretation, medication creation, and patient care.

They consume less energy.26,27 AI methods have been applied in the

healthcare industry on a variety of levels, from creating diagnostic

and prognostic models to forecasting the course of disease

transmission.28–30 A branch of artificial intelligence called machine

learning (ML) is concerned with developing algorithms that let

computers create complicated connection or pattern models from

empirical data without the need for explicit programming.31 ML is

being studied and used in a variety of health informatics applications

as a way to help clinical care providers improve the efficiency and

quality of medical care.32–34 ML can serve multiple purposes,

including facilitating diagnosis in fields such as pathology35,36 and

radiology 37 to predict outcomes, risk stratification, and improving

the use of resources by predicting the volume of patients or

services.38 Clinical infection research has seen a surge in the use of

new supervised ML algorithms in recent years.39 Large and

complicated data sets can be analyzed by ML algorithms, which can

then be used to spot patterns and trends that might be hard for

people to see. In big data sets, algorithms can efficiently and

accurately construct complicated nonlinear models that relate

independent traits to their dependent counterparts.40 Supervised

and unsupervised learning approaches include the two main

categories into which most ML algorithms fall.41 The subsequent

parts serve as an introduction to both. Techniques known as

“supervised ML” include training a model using a variety of inputs

(or features) that are connected to a predetermined result. When

applied to fresh data, the algorithm will be able to predict outcomes

when it has been properly trained. Models trained by supervised

learning can produce discrete predictions (like positive or negative,

benign, or cancerous) or continuous predictions (like a score ranging

from 0 to 100). Unsupervised learning differs from supervised

learning in that there is no predetermined result. Algorithms search

for patterns in unsupervised learning without any user input.

Therefore, unsupervised approaches are exploratory and are used

to identify patterns or clusters that are not well defined inside data

sets. Dimension reduction approaches42 are another term for these

techniques, which include principal component analysis, latent

Dirichlet analysis, and t‐Distributed Stochastic Neighbour Embedding

(t‐SNE). Numerous research have employed ML approaches to

forecast infectious outbreaks in recent years, with encouraging

outcomes. Previous research findings have demonstrated that ML

algorithms may predict infectious illness onset and spread with an

accuracy that is on par with or better than that of classic statistical

methods.43 A thorough summary of meningitis diagnosis methods

must be given due to the multitude of new procedures that are being

developed. To the best of our knowledge, this is the first review that

looks at the body of research on meningitis diagnosis and prognosis.

In addition, early and accurate diagnosis of meningitis plays an

important role in preventing possible future outbreaks. Many

previous works showed that ML approaches have been adopted by

many researchers, but there has been no review to examine them in

depth. Therefore, the purpose of this systematic review was to

investigate ML algorithms for predicting and diagnosing different

types of meningitis diseases.
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2 | METHODS

2.1 | Study design

The Preferred Reporting Items for Systematic Reviews and Meta‐

Analyses (PRISMA) 2020 criteria44,45 were followed in conducting this

systematic review to report the evidence from the studies that were

included in it. On November 12, 2022, a search of the PubMed, Embase,

Scopus, and Web of Science databases was done for literature. The

databases were searched using MeSH and Emtree terms and phrases.

2.2 | Eligibility criteria

Studies that satisfied the following inclusion criteria were added to the

systematic review: (1) The inclusion criteria for this study were English‐

language research that employed ML to predict and diagnose meningitis

illnesses. However, the following exclusion criteria applied: (1) the study's

full text was not available in English; (2) publications other than journal

articles (books, reviews, and letters); and (3) there was no connection

between the study's goal and the title, abstract, or full text of the articles.

2.3 | Data extraction and synthesis

For this review, every article from the literature search was obtained,

and duplicate articles were excluded. Titles and abstracts were

independently screened in accordance with qualifying requirements.

There were no articles in the review that didn't fit the requirements

to be included. After that, the entire text was obtained and assessed

by two distinct researchers in compliance with the qualifying

requirements. Disagreements were resolved by discussions amongst

researchers. The same checklist was utilized for data extraction. The

data elements on this checklist were the study's title, publication

year, nation, number of participants, kind of ML algorithms employed,

effectiveness and performance of ML algorithms, type of meningitis

the study was targeting, study objectives, and major conclusions.

3 | RESULTS

3.1 | Study selection

Figure 1 illustrates the procedure for finding and choosing research

based on the PRISMA chart. Two thousand nine hundred and ninety

relevant documents in all were chosen for examination. Two

thousand four hundred and sixty‐two papers were collected after

the articles were reviewed and 528 duplicate studies were removed.

The publications were then screened using their titles and abstracts.

Upon completion of the review, 2437 articles that had no bearing on

the goal of the investigation were eliminated. Following the full text

evaluation of 25 publications, 9 of the original articles were

eliminated, leaving 16 original articles for the study. Follow the

results of search strategy in Table 1.

F IGURE 1 Flowchart of screening and
selection of studies.
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3.2 | Study characteristics

Tables 2 and 3 provide information on the features of every study

that was included. Out of the 16 studies that were included, 5 studies

(31%) in China,46–50 3 studies in Greece (19%),51–53 2 studies in the

Republic of Korea (12%),54,55 and other studies in Kazakhstan (6%),56

Iran (6%),57 Russia (6%),58 Ireland (6%),59 Bosnia and Herzegovina

(6%),60 and Morocco (%)61 have been done. Overall, the included

studies included 39,462 participants.

The ML algorithms used in the studies include logistic regression

(LR) (25%),46,48,51,54 multiple logistic regression (MLR) (25%),50,52,53,61

support vector machine (SVM) (19%),48,54,56 artificial neural network

(ANN) (19%),47,54,60 random forest (RF) (19%),52,54,56 decision tree

(DT) (12%),57,58 nave‐Bayes (NB) (12%),52,54 fast‐and‐frugal trees

(FFTs) algorithm (6%),56 and unsupervised ML approach (6%).59

The target meningitis diseases in the studies included bacterial

meningitis (BM) (37%) 51–53,56,57,61 or enteroviral meningitis (EVM)

(6%),56 tuberculous meningitis (TBM) (25%),48,54,55,61 viral meningitis

(VM) (19%),52,54,55 Neisseria meningitides (6%),59 lumbar drainage‐

related meningitis (LDRM) (6%),47 healthcare‐associated ventriculitis

and meningitis (HAVM) (6%),58 cryptococcal meningitis (CM) (6%),50

PM (6%),46 and pediatric purulent meningitis (PPM) (6%).49

3.3 | The effects of using ML algorithms in the
diagnosis of meningitis

According to Table 3, half of the included studies examined the

impact of using ML algorithms on the diagnosis of meningitis

diseases.48,49,52,54–56,60,61

In their study, Eho and colleagues chose a feedforward ANN to

develop an expert system. Two ML algorithms were used to develop

this ANN. A Levenberg–Marquardt training algorithm for pattern

recognition and a particle swarm optimization (PSO) algorithm he

reported that the constructed artificial neural network (ANN)

demonstrated the ability to accurately identify and distribute samples

from the sick people's class with a sensitivity of 13.98%, and the class

of healthy people's samples could be correctly identified and

distributed with a specificity of 85.0%. The ANN's total accuracy

was 96.67%.60 In his research, Mentis also employed three ML

algorithms (MLR, RF, and NB) to distinguish between bacterial and

viral meningitis. ML algorithm performance was assessed using the

cross‐validation approach. For VM and 78% for BM, the ideal

meningitis‐type prediction was over 95%.52 In a different study,

Jeong employed ML modules to differentiate betweenTBM and VM.

The ANN receiver operating characteristics for matrix completion

have the largest area under the curve (AUC) of any ML method (0.85;

95% CI 0.79–0.89). In comparison to all residents (AUC range

0.67–0.72, p 0.001) and infectious disease experts (AUC 0.76;

p = 0.03), the ANN model's AUC was significantly higher.54 Ma and

colleagues also noted in their study that radiomics, as a quantitative

analysis method, can use automatic data description algorithms to

transform region of interest (ROI) image data into high‐resolution and

discoverable feature space data, enabling a more thorough review

and utilization of the data. He concluded that the T2‐weighted

radiomic signature (T2WI) developed using the SVM classifier shows

special diagnostic significance for TBM that may not be detected by

an unaided eye in conventional MR images. Therefore, the automated

segmentation of base reservoirs and the developed radiomic

signature may provide complementary data to help diagnose TBM

in a fully automated manner before the appearance of lesions with

visible features.48 Also, Babenk and his colleagues showed the ability

to determine procalcitonin and C‐reactive protein (CRP) with cut‐off

values for distinguishing between BM and EVM in children using the

fast and cost‐effective decision tree (FFTree) approach. Thus, if

procalcitonin >0.16 ng/mL defines BM and if CRP > 31.2 mg/L

defines EVM, this study showed 100% sensitivity, 96% specificity,

and 98% accuracy in differentiating all BM cases.56 The Dendane

study used a classification and regression tree (CART) and machine

learning (MLR) to model the independent predictive aspects of TBM

to generate a diagnostic rule. The regression tree's and the

classification's sensitivity were 87% and 88%, respectively, for scores

lower than 7. The corresponding specificities were 96% and 95%. The

study's findings indicated that the clinical and laboratory character-

istics found here could aid a doctor in making an exploratory

diagnosis of TBM.61 In addition, Sang‐Ah Lee devised a new scoring

system using the results of MLR analysis and recent research data.

These points were given to each factor by considering the odds ratio

scores and achieving the highest receiver operating characteristic

(ROC) value for predicting TBM; he concluded that this new

diagnostic system can be used for quick and easy differential

diagnosis.55 Also, in a study aimed at analyzing the diagnostic value

of magnetic resonance imaging (MRI) based on ICA in children with

purulent meningitis (PM), Dafei Wei and colleagues found that it is

more accurate and clearer than traditional image processing and can

provide a more accurate auxiliary basis for detecting the details of the

lesion. Additionally, it demonstrated increased clinical utility in the

formulation of a comprehensive PPM diagnosis and treatment

strategy.49

3.4 | Effects of using ML algorithms in predicting
meningitis disease

Of the 16 included studies, 8 studies of ML algorithms regarding the

ability to predict disease (including cases related to the discovery of

risk factors and identification of high‐risk patients,46,47,57–59 the risk

of death in patients,50 the consequences of disease in childhood,53

and etiology51) were used. In a study conducted by Cheng and

colleagues, the aim was to create a predictive model for purulent

meningitis in preterm infants to help doctors develop new diagnostic

and treatment strategies. The prediction model was developed using

LR and regression analyses of the least absolute shrinkage and

selection operator (LASSO). Premature babies' risk of meningitis

might be predicted by his prediction model.46 Wang and colleagues

study also selected three supervised ML algorithms, SVM, RF, and
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TABLE 1 Outcomes of search strategies for every database.

# PubMed database search approach Results

1 “Meningitis”[MeSH Terms] 58,233

2 “Meningitis”[Title/Abstract] OR “Meningitides”[Title/Abstract] OR “Pachymeningitis”[Title/Abstract] OR “Pachymeningitides”[Title/
Abstract]

60,083

3 “Machine learning”[MeSH Terms] 50,896

4 “Machine learning”[Title/Abstract] OR “deep learning”[Title/Abstract] OR ((supervised[Title/Abstract] OR unsupervised[Title/
Abstract]) AND learning[Title/Abstract]) OR “feature selection”[Title/Abstract] OR (“support vector machine”[Title/Abstract] OR
“SVM”[Title/Abstract]) OR (“classification method”[Title/Abstract] OR “pattern classification”[Title/Abstract] OR “classification
pattern”[Title/Abstract] OR “classification algorithm”[Title/Abstract]) OR ((clustering[Title/Abstract] OR clusters[Title/Abstract])
AND (analysis[Title/Abstract] OR algorithm[Title/Abstract])) OR (“multiple kernel learning”[Title/Abstract] OR “MKL”[Title/
Abstract]) OR (“relevance vector machine”[Title/Abstract] OR “relevance vector machines”[Title/Abstract] OR “RVM”[Title/
Abstract]) OR “neural network”[Title/Abstract] OR (“iterative learning”[Title/Abstract] OR “learning classifier”[Title/Abstract] OR

“learning classifier”[Title/Abstract]) OR ((Bayes[Title/Abstract] AND Bayesian[Title/Abstract]) OR (model[Title/Abstract] OR
algorithm[Title/Abstract] OR network[Title/Abstract] OR classification[Title/Abstract] factor))

1,133,855

5 1 OR 2 81,844

6 3 OR 4 1,138,633

7 5 AND 6 1436

# Embase database search approach Results

1 “Meningitis”:ti,ab,kw OR “meningitides”:ti,ab,kw OR “pachymeningitis”:ti,ab,kw OR “pachymeningitides”:ti,ab,kw 74,564

2 “Machine learning”:ti,ab,kw OR “deep learning”:ti,ab,kw OR ((supervised:ti,ab,kw OR unsupervised:ti,ab,kw) AND learning:ti,ab,kw) OR

“feature selection”:ti,ab,kw OR (“support vector machine”:ti,ab,kw OR “SVM”:ti,ab,kw) OR (”classification method”:ti,ab,kw OR
“pattern classification”:ti,ab,kw OR “classification pattern”:ti,ab,kw OR “classification algorithm:ti,ab,kw”) OR ((clustering:ti,ab,kw
OR clusters:ti,ab,kw) AND (analysis:ti,ab,kw OR algorithm:ti,ab,kw)) OR (“multiple kernel learning”:ti,ab,kw OR “MKL”:ti,ab,kw) OR
(“relevance vector machine”:ti,ab,kw OR “relevance vector machines”:ti,ab,kw OR “RVM”:ti,ab,kw) OR”neural network”:ti,ab,kw OR

(“iterative learning”:ti,ab,kw OR “learning classifier”:ti,ab,kw) OR ((Bayes:ti,ab,kw OR Bayesian:ti,ab,kw) AND (model:ti,ab,kw OR
algorithm:ti,ab,kw OR network:ti,ab,kw OR classification:ti,ab,kw OR factor:ti,ab,kw))

367,681

3 1 AND 2 233

# Scopus database search approach Results

1 TITLE‐ABS‐KEY (“Meningitis”) OR (“Meningitides”) OR TITLE‐ABS‐KEY (“Pachymeningitis”) OR TITLE‐ABS‐KEY
(“Pachymeningitides”)

107,785

2 TITLE‐ABS‐KEY (“machine learning”) OR TITLE‐ABS‐KEY (“deep learning”) OR TITLE‐ABS‐KEY ((supervised OR unsupervised) AND
learning) OR TITLE‐ABS‐KEY (“feature selection”) OR TITLE‐ABS‐KEY (“support vector machine” OR “SVM”) OR TITLE‐ABS‐KEY
(“classification method” OR “pattern classification” OR “classification pattern” OR “classification algorithm”) OR TITLE‐ABS‐KEY
((clustering OR clusters) AND (analysis OR algorithm)) OR TITLE‐ABS‐KEY (“multiple kernel learning” OR “MKL”) OR TITLE‐ABS‐
KEY (“relevance vector machine” OR “relevance vector machines” OR “RVM”) OR TITLE‐ABS‐KEY (“neural network”) OR TITLE‐
ABS‐KEY (“iterative learning” OR “learning classifier”) OR TITLE‐ABS‐KEY ((bayes OR bayesian) AND (model OR algorithm OR
network OR classification OR factor)))

2,235,412

3 1 AND 2 843

# Web of science database search approach Results

1 TS=(“Meningitis“) OR TS=(“Meningitides”) OR TS=(“Pachymeningitis”) OR TS=(“Pachymeningitides”) 52,150

2 TS=(“machine learning”) OR TS=(“deep learning”) OR TS=((supervised or unsupervised) and learning) OR TS=(“feature selection”) OR
TS=(“support vector machine” or“SVM”) OR TS=(”classification method” or“pattern classification” or“classification pattern”
or“classification algorithm”) OR TS=((clustering or clusters) and (analysis or algorithm)) OR TS=(“multiple kernel learning”
or“MKL”) OR TS=(“relevance vector machine” or“relevancevector machines” or“RVM”) OR TS=(“neural network”) OR TS=
(”iterative learning” or“learning classifier”) OR TS=((Bayes or Bayesian) and (model or algorithm or network or classification or

factor))

1,068,270

3 1 AND 2 478
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TABLE 3 Summary of purpose and results of included studies.

References (Country) Purpose of study The result of the study

Cheng et al.46 (China) creating a predictive model for the early PM to aid

physicians in creating fresh diagnostic and treatment
approaches

The risk of PM in premature newborns can be predicted using

this predictive model. This prediction model may be used
as a guide to establish whether a lumbar puncture is
necessary and whether antibiotics need to be given as
soon as possible.

Wang et al.47 (China) It was to use supervised ML techniques to build prediction
models

The RF and SVMmodels performed satisfactorily. Site leakage:
The most reliable and significant predictor is RF. Using
predictions based on the ML algorithm in addition to their

current methods for detecting high‐risk patients may
prove useful for future healthcare personnel.

Ma et al.22 (China) The creation and assessment of a radiomic signature based
on magnetic resonance imaging (MRI) using a
multicenter data set to detect hidden basal reservoir

changes in TBM patients

Combining deep learning segmentation with T2WI‐based
radiomic signatures can produce a fully automated,
noninvasive technique to identify subtle alterations in

basal reservoirs, which may aid in the diagnosis of TBM

Wei et al.49 (China) Investigating the diagnostic usefulness of MRI based on the

ICA in children with purulent meningitis

Compared to typical image processing, the result of using ICA

to display children's purulent meningitis MRI pictures is
more accurate and clear, and it can serve as a more
accurate supplemental basis for diagnosing the specifics of
the condition. For complex PPM, developing a diagnostic
and treatment strategy has greater clinical significance.

Karanika et al.51

(Greece)
A method to predict the precise bacterial etiology of

childhood bacterial meningitis is provided by the
analysis of clinical symptoms and swift laboratory data

It appears that the clinical management and targeted
treatment of BM may benefit from the use of clinical and
laboratory predictors to assess the bacterial pathogen
responsible for the disease rather than just predicting the
mortality outcome

Šeho et al.60

(Herzegovina)
Using ANN to speed up meningitis diagnosis and minimize

intrusive sample techniques
Meningitis can be accurately diagnosed using artificial neural

networks, which can also be used to choose the best course

of therapy and minimize the need for minor incisions

Zhao et al.50 (China) A novel scoring model has been developed and verified to
forecast mortality risk in patients with CM who are
HIV‐positive

The first model for predicting outcomes in HIV/CM patients.
The results of HIV/CM patients might be predicted using
this approach.

Mentis et al.52

(Greece)
Examination of three ML algorithms for bacterial and viral

meningitis differential diagnosis
Whether a patient has viral or bacterial meningitis can be

accurately diagnosed using machine learning (ML). The
model that did the best job in forecasting bacterial
meningitis was RF, whereas NB did the worst. The MLR

model outperformed the other two models in predicting
the percentage of viral meningitis in all age categories. As a
result, by merging MLR and RF models, differential
diagnosis can be strengthened.

Jeong et al.54 (Korea) Using ML methods, such as deep learning models, to
differentiate between viral and tuberculous meningitis

The ability to discriminate between TBM and VM appears to
be facilitated by ML approaches. Additionally, compared to
a nonexpert doctor, the ANN model appears to perform
better in terms of diagnosis.

Babenko et al.56

(Kazakhstan)
Children's bacterial meningitis can be distinguished from

viral meningitis by looking at the ML
The FFTree approach exhibited procalcitonin and CRP

determination with cut‐off levels to distinguish between
bacterial and EVM in youngsters

Drew et al.59 (Ireland) Using ML, examine student risk variables for the
meningococcal pharyngeal vector

Meningococcal vector risk factors can be found using
unsupervised ML

Lee et al.55 (Korea) creating a grading system using tree analysis to address

issues like the difficulty in identifying TBM and
differentiating it from VM

The following situations call for the employment of this

system:‐VM and TBM differential diagnosis‐rapid and
simple TBM diagnosis

Mirkhani et al.57 (Iran) To stop bacterial meningitis epidemics in Iran, a predictive
model is being developed to speed up the detection of

individuals with acute bacterial and nonbacterial
meningitis

This model can aid epidemiologists and health policymakers in
locating bacterial meningitis epidemics and guiding their

decisions on the dynamics of infection
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ANN, to build binary LDRM prediction models following a four‐step

method of meta‐parameter setting, model training, model evaluation,

and model validation. The outcomes demonstrated the predictive

ability of the RF and SVM models, with the RF model performing best

for detecting high‐risk patients.47 Drew also stated in a study that

unsupervised ML provides a useful technique for detecting meningo-

coccal vector risk factors. Additionally, it can be a helpful tool for

sifting through big data sets to find groups of people who share

similar traits and could enhance comprehension of patterns found in

data sets.59 Savin conducted an observational cohort study in Russia

that included high‐risk neurological patients in the ICU. To determine

the factors that contribute to the development of healthcare‐

associated ventriculitis and meningitis (HAVM), he used regression,

ML, and relative risk analysis. He demonstrated that tree‐based ML is

a useful method for examining risk factors because it makes it

possible to identify nonlinear interactions between factors.46

According to Zhao, a scoring model that was developed using six

easy‐to‐understand, practical, and accurate variables is appropriate

for screening high‐risk AIDS patients who have either HIV/CM or

cryptococcal meningitis. It also serves as a helpful tool for clinicians

to assess the prognosis of hospitalized HIV/CM patients. Due to the

fact that the new scoring model could reliably identify AIDS patients

at high risk of dying in hospital if they contracted HIV/CM

cryptococcal meningitis (area under the curve 0.876; p < 0.001).37

4 | DISCUSSION

4.1 | Principal findings

Meningitis is a serious infectious disease that can have a negative

impact on society as a whole. This illness is linked to a high death rate

and severe neurological side effects. As a result, while AI has been

able to play a significant role in meningitis diagnosis, its fast diagnosis

is extremely critical. At many stages, from forecasting the course of

disease propagation to the construction of diagnostic and prognostic

models, AI approaches, have been taken into consideration.62 In this

environment, ML systems that integrate and interpret vast volumes

of complicated data are gaining popularity. Since ML algorithms may

be used to predict and diagnose the inflammatory condition of

meningitis, the goal of this systematic review was to gather the best

available research information in this area.

The evidence from this review shows that in all studies, ML

techniques have been an effective and positive approach to

facilitating disease diagnosis and prediction. According to the findings

of our study, in eight cases of incoming studies, ML algorithms were

used to diagnose the disease, and all studies indicated the high ability

of ML algorithms to diagnose meningitis diseases.48,49,52,54–56,60,61 So

even in Jeong and colleagues study, it was stated that the ANN

model can have better diagnostic performance than a nonspecialist

doctor. The foundation of this approach was the validation of

variables such demographics and standard and clinical diagnostic

tests, which had the best power and sensitivity (100%) for separating

BM from EVM. The FFTree model determined two parameters of

procalcitonin and CRP in blood, which assisted the detection of BM

from EVM.56 Three ML algorithms (MLR, RF, and NB) were employed

in a different study, and the results showed that using these

algorithms in a multivariate manner as opposed to a univariate ROC

curve treatment improved the accuracy in the differential diagnosis

of meningitis. We applied these three algorithms to two age groups:

younger than 14 and older than 14. When CSF neutrophils, CSF

lymphocytes, NLR, albumin, glucose, gender, and CRP were used,

MLR and RF often performed the best.52 Another study of T2WI‐

based radiomic signatures developed using an SVM classifier showed

a special diagnostic significance for TBM that could not be detected

by an unaided eye in conventional MR images. Therefore, the

automated segmentation of base reservoirs and the developed

radiomic signature can provide complementary data to help diagnose

TBM in a fully automated manner before the appearance of lesions

with visible features.48 In addition, another study in Morocco

reported that using a simple diagnostic algorithm based on clinical

and laboratory findings can help the physician in the experimental

TABLE 3 (Continued)

References (Country) Purpose of study The result of the study

Savin et al.58 (Russia) Employing tree‐based ML techniques, to quantify the
prevalence of HAVM in the neuro‐ICU and to pinpoint

HAVM risk variables

Because it makes it possible to identify nonlinear interactions
between factors, tree‐based ML is a useful method for

researching risk factors

Dendane et al.61

(Morocco)
Moroccan researchers have created a straightforward

diagnostic method based on clinical and laboratory data
to help identify TBM in adult patients

The clinical and laboratory indicators found in this study
appear to be useful for the medical professional in making
an empirical diagnosis of TBM and can be applied in
situations where microbiological diagnostic support is not

as robust

Vasilopoulou et al.53

(Greece)

Using a multivariate analysis method, the objective is to

describe the clinical and laboratory features of a sizable
group of children with BM and to determine
independent prognostic markers for outcomes

When it comes to choosing patients for more rigorous

treatment and identifying potential candidates for novel
treatment approaches, a combination of characteristics
predicting outcomes in childhood BM may be helpful

Abbreviations: BM, bacterial meningitis; HAVM, healthcare‐associated ventriculitis and meningitis; TBM, tuberculous meningitis.
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diagnosis of TBM.61 In this regard, the study of Jeong and colleagues

reported that ML techniques have played a role in differentiating

between TBM and VM.54

Among the ML algorithms used in the included studies, LR

(25%)46,48,51,54 and MLR (25%)50,52,53,61 are the most used. However,

among all the algorithms used, FFTs with accuracy (98%)56 and ANN

algorithms with accuracy (96.69%)54 were more effective for

diagnosis and differentiation in the type of meningitis, selection,

and appropriate treatment. On the other hand, the NB algorithm with

accuracy (83.5%) had the least effect in diagnosing the type of

meningitis disease.54 However, in the study of Jeong and colleagues,

they found that the combination of RF and MLR algorithms is better

than using one algorithm alone to optimize the diagnosis of

meningitis.54 In this regard, Yang and colleagues also found that

the combination of ML algorithms and modern techniques such as

CDSS has significantly facilitated clinical diagnosis and treatment.

One of the challenges of traditional data analysis techniques is the

rapid increase in multidimensional clinical data and the difficulty of

integrating clinical information. Because clinical information from

different fields is heterogeneous in terms of structure and meaning,63

the combination and integration of ML algorithms seemed to be more

effective for better diagnosis of diseases and differentiation between

their types.

On the other hand, in eight cases of input studies from ML

algorithms regarding the ability to predict meningitis disease

(including cases related to the discovery of risk factors and

identification of high‐risk patients,46,47,57–59 the risk of death in

patients,50 consequences of disease in childhood,53 and etiology,51 in

this context, Zhao and colleagues reported that the use of a

predictive model can assist clinicians in determining whether lumbar

puncture and antibiotic use are appropriate in preterm infants with

high‐risk factors. This, in turn, lowers the incidence of unwarranted

treatments and sequelae and decreases the chance of missed

meningitis diagnoses.50 In a different study, scientists presented

and simulated a model that predicts meningococcal meningitis and its

varieties using an AI technique known as the Bayesian Belief

Network. This model was constructed with information gathered

from the meningitis medical archive and a Bayesian server. The model

demonstrated a sensitivity of 97.12% and a prediction accuracy of

99.99% for meningococcal meningitis.64 Santangelo and colleagues

concluded that it is feasible to anticipate the emergence and progress

of some infectious illnesses in this respect after conducting a

comprehensive study with the goal of demonstrating whether it is

possible to predict the spread of infectious diseases early using ML.

Additionally, they said that correct and respectable outcomes may be

obtained by integrating a variety of methods and ML algorithms.43

Therefore, it would seem that, with additional development, the ML

algorithm‐based prediction model might complement the present

approaches for identifying high‐risk patients and grow to be a

valuable tool for clinical staff in the future.

Peiffer‐Smadja and colleagues study, which sought to educate

physicians on the application of ML in infectious illness diagnosis,

classification, outcome prediction, and management, is consistent

with our findings. They reported that comprehensive patient data

from healthcare settings with varying socioeconomic backgrounds,

such as primary care and low‐ and middle‐income countries, may

enhance ML‐CDSS capacity to make recommendations tailored to

different clinical situations. The examination of ML‐CDSS has

revealed several current gaps that need to be filled to determine

the potential benefits of these tools for patients and doctors.65

We identified a confounding variable (other surgeries) in our

included studies. The majority of these surgeries were tracheotomies

or combined trauma treatments, which may indicate more serious

starting circumstances in HAVM patients.58 In this regard, Bådholm

and colleagues, in their study, aimed to evaluate the effect of the

consistency of the number of cells in the cerebrospinal fluid sampled

from external ventricular drains, with and without patient reposition-

ing, on infection diagnostics. They concluded that in serially taken

samples, there was a considerable variation in the counts of cerebral

spinal fluid cells, and repositioning also significantly affected the

change in mixed effect models. Diagnostics for external ventricular

drain‐related infections were complicated by this shift, which was

seen to be bigger at higher numbers and to occur in both directions.66

A recent systematic analysis by Peetluk and colleagues sought to

critically assess prediction models created to forecast the outcomes

of tuberculosis treatment among individuals with pulmonary tuber-

culosis. They found that while most ML models performed well

(c‐statistic/AUROC >0.7), all of them were shown to have a

considerable risk of bias due to weak methodologic techniques,

missing data exclusion, insufficient reporting, inadequate validation,

and a lack of calibration evaluation. Model comparisons were

hampered by population heterogeneities, such as differing predictor

and outcome definitions and inclusion/exclusion policies for people

with multidrug resistant and younger ages. Hence, there may be

other confounding variables in this matter. Therefore, it is suggested

that future studies investigate other confounding variables in the use

of ML algorithms to diagnose and predict meningitis.67

The majority of the included studies (56%) were carried out in

low‐ and middle‐income countries (LMICs), according to the results of

our systematic review.46–48,50,56,57,60,61 This can become a strong

point for improving primary care services and thus improving their

economies, especially due to the unequal distribution of resources

and health care provision in LMICs. It is also critical to identify the

agents of disease spread to implement control and prevention

measures, as the identification of these factors can yield forecasts

that help policymakers make informed decisions about vaccination

purchases, public awareness campaigns, and health professional

training programs.

4.2 | Strengths and limitations

This study has several strengths. First, this study followed

recommendations for systematic review methods.32,33 Second,

we reviewed all studies that used different types of ML algorithms

to diagnose and predict different types of meningitis. Third, the
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country filter was not applied to the literature search. Therefore,

studies from all LMICs and high‐income countries (HICs) were

eligible for this review.

It is important to talk about any potential methodological restrictions

placed on this systematic study. First, our review exclusively included

English‐language studies. As a result, this evaluation did not consider

relevant publications written in other languages. Second, studies with

various demographics and kinds of meningitis patients (i.e., with various

medical problems and age groups) were included in this review. As a

result, there can be a number of discrepancies in the findings of each

research study. For example, an algorithm may be more effective in

detecting one type of meningitis than other types of meningitis.

Therefore, it was unable to properly explain the conclusive results and

carry out a meta‐analytical study due to the variety of background

elements, including the type of algorithm, the type of meningitis disease,

and the ensuing performance reports. Additionally, these restrictions

prevented us from doing a meta‐analysis.

5 | CONCLUSION

The study's findings demonstrated that, across all included investiga-

tions, ML algorithms proved to be a useful method for streamlining

diagnosis, forecasting outcomes for risk categorization, and enhan-

cing resource efficiency by anticipating patient or service volume and

identifying risk factors. The role of ML algorithms in improving

disease diagnosis was more significant than disease prediction and

prevalence. Meanwhile, the use of combined methods can optimize

differential diagnoses and facilitate the decision‐making process for

healthcare providers.
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