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The objectives of this study were (i) to develop a screening-level Quantitative property-property relationship (QPPR) for intrinsic
clearance (CLint) obtained from in vivo animal studies and (ii) to incorporate it with human physiology in a PBPK model for
predicting the inhalation pharmacokinetics of VOCs. CLint, calculated as the ratio of the in vivo Vmax (μmol/h/kg bw rat) to the
Km (μM), was obtained for 26 VOCs from the literature. The QPPR model resulting from stepwise linear regression analysis passed
the validation step (R2 = 0.8; leave-one-out cross-validation Q2 = 0.75) for CLint normalized to the phospholipid (PL) affinity of
the VOCs. The QPPR facilitated the calculation of CLint (L PL/h/kg bw rat) from the input data on log Pow, log blood: water PC and
ionization potential. The predictions of the QPPR as lower and upper bounds of the 95% mean confidence intervals (LMCI and
UMCI, resp.) were then integrated within a human PBPK model. The ratio of the maximum (using LMCI for CLint) to minimum
(using UMCI for CLint) AUC predicted by the QPPR-PBPK model was 1.36± 0.4 and ranged from 1.06 (1,1-dichloroethylene) to
2.8 (isoprene). Overall, the integrated QPPR-PBPK modeling method developed in this study is a pragmatic way of characterizing
the impact of the lack of knowledge of CLint in predicting human pharmacokinetics of VOCs, as well as the impact of prediction
uncertainty of CLint on human pharmacokinetics of VOCs.

1. Introduction

The evolving scientific and regulatory activities in Europe
and North America emphasize the need for the development
of tools that refine, replace, or reduce the use of animals
and human volunteers in pharmacokinetic and toxicity tests
[1–3]. The ability to base the toxic responses on the target
tissue dose or internal concentration of the toxic moiety
of the chemicals is key to the predictive tools reflective
of the current state of science. Therefore, physiologically
based pharmacokinetic (PBPK) models that are capable
of providing a priori prediction of the time course of
chemicals in blood and tissues is of tremendous interest
[4]. PBPK models are mechanistically based mathematical

descriptions of the absorption, distribution, metabolism,
and excretion of chemicals or pharmaceutical compounds.
In PBPK models, the organism is represented as a set of
several tissue compartments interconnected by blood flows.
In these models, the internal dose measures (e.g., blood or
tissue concentrations, amount metabolized) of a chemical
are described on the basis of mass-balance differential
equations requiring species-specific properties (e.g., alveolar
ventilation rate, cardiac output, regional blood flows, and
tissue volumes) and chemical-specific input parameters (e.g.,
partition coefficients and metabolic constants). Although the
species-specific values of several physiological parameters are
available in the literature [4–6], the partition coefficients
(PCs) and metabolic constants need to be determined
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experimentally or calculated by using animal-replacement
methods for each chemical individually [7]. The values of
tissue : blood or tissue : plasma partition coefficients essential
for developing PBPK models have been estimated for a
wide range of chemicals and chemical classes, including
drugs, with the use of tissue composition-based algorithms
or QSAR methods (e.g., [8–19]).

Regarding the metabolism parameters (i.e., hepatic clear-
ance, intrinsic clearance, Vmax, Km, Kcat, free energy of
binding, energy of activation, or activation enthalpy), some
studies have developed 2-D and 3-D QSARs but with a
specific focus on either a single isozyme, a single reaction
or a single class of substances [8, 20–38]. None of these past
efforts succeeded in predicting both Vmax and Km (or CLint)
of environmental chemicals for direct incorporation within
animal or human PBPK models. Alternatively, few studies
utilized the group contribution method of Gao [39–43], to
predict metabolic rates for PBPK models. In this method, the
chemical is decomposed into different structural fragments
or groups, the contributions of which are obtained by regres-
sion analysis [39]. Accordingly, these publications demon-
strated the feasibility of developing structure-property rela-
tionships for the metabolism rates. The group contribu-
tion method was successfully used to develop quantitative
structure-property relationships (QSPRs) for the tissue : air
partition coefficients as well as intrinsic (CLint) and hepatic
clearance (CLh for a group of low-molecular-weight volatile
organic chemicals (VOCs) in rats [41, 42]. These QSPR
models, in turn, were incorporated within PBPK models to
predict reasonably well the blood kinetics of inhaled VOCs
in rats. As these QSPRs are species specific, they could not
be used to conduct interspecies extrapolations. To overcome
this limitation, Béliveau et al. [40] developed biologically
based algorithms for PCs and CLh to conduct rat to human
extrapolations of the inhalation toxicokinetics of VOCs. In
this study, QSPRs based on the group contribution method
were developed for the chemical-specific input parameters of
the biological algorithms for PCs (i.e., oil : air, water : air,and
blood protein : air) and CLint (intrinsic clearance normalized
for cytochrome P450 2E1 content). More recently, QSPRs
were developed for the metabolic constants Vmax (maximum
velocity of reaction) and Km (Michaelis constant) [43] and
were further incorporated within a rat PBPK model to
predict the toxicokinetics of mixtures of VOCs. Despite the
successful use of the group contribution method in QSPR
modeling of metabolism rates, their principal limitation
relates to the fact that the chemical space they cover is
extremely limited (low-molecular-weight VOCs containing
one or more of the following fragments: CH3, CH2, CH,
C, C=C, H, Br, Cl, F, benzene ring, and H on benzene
ring). More experimental data on diverse chemicals would
be needed to determine the contributions of other molecular
fragments, as has been done with Pow (e.g., estimation of
the contribution of 130 fragments (i.e., groups) required
1200 measurements of Pow) [44]. To extend the currently
available QSPR for CLint to cover more diverse fragments and
at the same time respect a reasonable ratio of the number
of parameters to the number of observations, extensive
experimental data would be required.

Since the critical limitation in the construction of PBPK
models for new substances continues to be the metabolism
rate, a pragmatic approach—particularly for inhaled
VOCs—is to evaluate the maximum and minimum possible
blood concentration profiles in exposed individuals. Thus,
using a hepatic extraction ratio (E) of 0 and 1 in the PBPK
models, Poulin and Krishnan [45] obtained simulations
of the physiological limits (i.e., maximal and minimal
blood concentration profiles) for inhaled VOCs in humans.
Assuming the conceptual PBPK model and the values of
its physiological parameters are reliable, the real answer,
that is, the actual concentrations and kinetic curve, would
be somewhere in between the theoretical limits simulated
with these PBPK models [45]. The uncertainty associated
with these theoretical bounds can be reduced by developing
better estimates of the metabolism constants. This could
be done, at a practical level, by developing in silico tools
that provide a range of plausible values, in lieu of a single
accurate point estimate. Such a tool might be of use for the
toxicokinetic screening of substances, until the time when
the chemical-specific measurements are obtained in vivo, in
vitro, or with a highly precise mechanistic in silico method.

Since human exposures to environmental contaminants
in most cases do not attain levels that approach or exceed
saturation, it is not crucial to predict Vmax and Km separately,
particularly for simulating kinetics in humans exposed to
low atmospheric concentrations of VOCs. Therefore, the
availability of in silico approaches based on easily available
parameters to predict plausible range of CLint would be
desirable as a screening-level tool. The objective of this
study was therefore to develop a quantitative property-
property relationship (QPPR) model of animal data to
generate initial estimates (or bounds) of intrinsic clearance
of VOCs, for eventual incorporation within a human PBPK
model to simulate blood concentration profiles associated
with inhalation exposures. In this regard, we focused on
evaluating the impact of the uncertainty associated with
QPPR predictions of CLint on the blood kinetics of VOCs in
humans, relative to that of the uncertainty associated with
the total lack of knowledge of the metabolic rate in humans.
Furthermore, the reliability of applying the QPPR to predict
the area under the blood concentration versus time curve
(AUC) of parent chemicals was evaluated, as a function of the
sensitivity of the metabolism parameter in the PBPK model
and the prediction uncertainty of QPPR model.

2. Methods

A QPPR model for CLint was developed using a calibration
set of 26 VOCs. The QPPR predictions were then compared
with experimental data for several VOCs and the pharma-
cokinetics in humans were simulated using integrated QPPR-
PBPK models for these 26 VOCs. The predictions of QPPR
were evaluated further with an external data set of CLint for
11 VOCs.
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2.1. QPPR Modeling for Intrinsic Clearance

2.1.1. Chemicals and Data Sources. The development of a
global QPPR model for metabolism was initially undertaken
using experimental data on the in vivo intrinsic clearance
of 26 VOCs in rats, collated and evaluated in previous
studies by Béliveau et al. [40, 41] (1,1,1,2-tetrachloroethane;
1,1,2,2-tetrachloroethane; 1,1,2-trichloroethane; 1,1-
dichloroethane; 1,1-dichloroethylene; 1,2-dichloroethane;
benzene; bromochloromethane; bromodichloromethane;
carbon tetrachloride; chloroethane; chloroform; cis-1,2-
dichloroethylene; dibromomethane; dichloromethane;
ethylbenzene; hexachloroethane; isoprene; methyl chloride;
m-xylene; n-hexane; pentachloroethane; styrene; toluene;
trichloroethylene; vinyl chloride) [24, 46–53].

Subsequently, the resulting QPPR model was evaluated
with experimental in vivo data on CLint for 11 additional
VOCs in rats (1,1,1-trichloroethane; 1,2,4-trimethylbenzene;
bromoform; dibromochloromethane; furan; halothane;
o-xylene; trans-1,2-dichloroethylene; tetrachloroethylene;
propylene; ethylene) [46, 48, 54–61]. These 11 chemicals
outside the calibration set were also lipophilic, low-
molecular-weight VOCs and likely substrates of cytochrome
P450 2E1 [32, 62]. Moreover except for halothane and 1,2,4-
trimethylbenzene, the chemicals of the evaluation dataset
possess values of Pow, ionization potential, and blood : water
PC within the range of values for the chemicals in the QPPR
calibration set.

2.1.2. Modeling Endpoint. For QPPR modeling, CLint

(expressed in units of L blood, CLintblood, or L phos-
pholipids, CLintPL) was used as the endpoint. Initially,
CLintblood (L blood/h/kg0.75) for all the studied chemicals was
computed as allometrically scaled Vmax (μmol/h/kg0.75)/Km

(μmol/L blood). Since CYPs are located in the endoplasmic
reticulum embedded in the phospholipidic bilayer [63],
the CLintPL values reflecting chemical affinity for the phos-
pholipids (PL) were subsequently computed. The values of
CLintPL (L phospholipid/h/kg0.75) were obtained by dividing
Vmax (μmol/h/kg0.75) with Km expressed as μmol/L PL. The
Km values in μM of PL were obtained by multiplying the
values of Km expressed as μmol/L blood with the chemical-
specific phospholipid : blood partition coefficients (Pplb)
calculated as follows:

Pplb = 0.3 · Poa + 0.7 · Pwa

Pba
, (1)

where Poa is the n-octanol : air PC, Pwa the water : air PC, and
Pba the blood : air PC.

The above equation computes Pplb as the ratio of
phospholipid : air to blood : air PCs of the VOCs, based on
Poulin and Krishnan [10, 12].

2.1.3. Input Parameters for Transforming the Endpoint. The
input parameters required for converting the CLint obtained
from the literature were Poa, Pwa, and Pba.

(1) Poa and Pwa. The n-octanol : air PC (Poa), was calculated
as the product of the n-octanol : water PC (Pow) and Pwa

(inverse of Henry’s law constant at 37.5◦C). The values of Pow

and Pwa were predicted using U.S. EPA’s freeware EPISUITE
(http://www.epa.gov/opptintr/exposure/pubs/episuite.htm).

(2) Pba. Experimental values were used for rat blood : air [54,
56, 59, 64–68]. The calculated values of Pplb for the chemicals
used for the development and for the evaluation of the QPPR
are reported in Table 1.

2.1.4. Variable Selection. A priori list of variables was devel-
oped on the basis on mechanistic considerations. The rate
and affinity for P450-mediated metabolism would appear
to be related to the size, shape, charge, and energy of the
substrate; therefore variables that reflect these properties
were chosen for the QPPR analysis [21, 23, 27, 28, 32, 69–
71]. The descriptors of the size and shape of the molecule
were the molecular length, width, depth, volume, surface,
and the Kappa 2 index [72], as well as two descriptors used
in the work of Lewis et al. [23], namely, the ratio of the
molecular length to the molecular width (L/W) and the
ratio of the area of the molecule (i.e., length times width)
to the square of the depth (a/d2). The dipole moment and
ionization potential (IP) were used as measure of the charge
disposition and the energy in the molecule, respectively.
The values of all the previously cited descriptors were
calculated using commercially available software (Molecular
Modeling Pro, Chem SW, Fairfield, CA). Before calculating
the molecular descriptors with Molecular Modeling Pro, the
3D molecules were drawn and minimized using the full MM2
(molecular mechanics program) method provided in the
software. The dipole moment and the ionization potential
were calculated using MOPAC/PM3 program, included in
Molecular Modeling Pro.

Hydrophobic descriptors such as log Pow (log of the n-
octanol : water PC) that reflect hydrogen bonding and π-
π stacking have already been correlated to the values of
metabolic constants [69–71]. In this study, the following
physicochemical parameters were chosen to describe the
relative solubility and partitioning into diverse biologi-
cal media: log Pow, log phospholipid : water PC (logPplw);
log blood : water PC (log Pbw), and log water : air PC
(logPwa). The blood : water and phospholipid : water PCs
were obtained by dividing the blood : air and phospho-
lipid : air PCs values by the water : air PC values. The values
of Pow, Pwa, blood : air, and phospholipid : air PCs were
obtained as described for the calculation of Pplb (1).

2.1.5. Statistical Analysis. Multilinear regression analysis
approach was chosen for the QPPR analysis of CLint because
linear regression models are simple, transparent, and easy to
reproduce [73]. The regression analysis was performed using
SPSS v16 for Windows (SPSS Inc., Chicago, IL). Stepwise
regression analysis was performed to select the QPPRs based
on the most statistically significant independent variable(s)
from an a priori list (see Section 2.1.4). The coefficient of
determination R2, the adjusted R2 (R2

adj; adjusted for number
of variables) [73], the standard error of the estimate s, and the
value and significance of the F statistic were calculated. The
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Table 1: Partition coefficients used in the human PBPK models.

Chemicalsa Partition coefficient (PC)b Reference

Pba Plb Prb Ppb Pfb Pplb

Benzene 8.19 2.08 2.08 1.26 60.93 4.55 [66]

Bromochloromethane 10.4 2.81 2.81 1.07 31.5 2 [66, 77]

Bromodichloromethane 26.6 1.15 1.15 0.47 19.77 2.48 [78, 79]

Carbon tetrachloride 2.73 5.2 5.2 1.67 131.5 8.57 [66]

Chloroethane 2.69 1.34 1.34 1.2 14.3 4.42 [66]

Chloroform 6.85 3.08 3.08 2.03 29.6 1.93 [66]

Dibromomethane 19.9 3.42 3.42 2.03 39.8 1.78 [66, 77]

Dichloroethane (1,1-) 4.94 2.19 2.19 1.04 33.2 4.27 [66]

Dichloroethane (1,2-) 19.5 1.83 1.83 1.2 17.64 9.25 [66]

Dichloroethylene (1,1-) 0.81 5.46 5.46 2.53 84.69 4.82 [66, 77]

Dichloroethylene (cis-1,2) 9.85 1.55 1.55 0.62 23 5.2 [66]

Dichloromethane 9.7 1.46 1.46 0.82 12.4 1.79 [80]

Ethylbenzene 28 2.99 2.15 0.93 55.6 13.2 [67]

Hexachloroethane 52.4 7.04 7.04 1.43 63.4 156 [66]

Hexane (n-) 2.13 5.2 5.2 2.9 159 1.89 [47]

Isoprene 0.75 2.57 2.45 1.97 82 11.84 [52]

Methyl chloride 2.48 1.4 1.4 0.39 5.44 3.04 [66]

Pentachloroethane 50.3 5.17 5.17 1.44 81.9 21.7 [66, 77]

Styrene 52 2.7 5.7 1 50 30.2 [50]

Tetrachloroethane (1,1,1,2-) 30.2 2.92 2.92 1.31 71.1 37.3 [66]

Tetrachloroethane (1,1,2,2-) 116 1.69 1.69 0.87 32.47 14.3 [66]

Toluene 15.6 5.36 5.36 1.77 65.4 13.8 [67]

Trichloroethane (1,1,2-) 35.7 2.05 2.05 0.64 40.3 10.1 [66]

Trichloroethylene 8.11 3.35 3.35 1.24 68.3 5.73 [66]

Vinyl chloride 1.16 1.38 1.38 1.81 17.2 4.87 [66]

Xylene (m-) 26.4 3.44 3.44 1.59 70.4 15.1 [67]

Bromoform 102.3 2.06 2.06 1.12 40.4 2.44 [78, 79]

Dibromochloromethane 49.2 2.56 2.56 1.13 38.96 1.48 [78, 79]

Dichloroethylene (trans-1,2-) 6.04 1.48 1.48 0.58 24.5 11.7 [66]

Ethylene 0.22 2.05 2.18 2.95 8.73 1.05 [59]

Furan 6.59 0.9 0.9 0.64 9.72 2.75 [56]

Halothane 3.3 2.42 2.42 2.91 44.2 5.82 [58]

Propylene 0.44 1.09 1.2 1.25 11.7 1.52 [54]

Tetrachloroethylene 10.3 5.88 5.88 3.1 119.1 11.1 [57]

Trichloroethane (1,1,1-) 2.53 1.24 3.4 3.4 103.9 21.7 [48]

Trimethylbenzene (1,2,4-) 85 4.4 4.4 2.11 109 19 [61]

Xylene (o-) 34.9 3.09 3.09 1.47 53.8 22.6 [66]
a
Chemicals in italics were not included in the dataset for the calibration of the model.

bPba: blood : air PC; Plb: liver blood PC; Prb : richly perfused tissues : blood PC; Ppb: poorly perfused tissues : blood PC; Pfb: fat : blood PC; Pplb:
phospholipids : blood PC.

normality of the residuals was checked visually on normal
probability plots of the standardized residuals (i.e., expected
normal cumulative probability versus observed cumulative
probability). Leave-one-out cross-validation was conducted
and the results were expressed in terms of Q2, a measure

of precision error of the model. The Q2 was computed as
follows [74]:

Q2 = 1− PRESS
SSY

, (2)
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where PRESS is that predicted residual sum of squares and
SSY the sum of squares of the response values. The statistical
significance (p < 0.05) of the regression coefficients was
estimated by a t statistic test. Multicollinearity refers to the
occurrence of correlation between two independent variables
in the multiple linear regression model. Multicollinearity of
the variables in the model was assessed by calculating the
variance inflation factor (VIF) for all independent variables
[75]. The value of VIF was calculated as follows [75]:

VIFi = 1
1− R2

i

, (3)

where VIFi is the variance inflation factor of the independent
variable i in the multilinear regression model and R2

i the
coefficient of determination of the regression between the
independent variable i and the other independent variables
in the multilinear regression model.

For each model, the application domain was documented
by reporting the ranges of values of the descriptors, the
modeled response, and the endpoint.

A QPPR model was considered adequate when: the values
of R2 and R2

adj were ≥0.6 [73], the value of Q2 was ≥0.6 [76],
and the independent variables were not highly correlated
(i.e., VIF < 4) [75].

The predictions of the QPPR model were obtained
in terms of lower and upper bounds of the 95% mean
confidence intervals (LMCI and UMCI, resp.) in order to
represent the uncertainty associated with the mean predicted
value. The LMCI and UMCI for the 11 VOCs, not in the
QSPR calibration dataset, were obtained by adding them in
the SPSS file containing the data used for the QPPR, along
with the values of their independent variables only.

2.2. Translation of QPPR Predicted Intrinsic Clearance Values
to In Vivo Metabolism Rate and Integration within Human
PBPK Models. In the PBPK model, the value of intrinsic
clearance was calculated as the product of the QPPR value
of CLintPL (L of PL/h/kg0.75) and the phospholipid : blood
PC (values of Pplb in Table 1). The intrinsic clearance
(L blood/h/kg0.75) was used within the human PBPK models
to compute the hepatic clearance.

The rate of metabolism was calculated on the basis
of hepatic clearance (i.e., hepatic clearance times the
arterial concentration) [4, 40, 41, 45]. For chloroethane,
dichloromethane, vinyl chloride, and dibromomethane a
first-order constant (1, 2, 1, and 0.7 h−1, resp.) was included
in the calculation of the hepatic clearance, CLh (L/h) [41]:

CLh = QL · E, (4)

where E = (CLint + Kf · VL)/((CLint + Kf · VL) + QL), QL

is the blood flow through the liver (L/h), CLint the intrinsic
clearance (L blood/h), Kf the first order metabolic constant
(h−1), and VL the liver volume (L).

2.3. PBPK Modeling. The QPPR values of CLint were
included in a human PBPK model for inhaled VOCs [50].
Briefly, the PBPK model consisted in four tissue compart-
ments (i.e., liver, fat, richly, and poorly perfused tissues) and

a gas exchange lung, which were interconnected by blood
flows. The distribution of VOCs into tissue compartments
was described as perfusion limited, and the metabolism was
limited to liver.

To evaluate the impact of uncertainty on the metabolic
rate, for all the chemicals, PBPK simulations were also
conducted by setting the value of E to 0.999 (Emax) and then
to 0.001 (Emin), respectively.

The human physiological parameters of the PBPK model
(i.e., body weight= 70 kg; cardiac output= 18 L/h/kg0.74;
alveolar ventilation= 18 L/h/kg0.74; tissue compartment vol-
umes, fraction of body weight:liver= 0.026; richly perfused
tissues= 0.05; poorly perfused tissues= 0.62; fat= 0.19; per-
fusion of the tissue compartments, fraction of cardiac
output:liver= 0.26; richly perfused tissues= 0.44; poorly per-
fused tissues= 0.25; fat= 0.05) were obtained from Tardif et
al. [67]. Table 1 presents the value of the partition coefficients
used in the PBPK model (i.e., blood : air, tissue : blood,
and phospholipid : blood PCs). The phospholipid : blood PC
was calculated using (1), whereas the blood : air PC and
tissue : blood PCs were gathered from the literature [48, 50,
52, 54, 56–59, 61, 66, 67, 77–80].

The PBPK model (differential and algebraic mass-
balance equations, physiological parameters, QSPR equa-
tions for metabolic constants, and PCs) was written in
ACSL (acslX, version 2.5, Aegis Technologies Group, Inc,
Huntsville, AL). The model code is included in the supple-
mentary data available online at doi:10.1155/2012/286079.
To compare the impact of different (uncertain) scenarios
of rate of metabolism on the pharmacokinetics in human,
simulations were carried out by setting (i) the value of CLint

equal to the lower and upper bound of the QPPR predicted
mean 95% confidence interval, or (ii) the liver extraction
ratio to 0.001 (no metabolism) and 0.999 (maximum
extraction). The 24 h venous blood kinetics corresponding
to the four scenarios of metabolism were simulated for an
8 h exposure to 1 ppm of each VOC. The 24 h area under the
curve (AUC24) of the venous blood kinetics was also calcu-
lated to compare the four scenarios of metabolism simulated
with PBPK models. Additionally, the venous blood kinet-
ics of m-xylene, toluene, ethylbenzene, dichloromethane,
styrene, 1,2,4-trimethylbenzene, and 1,1,1-trichloroethane
were compared to experimental data [61, 67, 81–83].

2.4. Analysis of Applicability of the CLint QPPR to PBPK Mod-
eling. The applicability of the QPPR model was evaluated on
the basis of the level of uncertainty in the QPPR estimate
and the impact (sensitivity) of metabolism on the AUC24.
Figure 1 illustrates the role of uncertainty and sensitivity
in the reliability of the QPPR-PBPK modeling framework,
based on reference [84]. The sensitivity of the metabolism
to the AUC was estimated by the ratio of the AUC24

obtained with no metabolism (Emin) to that obtained with
the maximum theoretical metabolism (Emax). The sensitivity
of AUC24 to metabolism was considered to be low, medium,
or high if the ratio (AUCEmin /AUCEmax ) was within a factor of
2, within an order of magnitude, or greater. The uncertainty
in the QPPR prediction was evaluated by comparing it
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Figure 1: Evaluation of the confidence in applying the QPPR for
CLintPL in a PBPK model using a sensitivity/uncertainty approach.

to the experimental data. The prediction uncertainty was
considered to be low, medium or high if the prediction was
within a factor of two, within an order of magnitude and
above 10-fold of the experimental data, respectively.

This approach was applied to evaluate the reliability
of applying the QPPR within the PBPK model for two
situations: (i) for the calibration set of chemicals, for which
the uncertainty of the QPPR was evaluated by comparing
the predictions of CLintPL with the experimentally derived
CLintPL values and (ii) for chemicals in the evaluation
dataset, for which the uncertainty in the QPPR prediction
was considered to be “high”, to replicate the “data poor”
situations with new or tested chemicals with unknown
experimental CLint values.

3. Results

3.1. QPPR Development. The initial effort to develop a QPPR
model for metabolism rate (expressed asCLintblood, in units of
L blood/hr), based on a stepwise analysis of its relationship to
various molecular descriptors and physicochemical proper-
ties, was not successful (not shown). Same analysis, repeated
for CLint expressed in units of L PL/h (CLintPL), yielded a
QPPR that consisted of log Pplw, log Pbw, and IP (ionization
potential, eV) as input parameters. This model satisfied the
criteria for an acceptable model in terms of coefficient of
determination (R2 = 0.802; R2

adj = 0.775), leave-one-out
cross validation (Q2 = 0.755), and multicollinearity (VIFs:
log Pplw = 2.42; log Pbw = 2.38; IP = 1.04). The values of the
regression coefficients were significant (P value < 0.001 for
the constant, log Pplw and logPbw, and 0.007 for IP).

However, as the value of log Pow can be obtained more
readily than log Pplw, the regression analysis was repeated by
using log Pow, log Pbw, and calculated IP, and it yielded the
following QPPR:

log CLintPL = 5.63(±1.187)− 1.287(±0.149) · log Pow

+ 1.08(±0.233) · log Pbw

− 0.328(±0.111) · IP.

(5)
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Figure 2: Experimental and predicted values of logCLint for 26
VOCs. The horizontal bars represent the QPPR predicted LMCI
and UMCI, the symbols represent the experimental data. A:
1,1,1,2-tetrachloroethane; B: 1,1,2,2-tetrachloroethane; C: 1,1,2-
trichloroethane; D: 1,1-dichloroethane; E: 1,1-dichloroethylene; F:
1,2-dichloroethane; G: 1,2-dichloroethylene (cis-); H: benzene; I:
bromochloromethane; J: bromodichloromethane; K: carbon tetra-
chloride; L: chloroethane; M: chloroform; N: dibromomethane;
O: dichloromethane; P: ethylbenzene; Q: hexachloroethane; R:
isoprene; S: methyl chloride; T: m-xylene; U: n-hexane; V: pen-
tachloroethane; W: styrene; X: toluene; Y: trichloroethylene; Z: vinyl
chloride.

This QPPR model satisfied the criteria for an acceptable
model in terms of coefficient of determination (R2 =
0.796; R2

adj = 0.768), leave-one-out cross validation
(Q2 = 0.748), and multicollinearity (VIFs: logPow = 2.42;
log Pbw = 2.38; IP = 1.04). The application domain of
the model can be described with [min; max] as follows:
log Pow = [1.09; 4.03]; logPbw [0.16; 2.49]; calculated ion-
ization potential [9.13;11.28].

The QPPR (5) was subsequently applied to calculate
the CLintPL of the VOCs in the calibration set. Table 2
presents the values of the input parameters, along with
the experimental data for the 26 VOCs used in QPPR
development. Figure 2 illustrates the comparison of the
predicted values of CLintPL (LMCI and UMCI) and the
experimental data. The uncertainty in the predicted log
CLintPL can be characterized by the difference between the
UMCI and the LMCI; this value ranged from 0.37 (1,1-
dichloroethane) to 1.23 (n-hexane) with a mean of 0.54
and a standard deviation of 0.18. The nearest confidence
bounds of the predicted log CLintPL were higher than 5-fold
of the experimental value (exp.) for three substances (cis-
1,2-dichloroethylene, LMCI = 0.55 versus exp . = 0.09;
styrene, LMCI = −0.45 versus exp . = −0.09; and 1,1,2-
trichloroethane, UMCI = 0.46 versus exp . = 0.02). The
impact of the imprecision of these QPPR predictions of the
metabolic constants on the pharmacokinetics in humans was
then evaluated by PBPK modeling.

Figure 3 presents the predictions of the 24 h blood
pharmacokinetics following 8 h exposure to 1 ppm of each
of the 26 VOCs used in the QPPR analysis. The bold lines
represent the simulations obtained using 0 and 1 as the
hepatic extraction ratio, whereas the grey area encompassed
by thin lines represents the simulation obtained using LMCI
and UMCI of predicted CLint in PBPK models. Overall, the
envelope of the concentrations predicted using the QPPR
predictions reduced the region of uncertainty associated with
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Table 2: Input parameters and experimental data of log CLintPL.

Chemical
Input parameters

LogClintPL
a (LPL/h/kg) Ref Vmax, Km

Log Pow Log Pbw Ionization potential (eV)

Benzene 1.99 0.820 9.743 0.667 [53]

Bromochloromethane 1.43 0.642 10.562 1.118 [49]

Bromodichloromethane 1.61 0.717 10.676 1.029 [46]

Carbon tetrachloride 2.44 0.988 10.985 −0.700 [24]

Chloroethane 1.58 0.438 10.410 0.987 [24]

Chloroform 1.52 0.741 10.839 1.192 [24]

Dibromomethane 1.52 0.777 10.587 1.275 [51]

Dichloroethane (1,1-) 1.76 0.624 10.577 0.974 [24]

Dichloroethane (1,2-) 1.83 0.356 10.446 0.163 [24]

Dichloroethylene (1,1-) 2.12 0.922 9.748 1.223 [24]

Dichloroethylene (cis-1,2) 1.98 0.752 9.493 0.092 [24]

Dichloromethane 1.34 0.608 10.582 0.777 [24]

Ethylbenzene 3.03 1.386 9.406 −0.334 [49]

Hexachloroethane 4.03 1.315 10.843 −1.767 [24]

Hexane (n-) 3.29 2.492 11.276 0.252 [47]

Isoprene 2.58 0.987 9.349 0.472 [52]

Methyl chloride 1.09 0.160 10.473 0.299 [24]

Pentachloroethane 3.11 1.251 10.763 −0.297 [24]

Styrene 2.89 0.889 9.130 −0.088 [50]

Tetrachloroethane (1,1,1,2-) 2.93 0.836 10.728 −0.693 [24]

Tetrachloroethane (1,1,2,2-) 2.19 0.519 10.736 0.051 [24]

Toluene 2.54 0.879 9.442 0.282 [49]

Trichloroethane (1,1,2-) 2.01 0.491 10.689 0.018 [24]

Trichloroethylene 2.47 1.192 9.368 0.916 [24]

Vinyl chloride 1.62 0.433 9.833 0.741 [24]

Xylene (m-) 3.09 1.388 9.308 0.218 [48]
a
: EXP. experimental data (references in Section 2); LMCI and UMCI: lower and upper bound of the 95% mean confidence interval, respectively.

the complete lack of knowledge of hepatic extraction ratio in
humans (i.e., ranging from 0 to 1).

The average ratio (± standard deviation) of the PBPK
model simulated values of the end-of-exposure blood
concentrations (i.e., Cmax) obtained with Emin and Emax

was 4.19 ± 1.81. The lowest and highest ratios, based
on the theoretical bounds of hepatic extraction (i.e., Emin

and Emax), were observed for isoprene (1.63) and 1,1,2,2-
tetrachloroethane (8.05), respectively. However, the average
ratio (± standard deviation) of the PBPK model simulated
values of the end-of-exposure blood concentrations, based
on QPPR-generated bounds (LMCI, UMCI), was 1.29 ±
0.27. This ratio was the highest for hexachloroethane (2.39)
and the lowest for 1,1-dichloroethylene (1.06).

For the 26 VOCs used in the development of the QPPR,
the values of AUC24s for a 1 ppm continuous exposure are
reported in Table 3. The ratio of the highest to the lowest
AUC predicted with Emin and Emax was 4.3 ± 1.94 ranging
from 1.63 (isoprene) to 8.7 (1,1,2,2-tetrachloroethane). The
ratio of the maximum to minimum concentrations predicted
using the QPPR metabolism rate was 1.36± 0.4 ranging from
1.06 (1,1-dichloroethylene) to 2.8 (isoprene).

Figure 4 illustrates the range of predictions of venous
blood pharmacokinetics compared to experimental data
[67, 81, 82]. Overall, the predicted envelope of concentra-
tions approximated reasonably the experimental data for
dichloromethane, ethylbenzene, styrene, toluene, and m-
xylene.

3.2. Analysis of Applicability of the CLint QPPR to PBPK
Modeling. The reliability of applying the QPPR within
the PBPK model was assessed for the 26 VOCs in
the calibration dataset (Table 4). The uncertainty of
the QPPR prediction was estimated as the ratio of
predicted CLintPL to experimental CLintPL. For 3 VOCs
(isoprene, 1,1-dichloroethylene, and vinyl chloride) the
sensitivity of AUC to CLint was low (ratio of AUCs
< 2) whereas uncertainty of the CLint QPPR was low
for isoprene and vinyl chloride and medium for 1,1-
dichloroethylene. For the other 23 VOCs, the ratio of
AUCs was between 2 and 5. For 16 of the later 23 VOCs
(benzene; bromochloromethane; bromodichloromethane;
chloroform; dibromomethane; 1,2-dichloroethane;
hexachloroethane; n-hexane; pentachloroethane; styrene;
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Figure 3: Continued.
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Figure 3: 24 h simulation of the venous blood concentration following inhalation exposure to 1 ppm, 8 h for 26 volatile organic compounds
considering maximum and minimum (bold lines) and QPPR-based hepatic extraction (grey area). (a) 1,1,1,2-Tetrachloroethane; (b)
1,1,2,2-tetrachloroethane; (c) 1,1,2-trichloroethane; (d) 1,1-dichloroethane; (e) 1,1-dichloroethylene; (f) 1,2-dichloroethane; (g) 1,2-
dichloroethylene (cis-); (h) benzene; (i) bromochloromethane; (j) bromodichloromethane; (k) carbon tetrachloride; (l) chloroethane; (m)
chloroform; (n) dibromomethane; (o) dichloromethane; (p) ethylbenzene; (q) hexachloroethane; (r) isoprene; (s) methyl chloride; (t) m-
xylene; (u) n-hexane; (v) pentachloroethane; (w) styrene; (x) toluene; (y) trichloroethylene; (z) vinyl chloride.

Table 3: Area under the curve for four metabolic scenarios for the VOCs used in the QPPR development.

Chemicals
24 h Area under the curve (mg/L-h)

Metabolic scenarioa

Emin Emax LMCI UMCI

Benzene 0.437 0.125 0.155 0.138

Bromochloromethane 0.913 0.229 0.305 0.257

Bromodichloromethane 2.380 0.356 0.523 0.422

Carbon tetrachloride 0.34 0.153 0.224 0.186

Chloroethane 0.156 0.069 0.084 0.076

Chloroform 0.599 0.185 0.257 0.211

Dibromomethane 1.659 0.336 0.466 0.384

Dichloroethane (1,1-) 0.391 0.138 0.181 0.158

Dichloroethane (1,2-) 1.142 0.205 0.305 0.241

Dichloroethylene (1,1-) 6.98× 10−2 4.22× 10−2 4.76× 10−2 4.47× 10−2

Dichloroethylene (cis-1,2) 0.702 0.174 0.214 0.188

Dichloromethane 0.65 0.157 0.206 0.174

Ethylbenzene 1.247 0.216 0.32 0.246

Hexachloroethane 3.071 0.494 1.774 0.738

Hexane (n-) 0.15 0.073 0.129 0.084

Isoprene 4.59× 10−2 2.81× 10−2 0.084 2.95× 10−2

Methyl chloride 0.119 0.054 0.064 0.057

Pentachloroethane 2.584 0.418 0.929 0.595

Styrene 1.497 0.222 0.322 0.246

Tetrachloroethane (1,1,1,2-) 1.911 0.337 0.739 0.457

Tetrachloroethane (1,1,2,2-) 3.337 0.384 0.717 0.495

Toluene 0.74 0.168 0.223 0.188

Trichloroethane (1,1,2-) 1.876 0.284 0.474 0.355

Trichloroethylene 0.721 0.209 0.267 0.227

Vinyl chloride 6.68× 10−2 3.79× 10−2 4.25× 10−2 3.98× 10−2

Xylene (m-) 1.117 0.209 0.308 0.236
a
: Emin: no metabolism; Emax: maximum hepatic extraction; LMCI and UMCI: lower and upper bound of the 95% mean confidence interval, respectively.
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Figure 4: Comparison of PBPK model simulation with experimental data of venous blood concentration following inhalation exposure to
(a) 100 ppm, 6 h dichloromethane [77]; (b) 33 ppm, 7 h ethylbenzene [67]; (c) 80 ppm, 6 h styrene [78]; (d) 17 ppm, 7 h toluene [67]; (e)
33 ppm, 7 h m-xylene [67]. Bold lines: predicted LMCI and UMCI for CLint.

1,1,1,2-tetrachloroethane; 1,1,2,2-tetrachloroethane; tolu-
ene; 1,1,2-trichloroethane; trichloroethylene; m-xylene) the
prediction uncertainty was low, thus the confidence in using
the QPPR in the PBPK model is high for these compounds.
The uncertainty was medium for the prediction of CLintPL

for 7 VOCs (carbon tetrachloride; chloroethane; 1,1-di-
chloroethane; cis-1,2-dichloroethylene; dichloromethane;
ethylbenzene; methyl chloride). Therefore, for these chem-
icals, the confidence in using the QPPR in an inhalation
PBPK model to evaluate the AUC is medium.
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Table 4: Reliability analysis of the QPPR for CLint on the PBPK predicted AUC.

Impact of metabolism on AUC (AUCEmin /AUCEmax )a

Low (<2) Medium (2–5) High (>5)

QPPR prediction
uncertainty (Pred./Exp.
CLintPL)b

Low (<2) Isoprene, vinyl chloride

Benzene; bromochloromethane;
bromodichloromethane; chloroform;
dibromomethane; 1,2-dichloroethane;
hexachloroethane; n-hexane;
pentachloroethane; styrene;
1,1,1,2-tetrachloroethane;
1,1,2,2-tetrachloroethane; toluene;
1,1,2-trichloroethane; trichloroethylene;
m-xylene

Medium (2–5) 1,1,-Dichloroethylene

Carbon tetrachloride; chloroethane;
1,1-dichloroethane;
cis-1,2-dichloroethylene; dichloromethane;
ethylbenzene; methyl chloride

High (>5)
a
Calculated as the ratio of the PBPK simulations of 24 h AUC (of venous blood concentration, 1 ppm VOC, 24 h exposure) obtained by setting E = 0 (i.e.,
CLint = 0) to that setting E = 1 (i.e., CLint = 1000).
b Calculated as the ratio of the predicted to the experimental values of CLintPL.

Table 5: Input parameters and experimental data on log CLint for VOCs of QPPR evaluation.

Chemical
Input parameters

Log ClintPL
a (LPL/h/kg) Ref Vmax, Km

log Pow log Pbw IP (eV)

Bromoform 1.79 0.896 10.837 1.006 [46]

Dibromochloromethane 1.70 1.025 10.702 1.108 [46]

Dichloroethylene (trans-1,2-) 1.98 0.484 9.512 0.438 [55]

Ethylene 1.27 0.776 10.638 1.208 [59]

Furan 1.36 0.441 9.375 1.773 [56]

Halothane 2.26 0.977 11.039 1.104 [58]

Propylene 1.68 0.995 10.103 1.118 [54]

Tetrachloroethylene 2.97 1.404 9.217 −1.804 [57]

Trichloroethane (1,1,1-) 2.68 0.823 10.751 −2.467 [48]

Trimethylbenzene (1,2,4-) 3.63 1.829 9.084 −0.132 [61]

Xylene (o-) 3.09 1.213 9.304 0.163 [60]
a
Experimental data (references in Section 2).

3.3. QPPR Evaluation. The QPPR model was applied to
predict the CLintPL of 11 VOCs that were not in the
calibration dataset. Table 5 presents the values of the input
parameters along with the experimental data for the 11
VOCs used in QPPR evaluation. Figure 5 illustrates the
comparison of the predicted values of CLintPL (LMCI and
UMCI) and the experimental data. The average difference (±
standard deviation) between the UMCI and the LMCI was
0.57 ± 0.11 ranging from 0.46 (bromoform) to 0.84 (1,2,4-
trimethylbenzene). The highest UMCI-LMCI ranges were
obtained for furan (0.62), tetrachloroethylene (0.63), and
1,2,4-trimethylbenzene (0.84). The nearest predicted values
of UMCI and LMCI on logCLintPL were greater than 5-fold of
the experimental data for tetrachloroethylene (LMCI = 0.02
versus exp = −1.8). As in the QPPR development section,
the impact of the imprecision on these log CLint predictions
on the pharmacokinetics in humans was evaluated by PBPK
modeling.

Chemical
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Figure 5: Comparison of the predicted log CLint (LMCI and
UMCI) with the experimental data on 11 VOCs. The bars
represent the QPPR predictions and the symbols the experi-
mental values. A: 1,1,1-trichloroethane; B: 1,2,4-trimethylben-
zene; C: 1,2-dichloroethylene (trans-); D: bromoform; E: dibro-
mochloromethane; F: ethylene; G: furan; H: halothane; I: o-xylene;
J: propylene; K: tetrachloroethylene.
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Figure 6: Continued.
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Figure 6: 24 h simulation of the venous blood concentration following inhalation exposure to 1 ppm, 8 h for 11 volatile organic compounds
considering maximum and minimum (bold lines) and QPPR-based hepatic extraction (grey area). (a) 1,1,1-Trichloroethane; (b) 1,2,4-
trimethylbenzene; (c) 1,2-dichloroethylene (trans-); (d) bromoform; (e) dibromochloromethane; (f) ethylene; (g) furan; (h) halothane; (i)
o-xylene; (j) propylene; (k) tetrachloroethylene.

Figure 6 presents the predictions of the 24 h blood
pharmacokinetics following 8 h exposure to 1 ppm of each
of the 11 VOCs used in the QPPR evaluation. The bold
lines represent the simulations obtained using 0 and 1 as the
hepatic extraction ratio, whereas the grey area encompassed
by thin lines represents the simulation obtained using LMCI
and UMCI of predictedCLint in PBPK models. The reduction
of the region of uncertainty associated with the complete
lack of knowledge of hepatic extraction ratio in humans (i.e.,
ranging from 0 to 1) by the envelope of the concentrations
predicted using the QPPR predictions was observed for the
11 VOCs.

The mean ratio (± standard deviation) of the PBPK
model simulated values of the end-of-exposure blood con-
centrations obtained with Emin and Emax was 3.92 ± 2.13
ranging from 1.42 (ethylene) to 7.45 (bromoform). However,
the same average ratio (± standard deviation) of PBPK
simulated blood concentrations, based on QPPR-generated
bounds (LMCI and UMCI) was 1.2 ±0.1, ranging from 1.07
(ethylene) to 1.33 (bromoform).

Table 6 presents the values of the AUC24s (mg/L-h) for
the 11 VOCs used in the evaluation of the QPPR. The average
ratio of the highest to lowest AUC predicted using Emin and
Emax was 4.08 ± 2.31 (mean ± SD). The lowest and highest

ratios, based on the theoretical bounds of hepatic extraction
(i.e., E = 0.001 or 0.999), were observed for ethylene (1.44)
and bromoform (7.96), respectively.

The ratio of the maximum to minimum concentra-
tions predicted using the QPPR metabolism rate was 1.2
± 0.1, ranging from 1.07 (propylene) to 1.33 (dibro-
mochloromethane).

Figure 7 illustrates the range of predictions for two of
the chemicals in the external dataset (1,2,4-trimethylbenzene
and 1,1,1-trichloroethane) venous blood pharmacokinetics
compared to experimental data [61, 85]. The QPPR-PBPK
model-generated “envelope” of concentrations simulated
reasonably the experimental data for 1,2,4-trimethylbenzene
whereas the blood concentrations of 1,1,1-trichloroethane
were underestimated by about 30%.

3.4. Analysis of Applicability of the CLint QPPR to PBPK
Modeling. The reliability of applying the QPPR within the
PBPK model was assessed for the 11 VOCs in the evaluation
dataset, using the framework shown in Figure 1. Considering
that the experimental data of CLintPL for new or untested
chemicals will be essentially unknown, it is realistic to
consider the uncertainty of the QPPR prediction of CLintPL

to be high for all chemicals in the evaluation dataset.
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Table 6: Area under the curve for four metabolic scenarios, for VOCs in the evaluation dataset.

24 h Area under the curve (mg/L-h)

Chemicals
Metabolic scenarioa

Emin Emax LMCI UMCI

Bromoform 2.122 0.267 0.434 0.328

Dibromochloromethane 3.114 0.45 0.7 0.527

Dichloroethylene (trans-1,2-) 0.472 0.149 0.185 0.16

Ethylene 5.87× 10−3 4.08× 10−3 4.55× 10−3 4.23× 10−3

Furan 0.388 0.113 0.131 0.118

Halothane 0.523 0.22 0.325 0.266

Propylene 1.76× 10−2 1.16 × 10−2 1.3× 10−2 1.21× 10−2

Tetrachloroethylene 0.953 0.266 0.363 0.291

Trichloroethane (1,1,1-) 0.271 0.125 0.184 0.15

Trimethylbenzene (1,2,4-) 1.577 0.249 0.425 0.395

Xylene (o-) 1.297 0.218 0.325 0.248
a
: Emin: no metabolism; Emax: maximum hepatic extraction; LMCI and UMCI: lower and upper bound of the 95% mean confidence interval, respectively.
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Figure 7: Comparison of PBPK model simulations (bold lines: predicted LMCI and UMCI for CLint) with experimental data of venous
blood concentration following inhalation exposure to (a) 8 ppm, 4 h 1,2,4-trimethylbenzene [59] and (b) 175 ppm, 3.5 h 1,1,1-trichloro
ethane [85].

The results of the analysis of applicability for the chem-
icals in the evaluation dataset are reported in Table 7. For 3
VOCs (ethylene; propylene; 1,1,1-trichloroethane) the sensi-
tivity was low (ratio of AUCs < 2) thus the reliability of using
their CLint QPPR in the PBPK was considered high. For the
other 8 VOCs (bromoform; dibromochloromethane; trans-
1,2-dichloroethylene; furan; halothane; tetrachloroethylene;
1,2,4-trimethylbenzene; o-xylene), the ratio of the maximum
to the minimum possible AUCs was between 2 and 5, such
that the confidence in using the QPPR in an inhalation PBPK
model to evaluate the AUCs is medium for these chemicals.

4. Discussion

SARs, QSAR, QSPRs, and QPPRs have been developed
for various toxicological and chemical properties but only
very few studies have focused on developing such models
to parameterize PBPK models [8, 86]. A limitation in

developing PBPK models relates to the availability of the
metabolic constants (CLint, Vmax, and Km) [8]. Quantitative
relationships between structure and metabolism rates have
been investigated for a limited number of closely related
compounds, even though their applicability to PBPK mod-
eling has not been demonstrated (e.g., QSPR models for
Kcat and 1/Km [87]). Other works in this area relate to the
development of quantum chemical or quantum dynamic
methods for prediction of activation energy or enthalpy of
activation of P450 mediated reactions [20, 25, 26, 31, 36,
38, 88–91], which have not been used to derive metabolism
constants for direct incorporation within rodent or human
PBPK models.

The use of the group contribution method to develop
QSPRs for integration within PBPK models has been success-
fully demonstrated, particularly for the inhalation toxicoki-
netics of VOCs [40–43]. This approach however is limited
to VOCs containing one or more of the molecular groups



Journal of Toxicology 17

Table 7: Reliability analysis for the chemicals in the QPPR evaluation dataset.

Impact of metabolism on AUC (AUCEmin /AUCEmax )a

Low (<2) Medium (2–5) High (>5)

Low (<2)

QPPR prediction
uncertainty (Pred./Exp.
CLintPL)b

Medium (2–5)

High (>5)
Ethylene; propylene;
1,1,1-trichloroethane

Bromoform;
dibromochloromethane;
trans-1,2-dichloroethylene;
furan; halothane;
tetrachloroethylene;
1,2,4-trimethylbenzene; o-xylene

a
Calculated as the ratio of the PBPK simulations of 24 h AUC (of venous blood concentration, 1 ppm VOC, 24 h exposure) obtained by setting E = 0 (i.e.,
CLint = 0) to that setting E = 1 (i.e., CLint = 1000).
b Calculated as the ratio of the predicted to the experimental values of CLintPL.

or fragments for which the contribution has been evaluated
(i.e., CH3, CH2, CH, C, C=C, benzene ring, H on benzene
ring, and halogens). In order to extend the applicability
domain then, it is important to investigate the feasibility of
developing QSPRs based on more global, physicochemical
properties. In this regard, the present study investigated
the development of a QPPR, that used chemical properties
rather than chemical structure as input, and it was calibrated
to predict CLint expressed in terms of chemical affinity to
phospholipids in the endoplasmic reticulum in which CYP
enzymes are embedded [63]. This logical transformation
of CLint data, reported here for the first time in literature,
facilitated the development of more adequate QPPR than
the conventional CLint based on blood concentrations. All
efforts to develop QPPRs for predicting CLint based on blood
concentrations were unsuccessful. The QPPR based chemical
affinity to phospholipids–obtained in this study should be
regarded as a screening level tool to provide plausible range
of metabolism rates in order to facilitate a first-cut evaluation
of the blood concentration of inhaled VOCs in humans.
The uncertainty associated with this QPPR tool should be
evaluated along with the sensitivity of CLint on the dose
metrics of the chemical of interest, in the perspective of
intended precision. Accordingly, if the dose metric is highly
sensitive to CLint and the QPPR predictions of CLint are
highly uncertain, then the present tool is of limited use even
for screening purposes. In such cases, then in vivo or in vitro
studies can be undertaken to get chemical-specific estimates
of CLint.

The QPPR predictions were reasonably in accordance
with experimental values for most but not all chemicals in the
calibration and evaluation datasets. For some chemicals, the
predicted values of log CLint for 1,1,1-trichloroethane (Fig-
ure 5(A)) and tetrachloroethylene (Figure 5(K)) exceeded
the experimental values by two orders of magnitude. The
QSPR for rat hepatic clearance developed by Béliveau and
colleagues [41] also overestimated the metabolic rate of
these two VOCs. However the PBPK model for 1,1,1-
trichlorethane indicated that the AUC of parent chemical

in venous blood is not sensitive to Vmax and Km [92, 93].
This was demonstrated in Figure 6(a), showing that QPPR-
overestimation of CLintPL of 1,1,1-trichloroethane led only
to a minimal impact, in terms of the underestimation
of the venous blood concentration. In the case of tetra-
chloroethylene, a poorly metabolized halogenated VOC, the
overestimation of the CLintPL led to a 3-fold underestimation
of the Cmax (Figure 6(k)) or a 4-5-fold underestimation of the
AUC24 (Table 7). If this magnitude of error is not acceptable
for screening-level evaluation, then the metabolic rate should
be experimentally determined. The combined assessment of
the uncertainty/sensitivity of metabolic constants in PBPK
models would facilitate the determination of the applicability
of the QPPR model, given the level of precision need for an
application (Figure 1)

The QPPR developed in this study is a generic tool to
provide initial estimates of CLint of VOCs metabolized by
hepatic CYP. It does not take into account stereochemistry
or other pathway-specific rates and processes, which may
be important for some chemicals (e.g., predicted values of
CLint are almost identical for 1,1-dichloroethylene and cis-
1,2-dichloroethylene but experimental values vary by log
units of 1.06). Therefore, predictions of CLint based on
generic considerations are likely to be inaccurate for specific
chemicals but are of limited use in that the estimates (along
with the bounds, representing the level of uncertainty) can
be integrated with human physiology to provide a first-cut
view of the plausible kinetic profiles.

The utility of the QPPR models depends, in part, on
the ability to reproducibly calculate the descriptors [74].
Hence, in this study, the descriptors that could be easily
calculated and interpreted were chosen and obtained using
EPISUITE (for logPow and Pwa) and MMPro (for the ioniza-
tion potential). However, the blood solubility parameter (i.e.,
blood : air PC) is additionally required and this can either be
obtained experimentally in vitro or using other QSARs that
account for protein (i.e., haemoglobin and plasma protein)
binding in addition to solubility considerations. There are
some algorithms and QSARs available in this regard, but
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further development is necessary to adequately account for
the protein binding phenomena in human blood for various
classes of chemicals [8].

The QPPR developed in this study computes CLintPL,
which can then be converted to CLintblood for use in PBPK
modeling. In an effort to evaluate whether the same input
parameters can be used to relate toCLintblood, additional anal-
yses were performed. These yielded the following equation
(significant terms only):

log CLintblood = 5.117− 0.305 · logPow − 0.324 · IP. (6)

Even though (5) and (6) give almost identical results (one
for CLintPL and the other for CLintblood) despite the differing
R2 values (0.796 versus 0.402), it should be noted that
(5) was obtained based on statistical analysis of calibration
dataset (i.e., modeling) whereas (6) was derived simply by
fitting CLintblood to the specific input parameters. Further
rearrangements and simplifications of the QPPR, as well as
the loss of accuracy associated with such attempts, were not
performed in the current study.

The output of the QPPR developed in the present study
is logCLint, which is useful for simulating pharmacokinetics
in humans of chemicals at low levels of exposure. CLint is
applicable to first-order situations (i.e., when blood levels
in humans are much lower than the Km for metabolizing
enzyme) and is derived by dividing the Vmax (i.e., the enzyme
turn-over) with Km (representing the affinity of the substrate
for the enzyme). The input parameters of the QPPR, namely,
log Pow and logPbw, are estimates of the relative solubility
in octanol, water, and blood. Then, an interpretation of the
model for CLint could be that the binding to the P450 enzyme
is a result of hydrophobic interactions [94] which, in turn,
can be estimated with parameters reflective of the solubility
in n-octanol and blood. The solubility in blood is the sum
of the solubility in its components (water, phospholipids,
neutral lipids, and proteins). Most of the studied VOCs are
likely to bind to hemoglobin because of their lipophilicity
(logPow value above 1) and low molecular volume [40]. The
Pbw, thus, is likely an indicator of the binding to proteins,
whereas the log Pow reflects more the affinity for biotic lipids
in the metabolism microenvironment. Similar to log Pow,
the ionization potential has already been correlated with
metabolic rates, namely, the Vmax and Vmax/km [23], as this
latter parameter could be correlated with the energy needed
to break a covalent bond for the oxidation of the substrate.

The QSPR model for CLint developed in this study has a
defined theoretical endpoint, is nonambiguous, has a defined
domain of application, was analyzed using appropriate
goodness-of-fit (R2) and robustness (Q2), and has an attempt
of mechanistic interpretation. The in vivo dataset on 26
VOCs used for the QPPR calibration was chosen because it
was previously collated and used in QSPR analyses [40, 41].
These values were taken mainly from the work of Gargas et al.
[24]. The QSPR analysis was also attempted with the entire
dataset of 37 VOCs (calibration + external dataset) but it did
not improve the goodness-of-fit statistics (not shown).

The predicted bounds of the 95% confidence interval
of intrinsic clearance were incorporated within a PBPK

model to predict the blood toxicokinetics of VOCs. The
simulations of blood kinetics were comparable to experi-
mental data for 6 VOCs (toluene, m-xylene, ethylbenzene,
styrene, dichloromethane,1,2,4-trimethylbenzene, and 1,1,1-
trichloroethane, Figures 4 and 7). The simulations obtained
in the present study, using lower and upper confidence
intervals on the mean predicted CLint, reduced clearly
the uncertainty bounds associated with the total lack of
knowledge (i.e., E ranging anywhere between 0 and 1).
Furthermore, the present study incorporated the QPPR pre-
dictions of CLint along with physiological parameters, such
that impact on in vivo kinetics could be simulated. In effect,
in some cases where the uncertainty on CLint predictions was
high, it did not translate into a proportionate error on the
predictions of kinetics, due to the additional consideration of
physiological constraints, and such observations are critical
in data-poor situations for designing focused studies to
generate chemical-specific data in vitro or in vivo.

The QPPR developed in this study approximated the
experimental rat metabolic constants for the various low-
molecular-weight VOCs; and it was used along with the
human physiology to generate initial or screening level values
of CLint to construct human PBPK models that could be of
potential use to interpret data such as measured biomarker
levels or for designing kinetic studies to reduce database
uncertainty. As shown with some VOCs (e.g., Figure 3:
1,1,1,2-tetrachloroethane, hexachloroethane, and n-hexane),
the blood concentration profile is extremely influenced
by CLint, such that metabolism cannot be neglected in
simulating or interpreting human exposure data. And in such
cases, the ability to generate at least a range of plausible values
of CLint, as done in the present study, would facilitate first in-
human simulations of pharmacokinetics of parent chemicals.
Integrating information on the impact of metabolism on
dose metrics (i.e., AUC) along with prediction uncertainty
of the QPPR facilitates the determination of the level of
confidence in using this screening level tool. Depending
upon the overall confidence in the QPPR application for
predicting dose metrics (low, medium, and high) relative to
the use purposes, decisions can be made as to the specific
studies needed.

Overall, the QPPR developed in the present study allows
to predict the CLint of VOCs on the basis of generic molecular
descriptors rather than with fragment constants as done
previously. The chemical concentration in phospholipids,
for the first time, was found to be a dose metric amenable
to QPPR analysis. The QPPR was then used to generate
range of values of CLint; the level of confidence in these
estimates was assessed by considering the impact of CLint on
the simulated dose metrics (i.e., AUC of parent chemical in
venous blood). For other dose metrics and situations, a more
robust QPPR needs to be developed, and such efforts can be
based on the methodological developments accomplished in
this study. The QPPR-based simulation of pharmacokinetics
reduced the range of uncertainty for few substances relative
to complete lack of knowledge of the CLint, but it needs to
be evaluated/refined with much larger dataset should this
screening-level approach be adopted for providing more
precise estimates of metabolism rates. Overall, the integrated
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QPPR-PBPK model developed in this study is a potentially
useful tool for characterizing and reducing the uncertainty
associated with the complete lack of knowledge of CLint in
predicting human pharmacokinetics of inhaled VOCs.
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