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Pre-pro is a fast pre-processor for single-particle
cryo-EM by enhancing 2D classification
Szu-Chi Chung 1, Hsin-Hung Lin2, Po-Yao Niu1, Shih-Hsin Huang2, I-Ping Tu 1✉ & Wei-Hau Chang 2✉

2D classification plays a pivotal role in analyzing single particle cryo-electron microscopy

images. Here, we introduce a simple and loss-less pre-processor that incorporates a fast

dimension-reduction (2SDR) de-noiser to enhance 2D classification. By implementing this

2SDR pre-processor prior to a representative classification algorithm like RELION and ISAC,

we compare the performances with and without the pre-processor. Tests on multiple cryo-

EM experimental datasets show the pre-processor can make classification faster, improve

yield of good particles and increase the number of class-average images to generate better

initial models. Testing on the nanodisc-embedded TRPV1 dataset with high heterogeneity

using a 3D reconstruction workflow with an initial model from class-average images high-

lights the pre-processor improves the final resolution to 2.82 Å, close to 0.9 Nyquist.

Those findings and analyses suggest the 2SDR pre-processor, of minimal cost, is widely

applicable for boosting 2D classification, while its generalization to accommodate neural

network de-noisers is envisioned.
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Cryo-EM (cryo-electron microscopy) uses an electron beam
transmitted through a biological sample to generate pro-
jection images. The projection images of a sample can be

used to reconstruct the 3D structure when many views are
available1. For a sample of protein solution frozen in vitreous ice2,
each particle can assume arbitrary orientation that the projection
images from different particles may represent different views of a
3D structure. Since cryo-EM only uses a small number of elec-
trons for imaging to alleviate radiation damage on biological
specimens, the recorded images are heavily contaminated by shot
noise. To process those noisy particle images, a step-wise com-
putation pipeline that aims to obtain a reliable 3D map of the
target macro-molecule has been constructed (Fig. 1a and Fig. 1 in
ref. 3). 2D classification serves a pivotal role in the entire work-
flow—it curates a dataset by grouping together the particles of
similar view to enhance the signal-to-noise ratio (SNR) and
meanwhile discarding invalid particles or contaminants. The class
averages can be used for assessing the degree of heterogeneity in
data whereas the good ones are chosen for calculating an initial
model. As particle images of similar orientation are related to
each other by image translation and rotation, clustering alike
particles entails the images to be properly aligned first. Since
aligning low-SNR images is error-prone, 2D classification is a
fundamentally demanding task while the results are often non-
ideal. A typical 2D classification algorithm therefore couples
clustering with image alignment and uses iterations to strive for
the best alignment parameters and classification indices. In the
era of cryo-EM “resolution revolution”4, the computation burden
of 2D classification is further aggravated by the rapid increase in
the number and the size of images. A standard computation
framework for 2D classification has been established since the
early development of single-particle cryo-EM5—this framework
combines K-means clustering with a multi-reference alignment

(MRA) approach where a number of images are chosen from the
data to serve as initialization seeds and alignment references. To
mitigate the issue by initialization, RELION classification6—a
now widely used classification method, employs maximum-
likelihood (ML) approach7 to do MRA, allowing each image to be
compared with all images in all possible rotations and transla-
tions. An image is then allocated to all classes, yet with different
probabilities derived by maximizing the likelihood of observing
the experimental dataset using the expectation-maximization
algorithm8. This originally slow process has been recently accel-
erated thanks to GPU parallelism9. As a result, RELION has
become a popular approach. Nonetheless, as RELION reports all
classes—clear and blurred ones, human inspection is required to
select good classes. Some of the good classes can still be hetero-
geneous as they have the potential to attract less frequent views or
low-SNR images3,10. Moreover, optimal outcome of RELION
may depend on customer-specified regularization parameters or a
good guess on the number of classes. Currently, the best classi-
fication results can be obtained from ISAC—iterative stable
alignment and clustering11. ISAC uses repeated stability tests to
validate the members of each class to ensure its homogeneity. In
addition, ISAC restricts the size of each class with the same bound
by using a modified K-means to suppress the above-mentioned
attractor effect3,10. These features make ISAC an attractive
approach when one works on a very heterogeneous dataset. Since
ISAC automatically discards the classes that are not stable or
reproducible, it may not need human intervention when it comes
to selecting good classes. However, ISAC is recommended only
for tough problems because it is extremely time consuming.

Here, instead of inventing a new 2D classification algorithm,
we propose a pre-processing strategy to enhance the performance
of existing algorithms. The rationale comes from a finding that
salient features of cryo-EM particles can emerge from the
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Fig. 1 The flow charts of the processing and the pre-processing. (a) A single Cryo-EM image processing workflow. (b) The workflow of proposed pre-
processing. The upper panel in the left column represents the original particle images; The lower panel in the left column represents the denoised version.
The bottom panel in the central column shows the x-and-y shifts and in-plane rotation angle reported by a reference-free alignment procedure applied on
the denoised particles. The lower panel in the right column represents the re-positioned particle images obtained by applying the alignment parameters in
the bottom central panel to the original particle images in the upper left panel. The upper right panel represents the original particles further fine-tuned by
applying additional rounds of reference-free alignment to the lower right particles.
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surrounding through denoising by a fast dimension-reduction
method (2SDR)12 (Fig. 1(b)). We envision that these denoised
particles may give better estimates of the parameters of alignment
(see “Methods”).

By installing this 2SDR pre-processing prior to a concurrent
2D classification algorithm such as RELION or ISAC, we
compare the performances of classification with and without
the pre-processing. For the classification experiments, we use
various experimental cryo-EM particle datasets, including two
small datasets, 70S ribosome (N = 5000) and beta-galactosidase
(N = 5672), and four large sets: 80S ribosome (N = 105,247),
TRPV1 ion channel (N = 35,645 for the curated set, N > 80,000
for the raw dataset), and nanodisc-embedded TRPV1 (N=
218,805). The tests demonstrate that the pre-processing
demands minimum computation cost—it consumes less than
an hour even for the large dataset of 80S ribosome, and col-
lectively report that the pre-processing can give in return
increased yield of particles, increased number of good classes
and appreciable reduction of the time or iterations spent on
classification. Notably, reprocessing the large datasets with the
aid of the pre-processing has resulted in improved 3D maps
concomitant with measurable advances in resolution to surpass
those in the previous reports, in particular in the cases of more
heterogeneous data. In summary, we demonstrate that the
2SDR pre-processing is a cost-effective approach to boosting
the performance of state-of-the-art 2D classification algorithms
to impact the outcome of 3D reconstruction.

Results
Pilot test on 70S ribosome shows the benefits of denoising. We
first tested the effect of denoising on the alignment and
grouping of particle images. Since we found direct usage of
denoised particles in 2D classification could not generate reli-
able results, we propose a strategy based on the following
heuristics for utilizing the denoised information. In this
experiment, we used the 2SDR method to generate the denoised
surrogates of the 5000 70S ribosome particles. From the set of
denoised particles, we randomly picked five as the reference
particles. For each reference in Supplementary Fig. 1 (column
(a)), we searched in the denoised set to find the twenty most
resembling particles by using FRM2D algorithm13. The best
alignment parameters of rotation angles and translational shifts
in x-and-y-direction were recorded for each particle, but
applied to the original non-denoised particles to generate an
aligned average. As shown in Supplementary Fig. 1 (column
(c)), these averages resemble the projections of 70S ribosome
(column (d)) and display more details than those obtained from
the control experiment without denoising (column (b)). Deeper
investigation reveals that the particle set found using denoising
does not overlap well with that found without denoising. We
designed a simulation study allowing for measuring the
occurrence of true positives. With simulated noisy images of
70S ribosome (SNR = 0.01, defocus range 1.5–2.0 μm) prepared
as described in Supplementary, we found the frequencies of true
positive were 11.2% and 3.5% for with and without the
denoising, respectively (Supplementary Fig. 2). With the SNR
increased to 0.05, the frequencies are increased to 94.4% and
61.5% respectively (Supplementary Fig. 3). We further tested
the effect of defocus—with SNR kept the same (0.05) but
the defocus lowered to 1.0–1.5 μm, the frequencies drop to
93.7% and 51.3% (Supplementary Fig. 4). These results show
that the chances of grouping identical or similar particles are
markedly higher when denoising is used where the gain by
2SDR is more pronounced when the SNR is lower or the
defocus is smaller.

Pre-Pro can be coupled with RELION to give better results.
To test whether or not this pre-processing can be coupled with a
2D classification algorithm, we used two small experimental
datasets, the 70S ribosome as used for the pilot experiment and
the beta-galactosidase (see “Methods”). We compared the result
from feeding the images re-positioned by the pre-processing to a
classification algorithm with that from using the original images
of no pre-processing. To evaluate the performance of a classifi-
cation process, we used three performance indices: the number of
good classes, the resulting initial model from class averages, and
the time spent on classification.

We began our test with RELION since it has been used to solve
the largest number of cryo-EM structures deposited into the PDB
databank. When the pre-processing is used prior to RELION, we
abbreviate the procedure as P-RELION. To do so with small
datasets, we used RELION (2.0) and prescribed the number of
classes to be 50 for these two small sets while leaving the
remaining parameters unchanged as the default values. The class
averages were sorted according to a quality index of “rlnClass-
Distribution”, which places the most populated classes on the top
rows (Fig. 2). Usually, these classes coincide with the classes of
topmost quality. As a result, evaluation of class quality could be
performed by inspection from the top row. As shown in Fig. 2(b),
clear classes of 70S ribosome obtained through P-RELION spills
over into the third row. By contrast, without the pre-processing,
there are still blurred classes in the second row (Fig. 2(a)). These
alleged improvements are consistent with the statistics that report
the accuracy in translations and rotations (see Supplementary
Fig. 5). As a result, the number of clear classes is increased by 30%
for 70S ribosome and 40% for beta-galactosidase. The yield of
resulting particles is increased only marginally, from 90% to 94%
for 70S ribosome and from 78% to 84% for beta-galactosidase.
These findings together suggest, with the aid of the pre-processor,
the homogeneity of each class would be potentially improved
when similar number of particles are dispersed into more classes.
We further used the class averages to calculate the initial model of
beta-galactosidase, by which we used PRIME14 for its speed and
robustness. Strikingly, in the absence of symmetry constraint, the
3D model from good classes generated by P-RELION (Fig. 2(f))
displays the symmetry character of beta-galactosidase while the
class averages from RELION without the pre-processing does not
(Fig. 2(e)). Importantly, the model from P-RELION matches
better with the golden 3D model, as judged by the initial model
to golden model FSC (Fig. 2(g)) and by docking of an atomic
model of beta-galactosidase (Supplementary Fig. 6). These tests
demonstrate the pre-processing can be successfully coupled with
RELION to improve the classification results to yield better initial
model. We also investigated RELION (3.0)15, which is 1.6X faster
than RELION (2.0), to have similar findings.

Though RELION classification has been accelerated by GPU
parallelism, we are still curious about if there would be any
measurable impact on the kinetics of classification introduced by
the pre-processing. The overall time, as documented in Table 1,
remains roughly the same with the pre-processing because it is set
by the default number of iterations, which is 25. To explore
whether or not the pre-processor could further accelerate
RELION 2D classification, we examined the evolution of particle
yield and initial model of the beta-galactosidase produced
from different iterations. As shown in Supplementary Fig. 7,
P-RELION with 10 iterations can result in a yield of particles and
and an initial model comparable to those from RELION with 25
iterations.

Pre-Pro makes ISAC faster and save closer-to-focus particles.
To test ISAC, we set the size limit of each class to 100 for both
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datasets while leaving other parameters unchanged by the default
values. When the pre-processing is used prior to ISAC, we
abbreviate the procedure as P-ISAC. With the pre-processing, the
number of stable classes is increased from 40 to 45 for 70S
ribosome and from 37 to 41 for beta-galactosidase (Fig. 3). The
pre-processing has increased the occupancy in many classes for
both datasets, evidenced by the histogram in Supplementary
Figs. 8 and 9a, d. The yield of particles for the 70S ribosome is
increased from 78% to 88% while that for the beta-galactosidase is
increased from 58% to 67%. Since ISAC was reported to have
tendency to lose lower-defocused particles11, we investigated the
distribution of the defocus values of the harvested particles. Since
each particle was labeled with a defocus value in this set, we
searched the medium value to find that 2.5 μm was a good
approximation. As shown in Supplementary Fig. 10, the yield of
smaller defocus particles (<0.5 μm) from ISAC is 73%, lower than
85%—that of larger defocus particles (>2.5 μm). Interestingly,
with the addition of the pre-processor, the yield of smaller
defocus particles is increased to 81% while that of larger defocus

to 90%, suggesting the potential of the pre-processor in saving
more closer-to-focus or lower contrast particles.

ISAC is known to offer high-quality classes11 that one would
not anticipate significant improvement of the initial model by the
extra pre-processing. Nonetheless, we proceeded to calculate the
initial models of the beta-galactosidase from the class averages.
The findings show that the initial model from P-ISAC is better
than that from ISAC (Fig. 3(e)).

Concerned about the time consumed by ISAC, we measured the
duration spent on classifying those two small datasets to find that
the pre-processor could help save the time on 2D classification by
approximately 30–40% (Table 1), which results in a time-saving by
20% for the entire workflow because 2D classification consumes
approximately 60% of the time of the whole workflow for the small
datasets.

Using the beta-galactosidase particles harvested through 2D
classification, we further performed 3D refinement using the
initial model to find better final 3D results could be obtained with
the pre-processor Table 1.

(a) (b)

(c) (d)

(e) (g)(f)

Fig. 2 The RELION Classification Results of Two Small Datasets: 70S ribosome and beta-galactosidase. (a) Classification 70S ribosome experimental
cryo-EM images using RELION; 18 good classes are boxed in red. (b) Classification 70S ribosome experimental cryo-EM images using RELION with the aid
of the pre-processing (P-RELION); 24 good classes are boxed in red. (c) Classification beta-galactosidase experimental cryo-EM images using RELION;
nine good classes are boxed in red. (d) Classification beta-galactosidase experimental cryo-EM images using P-RELION. 13 good classes are boxed in red.
(e) and (f) are the initial models calculated from the good classes in (c) and (d), respectively, where the calculation was performed using PRIME; the one
from RELION is in green and that from P-RELION is in blue. (g) shows the comparison of an initial model to the golden model using Fourier Shell
Correlation (FSC) curve. The FSC curve of comparing (e) to the golden model is colored in green while that of comparing (f) to the golden model is colored
in blue. The fitting of an atomic model to these two initial models is displayed in Supplementary Fig. 6.
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Pre-Pro on 80S ribosome is cost-effective and lossless. Since the
small datasets limit the resolution by the particle number and
pixel resolution, or the quality of data, we set out to diagnose the
pre-processor using large datasets that contain information
of near-atomic resolution. To this end, we first chose two
datasets: 80S ribosome (EMPIAR-10028)16 and TRPV1 ion
channel (EMPIAR-10005)17, both contain a large number of good
particles that were reconstructed to better than 3.5Å to support
the building of atomic models from De Novo.

The 80S ribosome particles, isolated from a malaria parasite
(Plasmodium falciparum) and drugged with of emetine16, are
large and mostly rigid. This dataset contains a total of 105,247
particles and has been processed by RELION with the radiation
damage issue compensated by B-factor weighting to report a
structure with an average resolution of 3.2Å (0.83 Nyquist),
where the resolution of 40S subunit is lower than the average16.
Due to the fact that the overall resolution is near the Nyquist
limit, we do not expect significant advance on the attainable
resolution from this dataset. Concerned about the computation
cost of an algorithm on such a large set, we first measured the
time spent on the pre-processing. The measurements reported
that the denoising step and the 2D reference-free alignment step
(Fig. 1(b)) only took 5 min and 50 min, respectively. In this
section, we re-curated this large set with 2D classification and
then calculated a 3D structure from the resultant particles using
CryoSparc 3D refinement18 guided by the initial model generated
from the 2D class-average images.

To perform RELION classification on this 80S dataset, we let
the prescribed number of classes to vary from 100, 200 to 520. It
took a total of 12–32 h to complete RELION classification
(Table 1). When the pre-processing was included, the number
of clear classes from RELION was increased by roughly 10–20%
(Table 1, Supplementary Fig. 11 and 12). It is noted that the
increase of good classes does not remarkably increase in the
yield of particles—in the case with the prescribed number of
100, the yield changes from 99.0 to 99.4%. We further
performed 3D reconstruction using the harvested particles—
in the original form neither down-sampled nor re-positioned
for both cases of with and without the pre-processing.

As shown in Fig. 4(e) and Supplementary Fig. 13, the particle
set obtained from P-RELION classification with 100 classes or
200 classes provides a 3D structure with an overall resolution of
3.12 Å (0.86 Nyquist).

To facilitate the test ISAC on the 80S ribosome dataset, we
increased the limit of the class size to 200 and binned the images
by a factor of 4 (4X down-sampling) to reduce the image to
90 × 90 pixels since the size of original 80S ribosome images is
enormous. ISAC succeeded in classification such a large dataset
and produced 520 stable classes, but this process took a total of
124 h. Interestingly, with the intervening of the pre-processing
20 h were saved (16% of the total time) (Table 1). In addition, the
pre-processing helps ISAC produce only a few more stable classes
from this large set (Table 1, Supplementary Fig. 14), while the
change in the yield of particles is also insignificant—from 97.7%
to 98.2% (Fig. 4(e): column 4). Regarding the final 3D structure,
both ISAC and P-ISAC have led to the same overall resolution of
3.10Å (0.87 Nyquist).

Since the quality of a cryo-EM map can vary from site to site,
we use the local resolution method19 to further evaluate the maps.
As shown by the heat map provided by CryoSparc’s local
resolution program (it re-implements the blocres20 program with
GPU acceleration) (Fig. 4(h)), those best maps exhibit a broad
range of resolutions, and report that most parts in each map are
resolved close to or better than 3.0Å (deep blue), whereas the
low- (red) and medium-resolution (white) regions are sparsely
distributed—most of them are localized to 40S subunit, high-
lighted by the lower-left corner in Fig. 4(h). Guided by the heat
maps, we found noticeable modifications in density map could be
introduced by the pre-processor to some flexible elements—for
example, the protruded stalk of the 60S subunit and some parts in
the 40S subunit.

In summary, the particle harvest tests on the 80S ribosome
dataset demonstrate our pre-processing can help preserve
virtually the entire set of particles of high homogeneity.
Importantly, the computation cost of the pre-processing on this
large dataset is extremely low—less than 1 h is consumed by the
pre-processing, contrasted to tens of hours used by RELION 2D
classification and much more by ISAC.

Table 1 The classification time and the resolutions of the final 3D map on six datasets without versus with pre-processing.

Algorithm Dataset Original/with pre-processing

Execution time (h)a Number of good classes Resolution (A)@0.143

RELION 70S ribosome 0.35/0.32 18/24 N/A
Beta-galactosidase 0.27/0.28 9/13 13.31/8.89
80S ribosome (520 classes) 32.65/29.85 148/184 3.16/3.15
80S ribosome (200 classes) 18.81/18.08 91/99 3.13/3.12
80S ribosome (100 classes) 12.38/12.27 58/64 3.13/3.12
TRPV1 (175 classes) 5.42/5.28 12/17 3.31/3.25
TRPV1 (100 classes) 3.58/3.52 17/20 3.37/3.28
TRPV1 (50 classes) 2.46/2.54 14/14 3.35/3.26
NC-TRPV1 13.56/13.52 15/20 3.57/3.42
NanoD-TRPV1 9.49/9.55 20/23 3.01/2.86
NanoD-TRPV1 (second pass) */6.23 */13 */2.82

ISAC 70S ribosome 2.85/1.89 40/45 N/A
beta-galactosidase 1.58/1.14 37/41 7.73/7.47
80S ribosome (4X down-sampling) 124.50/105.35 514/520 3.10/3.10
TRPV1 (no down-sampling) */39.65 0/67 */3.80
TRPV1 (2X down-sampling) 78.33/43.31 124/124 3.53/3.31
TRPV1 (3X down-sampling) 47.96/37.33 156/156 3.30/3.20
NC-TRPV1 (3X down-sampling) 10.56/8.48 25/27 3.56/3.39

Notice that 3D reconstruction is not conducted on 70S ribosome dataset and ISAC would fail without down-sampling or pre-processing in the TRPV1 dataset
aFor RELION, the number of GPU used in 70S ribosome, beta-galactosidase and 80S ribosome is 3 while 1 is used for TRPV1 and NanoD-TRPV1. On the other hand, the number of Message Passing
Interface (MPI) used in ISAC for 70S ribosome and beta-galactosidase is 10 while 44 is used for all the other datasets. Finally, the execution time is the average over 5 rounds for 70S ribosome and beta-
galactosidase and 3 rounds for all the other datasets
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Pre-Pro enhances map interpretability of curated TRPV1. The
particles of TRPV1 ion channel, cloned from rat (Rattus norve-
gicus) and expressed by and purified from a human cell line17,
represent a tough dataset because the particle is smaller (300 kDa)
where the protein feature is obscured by the amphipol molecules
on the surface. The collection of 35,645 particles represents a
highly curated set using 2D and 3D classifications and has
reported a structure of 3.4 Å (0.70 Nyquist)17. It is noted that the
resolution of this very set was extended to 3.3Å by reprocessing
using CryoSparc18. In this test, we re-curated this set with 2D
classification and used the resultant particles to calculate a 3D
structure using CryoSparc18 guided by the class averages gener-
ated initial model.

To optimize RELION classification of the TRPV1 dataset, we
screened three prescribed class numbers, 50, 100, 175. Compared
to 80S ribosome (Fig. 4(e)), the yields of the TRPV1 particles vary
considerably with the class number to exhibit a broad range of
distribution (62–77% of 35,645) (Fig. 5(e): column 1–3), while the
overall resolutions of the resulting 3D structures vary little with

the class number (Fig. 5(f): column 1–3). It is noted that the
highest resolution—3.31Å, virtually the same as that from full
CryoSparc processing, was obtained from the least number of
particles—approximately 22,000 (62% of 35,645) (Fig. 5(e):
column 1), suggesting the existence of a finer subset. When the
pre-processing was added prior to RELION, improvements in the
overall resolutions are in the range 0.06—0.09Å (Fig. 5(f):
column 1–3; Table 1), lifting the resolutions beyond 3.3Å.
Interestingly, larger improvements were associated with the cases
of lower resolutions (Fig. 5(f): column 2; Table 1).

We then tested ISAC classification on the TRPV1 dataset, by
which we set the class size to 200. The run with ISAC had failed
to converge that no class could be obtained (Fig. 5(e): column 4),
yet this faltering could be rescued with our pre-processing, by
which 67 classes (Supplementary Fig. 15) containing a total of
6,254 particles were produced (Fig. 5(e): column 4) to yield a 3D
structure of 3.8Å (Fig. 5(f): column 4). These classes are only
half-filled and among them the top views are infrequently
reported. To test if increased contrast would help restore ISAC,

Fig. 3 The ISAC classification results of two small datasets: 70S ribosome and beta-galactosidase. (a) 40 classes of 70S ribosome are produced by
ISAC. (b) 45 classes are produced by P-ISAC. (c) 37 classes of beta-galactosidase are produced by ISAC. (d) 41 classes of beta-galactosidase are produced
by P-ISAC. (e) and (f) show the initial models calculated from (c) and (d), respectively, where the calculation was performed with PRIME. The initial model
from ISAC is in green and the one from P-ISAC is in blue. (g) shows the comparison of the initial models to the golden model. The green FSC curve shows
(e) to the golden model while the blue FSC curve shows (f) to the golden model.
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we down-sampled the TRPV1 particle images by 2X. With this
down-sampling, ISAC was rescued, producing more than a
hundred of classes (Supplementary Fig. 15) that contained
approximately 12,000 particles (Fig. 5(e): column 5). However,
the success of this restoration cannot be attributed entirely to the
increased contrast because the contribution from the confound-
ing factor of reduced image dimension or others cannot be ruled

out. When the 2X down-sampling was further aided with the pre-
processing, the total number of classes remained the same, but the
occupancy in each class was increased, yielding more than 20,000
particles (Fig. 5(e): column 5), approximately twice as many as
those without the pre-processing (Supplementary Fig. 15). In
addition, with the aid of the pre-processing (Table 1), the time of
ISAC spent on the 2X down-sampled dataset was cut from 78 to

(a) (b)

(c) (d)

(e) (f)

(h)

(g)

Resolution (1/Å)

FS
C

(i)

RELION P-RELION ISAC P-ISAC

Fig. 4 The Classification Results of Malaria (Plasmodium falciparum) 80S ribosome (EMPIAR-10028). (a) Representative classes from RELION with
100 prescribed classes, and (b) the same as (a) except from P-RELION. (c) Representative class averages from ISAC, (d) the same as (c) except from
P-ISAC (See Supplementary Figs. 12 and 14 for all the class averages). (e), (f) Summarize the statistics of the particle yields, the overall final resolutions.
Four experiments under different settings are conducted (colored with green/blue). 1: RELION/P-RELION with 520 classes, 2: RELION/P-RELION with 200
classes, 3: RELION/P-RELION with 100 classes, 4: ISAC/P-ISAC with 4X down-sampling. (g) Shows the corresponding map-to-model (60S, PDB 3j79) FSC
curves calculated using Phenix50. (h) Shows the overall density maps (threshold = 1.30) corresponding to 3 and 4 in (f) that are displayed according to the
local resolutions using that re-implemented in CryoSparc. From left-hand side to right-hand side are the sharpen maps for RELION, P-RELION, ISAC, and
P-ISAC with the B-factors of 126.4, 125.6, 124.7, and 124.4, respectively. (i) The densities of emetine.
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43 h—a reduction by 45%, which results in 40% time-saving on
the entire workflow. Finally, when P-ISAC was applied to the 3X
down-sampled data, a 3D structure of unprecedented resolution
was produced for this dataset—3.20Å (0.75 Nyquist)(Fig. 5(f):
column 6, Supplementary Fig. 15). Similar to RELION, the tests
on ISAC show that larger improvements by the pre-processing
are associated with the cases of lower resolutions (Fig. 5(f):
column 2; Table 1).

By comparing these best maps, we found slight modifications
in the density map of TRPV1 could be introduced by the pre-
processor—for example, in the cytoplasmic region that includes
the beta-sheets (red arrow in Fig. 5(h)) and the ankyrin repeats
(blue arrow in Fig. 5(h)). Noticeable changes become evident
when we zoom in the map—in a protein loop of 13 residues, from
residues 456 to 468 (456–458), which exhibits gaps in the original
map from RELION, the density of 464–468 is restored in the

(a) (b)

(c) (d)

(e) (f)

(h)

(g)

Resolution (1/Å)

FS
C

(i)

RELION P-RELION ISAC P-ISAC

Fig. 5 The classification results of Rat TRPV1 channel (EMPIAR-10005). (a) Representative classes from RELION with 175 prescribed classes, and
(b) the same as (a) except from P-RELION. (c) Representative classes from ISAC with 3X down-sampling, (d) the same as (c) except from P-ISAC (See
Supplementary Figs. 15 and 16 for all the class averages). (e) The statistics of the total number of harvested particles. Six clustering experiments under
different settings are conducted (colored with green/blue). 1: RELION/P-RELION with 175 classes, 2: RELION/P-RELION with 100 classes, 3: RELION/
P-RELION with 50 classes, 4: ISAC without down-sampling, 5: ISAC/P-ISAC with 2X down-sampling, 6: ISAC/P-ISAC with 3X down-sampling. (f) The
overall final resolutions corresponding to those in (e). (g) The map-to-model FSC curves by comparing the maps of RELION of 1, P-RELION of 1, ISAC of 6,
and P-ISAC of 6 in (e) to PDB 3j5p. The calculation was performed using Phenix50. (h) The overall density maps of RELION of 1, P-RELION of 1, ISAC of 6
and P-ISAC of 6 in (e). The beta-sheets and the ankyrin repeats are indicated with a red arrow and a blue arrow, respectively. The B-factors measured and
used for sharpening the four maps are 86.1,90.1,90.0, and 92.7, respectively. (i) enlarged densities corresponding to (h) where the same threshold of 0.49
on Chimera51 was applied. The left helix corresponds to 559–628 of subunit C, displayed as a reference. The middle and the right helices correspond to
429–455 and 469–498 of subunit A and they form a “U” with the connecting loop (456–468). The brown arrow denotes 464–468 while the green arrow
denotes 456–458.
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P-RELION map (indicated by a brown arrow in Fig. 5(i)) and in
the ISAC map as well (Fig. 5(i)), while that of 456–458 is further
restored in the P-ISAC map (green arrow in Fig. 5(i)).

Compared to the 80S ribosome, classifying this TRPV1 dataset of
increased heterogeneity and lower contrast shows fine-tuning
optimization parameters would lead to measurable improvements.
Notably, when the pre-processor was added, more pronounced
improvement was imparted on the less optimized cases to yield
similar final results.

Pre-Pro improves resolution of non-curated TRPV1 in nanodisc.
So far, all tests on large dataset have been restricted to curated
datasets where marginal improvements were gained for the overall
resolutions. We suspect that larger impact could be made by the
pre-processor on non-curated datasets that have contaminants.
To this end, we further tested two datasets, one is the non-curated
full dataset of TRPV1 (EMPIAR-10005) and the other is a ligand-
bound TRPV1 channel embedded in nanodisc (EMPIAR-10059).
The non-curated set of TRPV1 is referred as "NC-TRPV1” and the
nanodisc-embedded TRPV1 set as "NanoD-TRPV1”. Compared to
the NC-TRPV1 data where the later frames were eliminated17, the
radiation damage in NanoD-TRPV1 data was compensated by
dose-weighting21.

The original set of NC-TRPV1 downloaded from EMDB
database contains slightly more than 80,000 particles. To perform
2D classification, we used 200 classes as the prescribed number for
RELION and 3X down-sampling for ISAC as they were the best
settings found for the tests on the curated set of 35,645 particles.
RELION and ISAC give 50,620 and 43,690 particles respectively,
yielding two structures with indistinguishable resolutions—3.57 and
3.56Å (Table 1 and Supplementary Figs. 15 and 16). The pre-
processor increases the respective number to 55,269 and 52,661 and
furthers the resolutions to 3.42 and 3.39Å respectively. These
resolutions are comparable to that reached by curating the original
set with 2D classification followed by 3D classification17. We
noticed that another pass of P-RELION gave 42,868 particles and
extended the resolution to 3.37Å.

The NanoD-TRPV1 downloaded from EMDB database contains
218,787 particles, from which the authors selected 73,929 particles
using 2D and 3D classifications to obtain a final structure of 2.95Å
(0.82 Nyquist)21. For this dataset, we used RELION (3.0)15 to
speed up the tests since the size of this set is enormous—it is the
largest set in this study. We set the prescribed class number to be
100 to save time on 2D classification. With this setting, RELION
(3.0) 2D classification was finished within 10 h. Typical with
RELION, without and with the pre-processor, RELION sifted
similar fractions of particles—70% (153,839) and 76% (166,236)
respectively. However, the resolutions of the resulting structures
differ substantially—3.01 versus 2.86 Å with the latter obtained
through P-RELION (Supplementary Fig. 17). When additional run
of P-RELION was applied to the set of 166,236 particles, the
resolution was extended to 2.82Å (0.87 Nyquist). As we compare
the RELIONmap with two P-RELIONmaps (Fig. 6), improvement
of the maps is evident in the cytoplasmic part including the
ankyrin repeats. In summary, the tests on non-curated dataset
demonstrate the potential of the pre-processor in making larger
impact on more heterogeneous data.

Discussion
2D classification plays a key role in processing single-particle
cryo-EM images—it is mainly used to curate a particle set, but is
faced with challenges due largely to the noisy nature of the data.
In this report, we introduce a fast and effective pre-processor that
has a built-in particle denoiser to enhance the performance of 2D
classification. One novelty of this tool lies in its two-step

approach. In the first step, the particle shape information is
boosted by denoising through 2SDR a method that is much faster
than those existing PCA approaches22,23. In the second step, the
original particles are re-positioned using the parameters extracted
for aligning the denoised “high-contrast” particles. This approach
prepares a better aligned input set for 2D classification and
consciously avoids the consequence from possible information
corruption by the denoising. By implementing the pre-processor
into software package RELION, ISAC and CL2D10 (Supplemen-
tary Figs. 18–22) with tests performed on several benchmark sets,
we demonstrate this processor with minimally added computa-
tion cost can make 2D classification faster, improve the yield of
good particles, and increase the number of good classes to give
rise to better initial models, particularly evidenced by the beta-
galatcosidase particles. In addition, we found the pre-processor
can save more closer-to-focus particles, suggesting its potential
for benefiting lower contrast data. Further reprocessing the har-
vested particles of large datasets to generate 3D density maps is
enabled by integration of the pre-processor into the entire pro-
cessing workflow (Fig. 1). In the step of 3D refinement, we used
CryoSparc homogeneous refinement for its rapidity, but initi-
alized this step with the initial model produced from 2D class-
average images. Surprisingly, reprocessing the large datasets with
the pre-processor can further improve the final resolutions to
surpass previous works: 3.10 Å for the malaria 80S ribosome,
3.20Å for the TRPV1, and 2.82Å for the TRPV1 in nanodisc.
When the pre-processor is applied to RELION 2D classification
on cleaning non-curated datasets, the resultant improvements are
larger than those on curated datasets—the scale of improvements
is as large as 0.2Å. This scale is notable as it is comparable to that
made by switching from MotionCorr to MotionCor224 or by
compensating radiation damage using Unblur25.

In the wake of cryo-EM resolution revolution, furthering the
resolution by single-particle approach to that offered by X-ray
crystallography would benefit pharmaceutical applications.
Recently, Bartesaghi et al.26 demonstrated a near-atomic cryo-EM
structure of beta-galactosidase could be extended to atomic
resolution (1.8Å) by adding three more correction steps to the
processing workflow, yielding an overall advancement of 0.4Å,
which is a combined effect of three measurable increments: 0.07,
0.09 and 0.12Å obtained by correcting local defocus, local drift
and radiation damage effect respectively. In this view, the
improvement of 0.2Å made by the pre-processing is significant.
It should be noted that, given a B-factor of 100Å2, if one wishes
to improve the resolution by 0.2Å in sub-3 Å regime by taking
more data, one would need to increase the size of the dataset by at
least three times27.

It is seemingly bewildering that better classification results
can be obtained with the pre-processing since it merely re-
positions the original particles without increasing their SNRs.
To possibly explain this puzzle, we consider 2D classification as
an optimization problem—it searches for an optimal solution in
a very high dimensional space whose parameters include the
alignment parameters of all the particle images. Usually, a
search algorithm iterates until convergence occurs and is likely
to be trapped at a local minimum, in particular when it faces
high dimension or non-convex problems. It is well known when
the solution of global optimum is not guaranteed, initial values
can drastically impact the final solution28,29 for which strategies
of setting best initial values are being actively developed. In this
light, our finding implies that the pre-processing may have set
better initial values to predestine the investigated classification
algorithms to escape from some, if not all, local minimums30.
Given so, it explains why the pre-processor can benefit RELION,
ISAC, CL2D10 (Supplementary Table 1, 2 and Supplementary
Figs. 18–22) and even CryoSparc (Supplementary Fig. 23), and
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suggests the pre-processor may benefit other popular packages
that also rely on K-means for clustering22,31 or use expectation-
maximization32. Since the pre-processor is modular in nature,
its usage is not restrictive to the 2SDR denoising, but can be
adaptable to any other denoising methods—for example, neural-
network (NN) denoising methods which have been recently
used with good results for particle picking33–36.

Methods
Conceptual framework of the pre-processing. We describe our scheme of
denoising cryo-EM images and its rationale, but present the rigorous mathematical
framework in a separate publication12. This scheme is based on a dimension-
reduction method that has its roots in principal component analysis (PCA). This
type of approach, first introduced to single-particle EM in the form of multivariate

statistical analysis (MSA)37, has been used to assist 2D analysis of much noisier
cryo-EM data38. However, because PCA needs to solve the eigenvectors of co-
variance matrix of vectorized images, the complexity of computation is scaled up
with the square of the number of pixels of an image. As a result, the usage of PCA
on large images is unfavorable22. To remove the bottleneck rooted in treating an
image as a vector, alternative approaches were proposed to keep an image as a
matrix39–41. Based on such notion, a two-stage dimension-reduction method
(2SDR) was introduced to reduce the computation cost12. Additionally, since
matrix vectorization would lead to extreme high-dimensionality, which together
with low SNR, make the eigenvector estimation of PCA unreliable, we first treat the
image as a matrix and employ matrix matrix rank reduction method like Higher
Order Singular Value Decomposition (HOSVD)39 or multilinear principal com-
ponent analysis (MPCA)40,41 to reduce the matrix into smaller dimension.
Observing that the reconstructed cryo-EM particle images by HOSVD or MPCA
still carry heavy noise, we introduce a PCA model in the second stage that vec-
torizes the reduced-rank matrix and clean another layer of noise. In this work,
2SDR (HOSVD-PCA) is performed on the images with (p0, q0) = (25, 25)

(a) (b)

(c) (d)

(e)

(f)

(g)

RELION P-RELION P-RELION (2nd )

Fig. 6 The Classification Results of NC-TRPV1 (EMPIAR-10005)((a)–(d)) and NanoD-TRPV1 (EMPIAR-10059)((e)–(g)). (a) Representative classes of
NC-TRPV1 from RELION with 200 prescribed classes and (b) from P-RELION. (c) Representative classes from ISAC with 3X down-sampling on NC-TRPV1,
(d) from P-ISAC (See Supplementary Figs. 15 and 16 for all the class averages). For (e)–(g), from left to right are the results of RELION, P-RELION, and P-
RELION (second pass). (e) Representative classes of NanoD-TRPV1 using RELION or P-RELION with 100 prescribed classes (See Supplementary Fig. 17 for
all the class averages), (f) the FSC resolution for NanoD-TRPV1, (g) shows the overall density maps (threshold= 0.55). The B-factors measured and used
for sharpening the three maps are 130.6, 123.5, 117.3, respectively.
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components in the HOSVD step and r = 50 in the PCA step (we use HOSVD
instead of MPCA to speed up the computation and we use fixed rank instead of the
rank selection procedure described in ref. 12). To highlight the SNR improvement
by the 2SDR denoising, we summarize the SNR of the original image and that of
the denoised image for all the test data in Supplementary Table 3.

Since the initial references for alignment in a 2D classification algorithm are
randomly selected from the entire set of raw images, which are very noisy, the
resulting best matching class members could be unrelated or the best alignment
parameters erroneous at the beginning. To mitigate the effect of the noise, we first
employ 2SDR to the raw particle images. The denoised image dataset is then
subjected to a fast reference-free alignment procedure, from which we record and
extract the alignment parameters of rotation angles and x-and-y-direction shifts.
To alleviate the consequence from the loss of high-resolution structure information
through dimension-reduction, these alignment parameters are applied to the set of
original images, not the denoised set. This procedure, as illustrated in Fig. 1(b),
poses the images in new positions, ready to be fed to a 2D classification algorithm.
As a result, the information of the original images remains intact except for minute
effect from interpolation.

The reference-free alignment used in this work is based on that implemented
in the SPARX package42, which is much faster than the original algorithm43. The
implementation of reference-free alignment is conducted in two stage. The first
stage is to form a global approximation of image dataset by averaging all images
into a single reference image. In the second stage, each image is compared with
this reference image by varying the x–y shift and the rotation—the parameters
that give the highest cross-correlation are recorded. Finally, these parameters are
apply to each image and the transformed images are averaged to form the new
reference image. The process is repeated for several iterations to refined the
alignment parameters. For all the experiments in this study, three iterations of
reference-free alignment are applied on the denoised images and two additional
iterations of reference-free alignment are used to fine-tune the re-positioned
original images, as illustrated in Fig. 1(b). To facilitate the usage of the pre-
processor, we provide a plugin that permits its insertion between particle picking
and 2D classification (Fig. 1(b)).

Data description and preparation. In this study, six experimental cryo-EM
datasets are used for the tests. The first set is a subset of 10,000 E. coli 70S
ribosome, a widely used test dataset6,10,14,44–47 recorded in Joachim Frank lab
using a CCD camera (available from ftp://ftp.ebi.ac.uk/pub/databases/emtest/SPI-
DER_FRANK_data). The original 70S ribosome set containing 91,114 boxed-out
particles with box size of 130 × 130 pixels of 2.82Å as previously described46 can
no longer be found from Electron Microscopy Data Bank. We only used the first
half set, which is ribosome bound with an elongation factor (EF-G). We term it
“70S ribosome”. Each particle has the defocus parameters annotated (in the range
of 2.5–3.5 μm). For the pilot and the classification experiments, we did not use the
CTF-corrected particles, but used them when performing 3D reconstruction with
CryoSprac18 for a simulation study.

The second set contains 15 movies of beta-galactosidase recorded on a direct
electron camera (Falcon II). It was downloaded from RELION 2.1 tutorial data. To
deblur the micrographs, we performed motion correction using the movie frame
alignment function on XMIPP48. The contrast transfer function (CTF) estimation
was performed by Ctffind449 and the correction was applied to each micrograph.
Finally, using XMIPP auto-picking function, we extracted 5672 particles from these
micrographs with a box size of 100 × 100 pixels of 3.54Å due to 2X down-sampled
in RELION Tutorial.

The third dataset is a malaria 80S ribosome16 from Scheres lab. It is downloaded
from EMDB (accession number EMPIAR-10028). This set contains 105,247
particles carefully selected from a larger set of 158,212 particles by the authors16

and is provided as a RELION Benchmark example. This data was recorded on a
direct camera (Falcon II) using a 300 kV Titan Krios cryo-EM at MRC and it is
used for testing the performance of a cryo-EM image processing algorithm. The
size of the particle image is 360 × 360 pixels of 1.34Å. With the defocus parameters
provided for each particle by the authors, we applied CTF correction.

The fourth (curated) and fifth (non-curated) dataset are TRPV1 channel
downloaded from EMDB (EMPIAR-10005). The original dataset was recorded on a
direct electron counting camera (K2) with super-resolution mode (0.6 Å) in Yifan
Cheng lab at UCSF using a 300 kV cryo-EM with a side-entry holder17 and then
extracted and decimated by a factor of 2 into images with a box size of 256 × 256
pixels (1.2Å) by the authors. The 35,645 particles were carefully selected using 2D
and 3D classifications by the authors from a larger set of 88,915 particles. We
performed CTF correction using the provided defocus parameters.

The last one is TRPV1 embedded in nanodisc downloaded from EMDB
(EMPIAR-10059). The dataset is with a box size of 192 × 192 pixels (1.2Å) by the
authors21. All the 218,805 particles were used in this study. We performed CTF
correction using the provided defocus parameters.

3D reconstruction. As described in the workflow in Fig. 1(a), once a 2D clas-
sification process is completed, we use good class averages to calculate the initial
model using the ab initio method provided by PRIME14. The initial model is
then used to guide 3D refinement by CryoSprac. Note that to alleviate the loss of
high-resolution information due to interpolation, we use the original set of

particles for 3D refinement, instead of the re-positioned set used for 2D clas-
sification. To assess the overall resolution of a structure, we use the standard
Fourier shell correlation (FSC). For displaying local resolutions, we use CryoS-
parc’s local resolution program.

Computation resources. As for the computers used for the computation, all the
experiments are run on a workstation equipped with two Intel Xeon CPU E5-2699
v4 at 2.20 GHz and eight NVIDIA Geforce GTX 1080 Ti graphics cards, except
early pilot tests were performed on a notebook.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The 70S ribosome can be found in EMDB test image data. The beta-galactosidase can be
downloaded from RELION 2.1 tutorial data. 80S ribosome is from EMDB (accession
number EMPIAR-10028). TRPV1 channel is available in EMDB (EMPIAR-10005). TRPV1
embedded in nanodisc is available in EMDB (EMPIAR-10059). The 3D maps in Figs. 1–6
are available in https://drive.google.com/file/d/1iihyVw1Jy7ob9fKcq3ewkfZ8350qPFRM/.
Remaining data are available from corresponding author upon reasonable request.

Code availability
To facilitate the usage of 2SDR pre-processing, we offer a plugin to allow it to be installed
prior to a classification algorithm or inserted into a cryo-EM image processing pipeline.
The plugin, including source code, is available for noncommercial use as a download at
http://sabid.stat.sinica.edu.tw/.

Received: 24 December 2019; Accepted: 13 July 2020;

References
1. De Rosier, D. & Klug, A. Reconstruction of three dimensional structures from

electronmicrographs. Nature 217, 130–134 (1968).
2. Dubochet, J., Lepault, J., Freeman, R., Berriman, J. & Homo, J.-C. Electron

microscopy offrozen water and aqueous solutions. J. Microsc. 128, 219–237
(1982).

3. Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. A primer to single-particle
cryo-electronmicroscopy. Cell 161, 438–449 (2015).

4. Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).
5. Van Heel, M. & Stöffler-Meilicke, M. Characteristic views of E. coli and B.

stearothermophilus 30S ribosomal subunits in the electron microscope. EMBO
J. 4, 2389–2395 (1985).

6. Scheres, S. H. A Bayesian view on cryo-EM structure determination. J. Mol.
Biol. 415, 406–418 (2012).

7. Sigworth, F. A maximum-likelihood approach to single-particle image
refinement. J. Struct. Biol. 122, 328–339 (1998).

8. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from
incomplete data via theEM algorithm. J. R. Stat. Soc.: Ser. B (Methodol.) 39,
1–22 (1977).

9. Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-
EM structuredetermination with parallelisation using GPUs in RELION-2.
Elife 5, e18722 (2016).

10. Sorzano, C. et al. A clustering approach to multireference alignment of single-
particleprojections in electron microscopy. J. Struct. Biol. 171, 197–206 (2010).

11. Yang, Z., Fang, J., Chittuluru, J., Asturias, F. J. & Penczek, P. A. Iterative stable
alignment andclustering of 2D transmission electron microscope images.
Structure 20, 237–247 (2012).

12. Chung, S.-C., Wang, S.-H., Niu, B.-Y., Huang, S.-Y., Chang, W.-H. & Tu, I.-P.
Two-stage dimension reduction for noisy high-dimensional images and
application to Cryogenic Electron Microscopy. Annal. Math. Sci. Appl. (2020,
in press).

13. Cong, Y., Kovacs, J. A. & Wriggers, W. D fast rotational matching for image
processing ofbiophysical data. J. Struct. Biol. 144, 51–60 (2003).

14. Elmlund, H., Elmlund, D. & Bengio, S. PRIME: probabilistic initial 3D model
generation forsingle-particle cryo-electron microscopy. Structure 21,
1299–1306 (2013).

15. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure
determination in RELION-3. Elife 7, e42166 (2018).

16. Wong, W. et al. Cryo-EM structure of the Plasmodium falciparum
80S ribosome bound to the anti-protozoan drug emetine. Elife 3, e03080
(2014).

17. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel
determined by electron cryo-microscopy. Nature 504, 107–112 (2013).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01229-0 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:508 | https://doi.org/10.1038/s42003-020-01229-0 | www.nature.com/commsbio 11

https://drive.google.com/file/d/17e7MCk6-FP3X9Jn9-U-WvWw-L1oY178V/view?usp=sharing
https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10028/
https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10005/
https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10059/
https://www.ebi.ac.uk/pdbe/emdb/test_data.html
https://drive.google.com/file/d/17e7MCk6-FP3X9Jn9-U-WvWw-L1oY178V/view?usp=sharing
https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10028/
https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10005/
https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10059/
https://drive.google.com/file/d/1iihyVw1Jy7ob9fKcq3ewkfZ8350qPFRM/
http://sabid.stat.sinica.edu.tw/
www.nature.com/commsbio
www.nature.com/commsbio


18. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC:
algorithms for rapid unsupervised cryo-EM structure determination. Nat.
Methods 14, 290–296 (2017).

19. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution
of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

20. Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all:
Mapping localvariations in resolution in cryo-EM reconstructions. J. Struct.
Biol. 184, 226–236 (2013).

21. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal
mechanisms ofligand and lipid action. Nature 534, 347–351 (2016).

22. Van Heel, M., Portugal, R. V. & Schatz, M. Multivariate statistical analysis of
large datasets:Single particle electron microscopy. Open J. Stat. 6, 701–
739 (2016).

23. Bhamre, T., Zhang, T. & Singer, A. Denoising and covariance estimation of
single particlecryo-EM images. J. Struct. Biol. 195, 72–81 (2016).

24. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion
forimproved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

25. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle
cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. Elife 4, e06980 (2015).

26. Bartesaghi, A. et al. Atomic resolution cryo-EM structure of β-galactosidase.
Structure 26, 848–856 (2018).

27. Danev, R., Tegunov, D. & Baumeister, W. Using the Volta phase plate with
defocus for cryo-EMsingle particle analysis. Elife 6, e23006 (2017).

28. Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features
in deep neural networks? Adv. Neural. Inf. Process. Syst. 27, 3320–3328
(2014).

29. Nishiyama, T. et al. Refinement for single-nanoparticle structure
determination fromlow-quality single-shot coherent diffraction data. IUCrJ. 7,
10–17 (2020). https://doi.org/10.1107/S2052252519014222.

30. Vilas, J. et al. Latest advances in image processing for single particle analysis
by electron cryomicroscopy and challenges ahead. Curr. Opin. Struct. Biol. 52,
127–145 (2018).

31. Tang, G. et al. EMAN2: an extensible image processing suite for electron
microscopy. J. Struct. Biol. 157, 38–46 (2007).

32. Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for
single-particle imageprocessing. Elife 7, e35383 (2018).

33. Bell, J. M., Chen, M., Durmaz, T., Fluty, A. C. & Ludtke, S. J. New software
tools in EMAN2 inspired by EMDatabank map challenge. J. Struct. Biol. 204,
283–290 (2018).

34. Bepler, T., Noble, A.J. & Berger, B. Topaz-Denoise: general deep denoising
models for cryoEM. BioRxiv. https://doi.org/10.1101/838920 (2019).

35. Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated
particle pickerfor cryo-EM. Commun. Biol. 2, 1–13 (2019).

36. Lehtinen, J. et al. Noise2Noise: Learning Image Restoration without Clean
Data. Proceedings of the 35th International Conference on Machine Learning,
PMLR 80, 2965–2974 (2018).

37. Van Heel, M. & Frank, J. Use of multivariates statistics in analysing the images
of biologicalmacromolecules. Ultramicroscopy 6, 187–194 (1981).

38. Frank, J. Three-dimensional Electron Microscopy of Macromolecular
Assemblies:visualization of Biological Molecules in their Native State (Oxford
University Press, 2006).

39. De Lathauwer, L., De Moor, B. & Vandewalle, J. A multilinear singular value
decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000).

40. De Lathauwer, L., De Moor, B. & Vandewalle, J. On the best rank-1 and rank-
(R1, R2, …, RN) approximation of higher-order tensors. SIAM J. Matrix Anal.
Appl. 21, 1324–1342 (2000).

41. Kolda, T. G. & Bader, B. W. Tensor decompositions and applications. SIAM
Rev. 51, 455–500 (2008).

42. Hohn, M. et al. SPARX, a new environment for Cryo-EM image processing.
J. Struct. Biol. 157, 47–55 (2007).

43. Penczek, P., Radermacher, M. & Frank, J. Three-dimensional reconstruction
of single particlesembedded in ice. Ultramicroscopy 40, 33–53 (1992).

44. Liao, H.Y. & Frank, J. Classification by bootstrapping in single particle
methods. Proc. IEEE Int. Symp. Biomed. Imaging. 2010, 169–172 (2010).

45. Chen, T.-L. et al. γ-SUP: a clustering algorthm for cryo-electron microscopy
images of asymmetric particles. Ann. Appl. Stat. 8, 259–285 (2014).

46. Scheres, S. H. et al. Disentangling conformational states of macromolecules in
3D-EMthrough likelihood optimization. Nat. Methods 4, 27–29 (2007).

47. Elad, N., Clare, D. K., Saibil, H. R. & Orlova, E. V. Detection and separation of
heterogeneity inmolecular complexes by statistical analysis of their two-
dimensional projections. J. Struct. Biol. 162, 108–120 (2008).

48. Sorzano, C. et al. XMIPP: a new generation of an open-source image
processing packagefor electron microscopy. J. Struct. Biol. 148, 194–204
(2004).

49. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation
from electronmicrographs. J. Struct. Biol. 192, 216–221 (2015).

50. Adams, P. D. et al. PHENIX: building new software for automated
crystallographicstructure determination. Acta Crystallogr. D: Biol. Crystallogr.
58, 1948–1954 (2002).

51. Pettersen, E. F. et al. UCSF Chimeraa visualization system for exploratory
research andanalysis. J. Comput. Chem. 25, 1605–1612 (2004).

Acknowledgements
I.-P.T. was supported by Ministry of Science and Technology [MOST 106-2118-M-001-
001-MY2] and an Academia Sinica Grand Challenge Project grant [AS-GCS-108-08].
W.-H.C. is grateful for long-term support on the development of a Cryo-EM platform at
Academia Sinica through AS Nano Program, and AS SUMMIT Project supported by
[AS-SUMMIT-107], [AS-SUMMIT-108], [AS-SUMMIT-109] and [MOST-107-0210-01-
19-01],[MOST-108-3114-Y-001-002], [MOST-109-0210-01-18-02].

Author contributions
I.-P.T. and W.-H.C. conceived and designed the project; S.-C.C. and B.-Y.N. wrote the
2SDR codes and conducted the classification experiments; S.-C.C., H.-H.L., and W.-H.C.
analyzed the classification results; S.-C.C., H.-H.L., S.-H. Huang, and W.-H.C. analyzed
the density maps; S.-C.C., I.-P.T., and W.-H.C. wrote the manuscript.

Competing Interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s42003-
020-01229-0.

Correspondence and requests for materials should be addressed to I-P.T. or W.-H.C.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01229-0

12 COMMUNICATIONS BIOLOGY |           (2020) 3:508 | https://doi.org/10.1038/s42003-020-01229-0 | www.nature.com/commsbio

https://doi.org/10.1107/S2052252519014222
https://doi.org/10.1101/838920
https://doi.org/10.1038/s42003-020-01229-0
https://doi.org/10.1038/s42003-020-01229-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Pre-pro is a fast pre-processor for single-particle cryo-EM by enhancing 2D classification
	Results
	Pilot test on 70S ribosome shows the benefits of denoising
	Pre-Pro can be coupled with RELION to give better results
	Pre-Pro makes ISAC faster and save closer-to-focus particles
	Pre-Pro on 80S ribosome is cost-effective and lossless
	Pre-Pro enhances map interpretability of curated TRPV1
	Pre-Pro improves resolution of non-curated TRPV1 in nanodisc

	Discussion
	Methods
	Conceptual framework of the pre-processing
	Data description and preparation
	3D reconstruction
	Computation resources

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing Interests
	Additional information




