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Abstract: For decades, activation of Aryl Hydrocarbon Receptor (AhR) was excluded from considera-
tion as a therapeutic approach due to the potential toxic effects of AhR ligands and the induction of
the cytochrome P450 enzyme, Cyp1a1, following AhR activation. However, it is now understood that
AhR activation not only serves as an environmental sensor that regulates the effects of environmental
toxins, but also as a key immunomodulator where ligands induce a variety of cellular and epigenetic
mechanisms to attenuate inflammation. Thus, the emergence of further in-depth research into diverse
groups of compounds capable of activating this receptor has prompted reconsideration of its use
therapeutically. The aim of this review is to summarize the body of research surrounding AhR
and its role in regulating inflammation. Specifically, evidence supporting the potential of targeting
this receptor to modulate the immune response in inflammatory and autoimmune diseases will be
highlighted. Additionally, the opportunities and challenges of developing AhR-based therapies to
suppress inflammation will be discussed.

Keywords: aryl hydrocarbon receptor; TCDD; inflammation; inflammatory disease; epigenetic;
multiple sclerosis; inflammatory bowel diseases; atopic dermatitis

1. Introduction

Inflammatory and autoimmune disease development is significantly affected by a num-
ber of factors including environmental pollutants, the microbiome, diet, and metabolism [1].
It is known that regulation of the immune system in such diseases involves both genetic
and environmental factors, though much is still unknown regarding the latter. These factors
can be integrated through the AhR, a ligand-dependent transcription factor that controls
various transcriptional processes. Though this receptor is historically known for its function
as an environmental sensor, attention has shifted towards elucidating its role in innate and
adaptive immune functions and as a possible therapeutic target, partly due to its expression
in many vertebrate cells including numerous immune cell types and barrier organs such as
the skin, intestine, and lung [2,3]. In this review, we focus on the source of AhR ligands, the
mechanisms and immunological changes through which they attenuate inflammation, and
diseases where their use as a treatment has been shown to be beneficial. We also discuss the
role of the microbiota and AhR mutations in triggering inflammation which, when taken
together, lend credence to the potential of AhR as a therapeutic target.

2. Introduction to Inflammation

Inflammation is characterized as an adaptive response to harmful stimuli and con-
ditions aimed at removing the causative agent and returning the host to homeostasis [4].
It is the underlying component of many processes and, when adequately regulated, can
act as an efficient protector against infection and wound healing [5]. Dysregulation of
inflammation, however, can lead to excessive tissue damage and increased risk of chronic
diseases [4,6].
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Tissue injury and infection are conventional causes of inflammation that induce either
an acute or chronic response [6]. If the causative agent can be cleared relatively quickly,
the host’s immune system will launch an acute inflammatory response. During this type
of response, the goal is to get white blood cells and plasma proteins to the site of injury.
To accomplish this, vascular permeability is increased which allows for extravasation of
leukocytes [7]. Resident immune cells, such as mast cells, macrophages, and dendritic
cells typically sense this type of inflammation via innate pathogen recognition receptors
(PRRs), including toll-like receptors (TLRs) and nucleotide-binding oligomerization domain
(NOD)-like receptors, and induce the synthesis of cytokines leading to the activation of
downstream proinflammatory pathways [8–10]. Specifically, the TLR signaling pathway
has been implicated in rheumatoid arthritis (RA) in that TLRs were increased in multiple
immune cell types [11,12] as TLR-2 and TLR-4 ligand responses were increased in RA
patients [13]. Pro-inflammatory cytokines, such as tumor necrosis factor (TNF), interleukin
(IL)-1, and IL-6, direct the inflammatory response by regulating activities, such as the
recruitment of blood cells and endothelial permeability [7]. TNF-alpha specifically has
been identified as a therapeutic target for RA due to its role in activating macrophages
and lymphocytes and increasing secretion of other inflammatory cytokines [14]. The acute
response is over once the initiator has been removed and the affected tissue has been
repaired [15]. Throughout this process, damage to the host tissue is inevitable [4,6].

If the inflammatory inducer is unable to be cleared swiftly, the inflammation will
continue into a more chronic state. While impairment of the tissue, organ, or organ system
often causes chronic inflammation, autoimmune responses are sometimes the culprit, and
thus lead to autoimmune diseases [4]. In autoimmune diseases, the damage is caused
by self-reactive, adaptive immune responses caused by a loss of tolerance [16,17]. Bo
et al. showed that this loss of tolerance could be triggered by viral and bacterial infections
such as those caused by Epstein–Barr virus (EBV) and Mycobacterium avium subspecies
paratuberculosis (MAP) [18]. In these studies, interferon regulatory factor 5 (IRF5) was
identified as an autoimmune target of RA due to increased reactivity to IRF5 antibodies
in sera samples from RA patients [19]. In the case of autoimmune diseases, self-antigens
are the target, however, because removal of them is not possible, this state of chronic
inflammation usually leads to further tissue damage [20].

The environment has been proposed as a possible player in autoimmune disorders
due to increasing rates of these diseases in industrialized countries [16]. Other culprits
include human endogenous retroviruses K/W (HERV-W/K), species of Mycobacteria, and
EBV as triggers of multiple sclerosis (MS) [21,22], neuromyelitis optica spectrum disorder
(NMOSD) [21,23], amyotrophic lateral sclerosis (ALS) [24,25], diabetes [26], and RA [27].
While progress has been made in terms of treatments, many of these conditions progress
slowly so tissue damage may have occurred before the diseases are diagnosed [16]. Ad-
ditionally, some of the agents used are overtly immunosuppressive thereby increasing
the chances of the patients’ acquiring infections and cancer [28]. Thus, it is necessary to
investigate therapeutic targets that can prevent and treat inflammatory and autoimmune
diseases including the potential to reverse the damage caused by inflammation. Studies
support the notion that these goals can be accomplished with targeting AhR.

3. Introduction to AhR

Depending on the cells, tissues, and organs expressing AhR, the role it plays in the
inflammatory response may vary. This receptor is a member of the basic helix-loop-helix
(bHLH) transcription factor superfamily and contains a central periodic circadian protein
(PER)-AhR nuclear translator (ARNT)-single-minded (SIM) protein domain [29]. The
classical signaling used by molecules with a PER-ARNT-SIM (PAS) domain such as AhR
allows communication between the host and the external environment [30], which supports
AhR’s initial characterization as a bioactivator and metabolizer of environmental toxins,
xenobiotics, and carcinogens [2,31].



Int. J. Mol. Sci. 2022, 23, 288 3 of 19

Ligand-free AhR resides in the cytoplasm complexed with a dimer of the heat shock
protein 90 (HSP90), hepatitis B virus X-associated protein 2 (XAP-2; also known as the
AhR-interacting protein (AIP)), c-SRC protein kinase, and p23 prior to ligand binding [32].
The first HSP90 molecule binds to the PAS region whereas the second interacts with both
the bHLH region, an area involved in DNA binding, and the PAS region which is involved
with ligand-binding [2,33]. AIP is involved in the stabilization of the chaperone complex
and the AhR protein itself by preventing ubiquitination [34]. Upon ligand binding, this
protein is released, and conformational changes occur that expose the nuclear localization
signal [35]. The AhR translocates to the nucleus, but it is unclear which chaperone molecules
join. Recent studies suggested that the translocation of HSP90 to the nucleus occurs upon
activation with certain ligands [33,36]. This may be a ligand-specific determination, so
further studies are needed.

With the help of its bHLH and PAS domains, AhR binds to the aryl hydrocarbon
receptor nuclear translocator (ARNT; also known as HIF1β) in the nucleus to form a het-
erodimer [35,37–39]. This forms a DNA binding complex that activates one of the more
well-characterized signaling pathways: the transcription of genes that contain xenobi-
otic responsive elements [XREs; also known as dioxin-responsive elements (DREs)] [39]
(Figure 1A). As a result, AhR agonists are capable of inducing the expression of cytochrome
P450 (CYP) enzymes along with many others [3,37–40].
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Figure 1. Canonical and Non-Canonical AhR Pathways. In the Canonical pathway, AhR activation
by ligand leads to regulation of genes with XREs such as CYP enzymes among others. AhR also leads
to transcription of genes without XREs, such as estrogen-responsive DNA elements, NK-κβ, and
STAT proteins. (Created with BioRender.com on 17 November 2021).

In addition to regulating genes with XREs, AhR can be recruited to other target DNA
sequences to regulate the expression of genes without XREs (Figure 1B). This has been
observed in a uterine tumor cell line where AhR is recruited to estrogen-responsive DNA
elements to induce transcriptional estrogenic effects upon complexing with receptors ER-α
and ER-β [41]. AhR is also capable of regulating nuclear factor-κβ (NF-κβ) and signal
transducer and activator of transcription (STAT) proteins, emphasizing the depth of its
immunomodulatory effects [42–44].

In summary, AhR has a well-studied adaptive function that seems to be important
in cellular defenses against exogenous toxins. Further, the physiological function of AhR
has gained a wealth of attention more recently. Not only does it interact with signaling
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pathways involved in cell proliferation and cell cycle [45,46], cytokine secretion [47], cell
adhesion and cell migration [48], but specifically in mammals, AhR seems to have been
involved in the development and functions of the immune system and thus is present in a
variety of immune cell types [35,37,49].

3.1. Different Types of Ligands

Since the ligand-binding site of the AhR is structurally flexible [50], many small
molecules are able to act as ligands to activate it [35]. In addition to the exogenous ligands
(2,3,7,8-tetrachlo-rodibenzo-p-dioxin (TCDD), benzo[a]pyrene, β-naphthoflavone, etc.),
that have been examined extensively [51–54], many other endogenous and dietary AhR
ligands have been identified and show differential properties upon ligand activation [55,56].

3.1.1. Endogenous AhR Ligands

A physiological source of many AhR ligands comes from the metabolism of tryptophan
primarily via the kynurenine pathway. In the context of inflammation, indoleamine 2,3-
dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are the two main enzymes that
metabolize tryptophan and generate kynurenine [2]. Kynurenine is capable of activating
AhR, and its production is stimulated via a positive feedback loop in that the expression of
IDO1 is increased, leading to degradation of tryptophan and production of kynurenine [57].
This AhR agonist has been shown to increase the differentiation of Foxp3+ T regulatory
cells (Tregs) [58]. Kynurenine also gives rise to other metabolites, such as kynurenic acid,
that serve as potent AhR ligands [35].

6-formylindolo[3,2-b]carbazole (FICZ) is a high affinity agonist derived from oxi-
dized tryptophan through ultraviolet radiation that stimulates AhR-mediated activation
of CYP1A1, 1A2, and 1B1 [2,31]. It is ubiquitous in cell culture conditions and is rapidly
metabolized in a CYP1A1 negative feedback loop [3]. This ligand has implications in
genomic stability, circadian rhythms, and the immune response [35]. Additionally, FICZ
has been shown to play an important role in barrier function. In the small intestine, FICZ
treatment enhanced T cell release of IL-17 and IL-22 in the small intestine which induced a
protective effect of the intestinal barriers of mice after ethanol and burn injury [59]. It also
shows promise as a therapeutic due to its effects on intraepithelial lymphocytes [60].

Yet another endogenous AhR agonist produced from tryptophan metabolism is 2-
(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) [61]. It is a nontoxic
AhR agonist that has been shown to act on both T cells and dendritic cells to suppress
gut inflammation in colitis [62], as well as display anti-cancer activity in multiple cell
types [63,64]. Additionally, it has been shown to induce G1/G0 cell cycle arrest and
apoptosis in hepatocellular carcinoma cells as well as inhibit their migration [65]. Studies
have shown that ITE enacts its effects in a similar mechanism to the toxic AhR ligand TCDD
in that it suppresses the Th17 response and induces Tregs [66,67]. These data implicate
its use as a therapy not only in inflammatory diseases but also against inflammation-
driven cancers.

Research on tryptophan metabolites capable of activating AhR led to the identification
of ligands generated by the microbiota. Lactobacillus reuteri, a microbe present throughout
the gastrointestinal tract, has been shown to produce indole-3-aldehyde through the indole-
pyruvate pathway [68]. Additional ligands microbially metabolized from indole have
also been identified and implicated in barrier function [69]. If proven to limit intestinal
inflammation and preserve the integrity of the gut barrier, these ligands may show promise
in treating inflammatory diseases.

3.1.2. Dietary AhR Ligands

Many ligands are also acquired from the host’s diet. One way this is accomplished
is through the consumption of cruciferous vegetables. Indole-3-carbinol (I3C), a natural
glucosinolate glucobrassicin metabolite, is converted into multiple derivatives through acid
hydrolysis upon digestion and produces another agonist, 3,3′-diindolylmethane (DIM), as
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a major by-product [70,71]. These agonists have been shown to possess anti-inflammatory,
as well as anti-cancer and antimicrobial properties [72–74]. Studies have implicated I3C
in intestinal stem cell development and proposed regulatory mechanisms such as Wnt
and Notch signalling [75,76]. Treatment with DIM has been shown to elicit protective
effects against liver injury through suppression of reactive oxygen species, limiting the
pro-inflammatory mediators and cytokines, and attenuating hepatocyte apoptosis [77].

The natural polyphenol resveratrol is found in many dietary sources, particularly plant
products [78,79]. The anti-cancer effects of resveratrol have been well defined in various cell
types [80,81], and extensively reviewed elsewhere [82,83]. In regard to its anti-inflammatory
properties, our laboratory has shown that resveratrol elicits its immunological effects in
allergic asthma by downregulating miR-34a to induce expression of Foxp3 [84]. Further,
it has been implicated in the amelioration of colitis through alterations of gut microbiota
towards microbial species that induce Tregs and suppress Th1/Th17 cells [85].

There are numerous dietary AhR ligands that have been reviewed in the recent past
and thus, we have limited our discussion on these in the current review [37,86–88].

4. Mechanisms through Which AhR Activation Attenuates Inflammation

In addition to regulating and inducing transcriptional changes, the AhR is capable of
controlling cellular and molecular responses in a ligand-dependent manner [89]. Here, we
address mechanisms used by AhR to mediate suppression of inflammation (Figure 2).
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Figure 2. Mechanisms of Action of AhR Ligands to Suppress Inflammation (Created with
BioRender.com on 17 November 2021).

4.1. Thymic Atrophy

Thymic atrophy is a process that decreases the host’s ability to regenerate peripheral
T cells resulting in disruption of thymic T cell development and differentiation. This
process has been well defined in studies from the 1990s involving multiple animal species
and TCDD [90]. A recent study has shown that TCDD-induced activation of AhR in
dendritic cells is responsible for the observed thymic atrophy [91]. Further, supplementing
nicotinamide adenine dinucleotide (NAD)+ through use of a form of vitamin B3 has
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been shown to prevent thymic atrophy, and thus reveals a role to combat TCDD-induced
toxicity [92].

4.2. Apoptosis

In addition to AhR activation by TCDD leading to thymic atrophy, it has been reported
that TCDD induces apoptosis [93]. Specifically, extensive studies have implicated Fas-Fas
ligand (FasL) mediated apoptosis in activated T cells since it has been shown that FasL is
upregulated upon AhR activation by TCDD leading to apoptosis [94,95]. Additionally, the
promoter region of Fas contains a DRE with confirmed AhR binding, further implicating
AhR in Fas-FasL interactions [93]. Furthermore, our laboratory has shown nuclear factor
kappa B (NF-κB) and/or DREs with Fas-FasL regulation via Ahr due to multiple NF-kb
motifs on the Fas and FasL promoters and presence of a DRE on the Fas promoter [96].
Of note, other mechanisms of apoptosis such as p53-mediated, have been associated with
TCDD-induced activation of AhR [97].

4.3. Treg Induction

Anti-inflammatory T regulatory cells (Tregs) are known for their essential role in
the conservation of tolerance to self-antigens as well as in the regulatory mechanisms
of immune-mediated inflammation [98]. It has been shown in non-obese diabetic mice
that neutralizing anti-IL-2 antibodies accelerate type 1 diabetes and that a reduction in
IL-2 could impact Treg function and thus immune tolerance [99]. Taken together with the
observance of raised anti-IL-2 antibodies in RA patients [100], loss of tolerance to IL-2 has
been implicated as a mechanism through which autoimmune diseases are triggered due to
its critical role in maintaining proper Treg function. The role of AhR in the activation of
Tregs has been detailed in a recent review [101]. There are many different subsets of Tregs,
but they are classically characterized as CD4 + CD25 + Foxp3+ and have been shown to
contain higher expression levels of both AhR and CYP1A1 [102,103]. There have been many
studies conducted that show that AhR activation by ligand is capable of increasing Tregs to
reduce inflammation and ameliorate disease [62,66,71,85,103,104]. Recently, LPS-pretreated
allogeneic hepatic stellate cells have been shown to use AhR-mediated mechanisms to
expand and stabilize naturally occurring Tregs [105]. Together, these studies emphasize
the role of AhR activation in Treg function to abate inflammation while also suggesting a
critical role of IL-2 in T cell maintenance in autoimmunity.

Further, evidence suggests that CD4 + Foxp3− Tregs can be induced via AhR ac-
tivation and are critical in reducing inflammation in murine models of inflammatory
disease [101]. These were initially referred to as an AhR-dependent phenotype of cells that
highly express CD25 and CTLA-4 [106]. Early in the graft versus host response, 10-chloro-
7H-benzimidazo[2,1-a]benzo[de]Iso-quinolin-7-one (10-Cl-BBQ), a potent activator of AhR,
induced these Foxp3− Tregs and suppressed effector cytotoxic T lymphocyte develop-
ment [107]. Similar results were observed in cells treated with TCDD [108]. These studies
show that AhR can induce the suppressive activity without Foxp3 expression identifying a
novel mechanism of Treg induction.

4.4. MDSCs

Myeloid-derived suppressor cells (MDSCs) are a potent immunosuppressive cell type
that has been associated with inhibition of T cell proliferation [109]. Our laboratory has
shown that AhR activation by TCDD is capable of suppressing inflammation through
induction of MDSCs [110]. This is accomplished by downregulation of miRNAs targeting
anti-inflammatory and MDSC-regulatory genes leading to induction of chemokines and
their receptors [110]. Specifically, CXCR2 has been implicated in the induction of MDSCs by
TCDD [111]. Additionally, we have shown that microbiome dysbiosis plays a role in MDSC
induction specifically in terms of observed increases in Prevotella and Lactobacillus and
decreases in Sutterella and Bacteroides in TCDD-treated mice [111]. Together, these studies
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support the ability of AhR activation by TCDD to induce highly immunosuppressive cells
of the myeloid lineage.

4.5. Cytokine Suppression

Cytokine suppression is in part responsible for the observed AhR-induced suppression
of inflammatory states. Our laboratory has previously shown that TCDD-induced AhR
activation employed DNA methylation mechanisms to reverse the demethylation of IL-17
promoters in colitis, thus inhibiting Th17 cells and attenuating inflammation [112]. In the
intestine, AhR signaling in type 2 innate lymphoid cells (ILC2) suppressed expression of
an IL-33 receptor (ST2) necessary for promotion of ILC2 responses as well as IL-5, IL-13
and amphiregulin [113]. Further, administration of FICZ was capable of ameliorating
multiple models of colitis by employing mechanisms including the downregulation of
inflammatory cytokines [114]. AhR’s ability to suppress pro-inflammatory cytokines is an
essential mechanism, however, its effects are determined by the ligand used and the cell
subsets involved.

4.6. Epigenetic Changes

Studies have provided evidence for AhR involvement in modulating chromatin re-
modeling through histone acetylation and methylation. Specifically, curcumin, another
polyphenolic AhR ligand, has been shown to modulate the accessibility of DNA by in-
hibiting histone deacetylase (HDAC) activity at low concentrations and inhibiting histone
acetyltransferase (HAT) activity at high concentrations [115]. Additionally, AhR-dependent
mechanisms are involved in DNA methylation, histone modifications, and non-coding
RNAs (ncRNAs) upon activation with TCDD, which has been reviewed elsewhere [54].
AhR has also been implicated in the control of long non-coding RNAs [116,117], microR-
NAs (miRNAs) [118], as well as others. Of note, miRNAs have also been shown to suppress
AhR expression [104,119].

5. How Different Ligands Induce Different Immunological Changes

There is a great deal of work that supports the notion that many factors contribute
to the effects observed upon AhR activation. Most importantly, (1) the characteristics of
the ligand, (2) the cell type that expresses AhR, and (3) the coactivators present seem to be
the main factors that determine the immunological outcome [120,121]. Additionally, other
aspects of the microenvironment, such as the composition of the microbiota in the intestines
and the presence or absence of differentiating cytokines, may influence the cell subset to-
wards which AhR drives differentiation. Future studies should focus on the immunological
changes induced upon activation with different ligands in the same inflammatory model,
so that the differential mechanisms employed can be further elucidated.

Notably, recent studies have explored miRNA induction as a mechanism contributing
to differential inflammatory responses. In a murine model of delayed-type hypersensitivity,
it was shown that upregulation of miRNA-132 by TCDD led to induction of Tregs, while
FICZ downregulated miRNA-132 expression and increased Th17 cells [122]. Similar find-
ings have been shown in this model upon treatment with indoles I3C and DIM and their
upregulation of miRNAs that target IL-17 (miRNA-495 and miRNA-1192) and downreg-
ulation of those that target Foxp3 (miRNA-31, miRNA-219, and miRNA-490) [71]. Thus,
miRNA expression may play a role in inflammatory responses and AhR activation could
represent a novel method to induce or suppress their expression.

6. AhR and Inflammatory Diseases

Considering the cellular and molecular mechanisms employed by AhR to regulate
the immune response, it’s no surprise that activation of this receptor has shown promise
in preventing or treating inflammatory diseases. While a host of disease models have
been used to study effects (Table 1), we will discuss its implications in a select number of



Int. J. Mol. Sci. 2022, 23, 288 8 of 19

inflammatory diseases such as Inflammatory Bowel Diseases, Multiple Sclerosis, and skin
conditions such as Atopic Dermatitis and Psoriasis.

Table 1. Compounds that activate AhR and have been shown to be relevant in inflammatory disease.

Type of Ligand Name of Ligand Disease Implications

Xenobiotic
TCDD B. pertussis infection [104], experimental autoimmune uveitis [123], multiple

sclerosis [103], colitis [112,124], atopic dermatitis and psoriasis [55]

β-naphthoflavone Colitis [125], neuroinflammation [126], irradiation-induced intestinal injury [127]

Endogenous

Kynurenine Pathway
Metabolites

Rheumatoid arthritis [128], multiple sclerosis [129–131], atherosclerosis [132],
mastitis [133], rheumatoid arthritis [134]

FICZ Atopic dermatitis/psoriasis [55,122], acute kidney injury [135], lung fibrosis [136],
colitis [137,138], periodontitis [139], skin inflammation [140]

ITE Colitis [62,141], cardiac repair [142], liver fibrosis [143], cancer [64,65,144]

Dietary

I3C Colitis [145,146], retinal degenerative diseases [147], Parkinson’s Disease [148],
systemic lupus erythematosus [149]

DIM Delayed-type hypersensitivity [71], multiple sclerosis [150,151], cancer [152],
ischemia [153]

Resveratrol
Immune thrombocytopenic purpura [154], Respiratory syncytial virus-mediated
airway inflammation [155], acute respiratory distress syndrome [156], colitis [85],
multiple sclerosis [157]

Curcumin Allergic asthma [158], colitis [159,160], multiple sclerosis [161], obesity [162], acute
kidney injury [163], mastitis [164], non-alcoholic steatohepatitis [165], psoriasis [166]

6.1. Inflammatory Bowel Disease

Inflammatory bowel diseases, including ulcerative colitis and Crohn’s disease, are
marked by chronic inflammation in the gastrointestinal tract and massive accumulation of
leukocytes attempting to restrict pathogenic microorganisms [167]. Often, innate and T cell
responses are dysregulated in these diseases due to a loss of homeostasis between genetic
factors of the host and its gut microbiota often caused by an environmental trigger [168].

AhR activation by ligand has shown promise in protection against gut inflammation.
Specifically, it was shown that I3C treatment suppresses colonic inflammation and prevents
microbial dysbiosis through induction of IL-22 [145], a clinically relevant cytokine that
has been shown to be involved in microbial host defenses and repair of the mucosa [169].
Studies show that immune tolerance promotion and suppression of IBD occurs through
increased differentiation of Tregs. For example, our laboratory and others have shown
that ITE induces Treg differentiation and thus, IL-10 production, as well as reduces the
frequency of CD4 + Th17 cells and production of inflammatory cytokines [62,141].

As previously mentioned, gut dysbiosis plays an important role in the induction
of IBD, therefore, manipulation of the gut microbiota has been considered as a therapy.
While intestinal bacteria, such as strains of Lactobacilli, are capable of producing high levels
AhR ligands, this ability is impacted in times of gut inflammation [170,171]. It has been
shown that supplementation of Lactobacilli via inoculation results in a reduction of intestinal
inflammation mediated through activation of AhR [172]. Additionally, ligands produced
by Lactobacilli (such as indole-3-aldehyde) have been shown to induce transcription of Il22
to provide antifungal resistance and mucosal protection from inflammation [173]. Together,
these data implicate the microbiome in the production of ligands to affect AhR signaling
and its larger role of maintaining homeostasis, suggesting microbiota manipulation as a
beneficial therapeutic.

6.2. Multiple Sclerosis

Multiple sclerosis (MS) is a neurodegenerative disorder during which the myelin
sheath surrounding the axon terminals are deemed immunogenic by the host’s immune
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system [174]. Encephalitogenic T helper cells have emerged as a primary driver of the
inflammatory response and neurodegeneration in MS [175]. Additionally, as astrocytes
are the most abundant in the brain, evidence has emerged implicating them in inflam-
matory responses in the central nervous system (CNS) upon activation by Th1 and Th17
effector cells [176,177]. Several AhR ligands including TCDD, indoles, resveratrol and
the like have been shown in recent years to suppress experimental MS by attenuating
neuroinflammation [103,150,178,179].

It is interesting to note that microbiota-derived AhR ligands can also serve as po-
tent regulators of neuroinflammation, further characterizing the role for AhR in the gut-
brain axis in suppressing MS progression. For example, a recent study suggested that
tryptamine administration attenuates EAE by activating AhR and suppressing neuroin-
flammation [129]. Tryptamine treatment also caused alterations in the gut microbiota and
promoted butyrate production [129]. Tryptophan metabolites produced by the intestinal
microbiota along with type I interferons activate AhR in astrocytes and lead to suppression
of inflammation [180]. Furthermore, AhR activation in microglia by indoxyl-3-sulfate (I3S)
has been shown to suppress expression of pro-inflammatory and neurotoxic genes and
increase IL10 expression, which supports the capabilities of AhR ligands to limit CNS
inflammation [181]. In addition, Urolithin A, an intestinal microbiota metabolic product,
was shown to ameliorate experimental MS by reducing neuroinflammation caused by Th1
and Th17 cells [182]. The potential efficacy of AhR ligands in the treatment of clinical
MS has been shown in a recent study in which Laquinimod, an AhR ligand, which was
developed for the treatment of MS, was shown to attenuate experimental MS by mediating
anti-inflammatory effects on glial cells [183,184].

Of note, an emerging concept exists where the role of a “top-down” mechanism
in which brain health affects the microbiome has been suggested [185]. This brain-gut
axis (BGA) concept suggests that urine can be used to detect CNS disorders in which
bacterial pathogens cross the blood-brain barrier and induce changes in the gastrointestinal
tract [185]. Further studies should be conducted to determine whether AhR activation on
astrocytes and/or microglia induce changes in the gut microbiome.

6.3. Atopic Dermatitis and Psoriasis

Since AhR and ARNT are abundantly expressed in the skin, this complex has been tar-
geted in the treatment of skin diseases such as atopic dermatitis (AD) and psoriasis. Both of
these inflammatory conditions seem to involve pathogenic cytokine signaling, as evidenced
by their response to current biologics [186], as well as infiltrating T cell and dendritic cell
populations [187]. Currently, Tapinarof is a topical AhR agonist on the market used to treat
both AD and psoriasis. It is structurally similar to resveratrol and has been shown to restore
skin homeostasis by decreasing production of pro-inflammatory cytokines, activating the
nuclear factor-erythroid 2-related factor-2 (NRF2) pathway to reduce oxidative stress, and
increasing expression of skin barrier genes [188,189]. Additionally, FICZ, an endogenous
AhR ligand reduced the inflammatory response in the imiquimod-induced model of skin
inflammation [140].

7. Associations between AhR-Related Mutations in Humans and
Inflammatory Diseases

Recent studies have shown that mutations affecting AhR activation play a role in
inflammatory diseases. Caspase recruitment domain family member 9 (CARD9) has been
implicated as one of many inflammatory bowel disease susceptibility genes [190]. Normally,
it promotes activation of the IL-22 pathway to induce recovery from colitis. However, a
reduced production of AhR ligands and AhR activation in individuals containing an IBD-
associated single-nucleotide polymorphism (SNP) in CARD9 has been observed in those
with IBD [172]. Additionally, pancreatic beta cell dysfunction leading to diabetes has been
associated with ARNT due to an observed reduction in human islets from diabetic patients
as well as the confirmed association of ARNT with hepatocyte nuclear factor 4α (HNF4α), a
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known mutated transcription factor in maturity-onset diabetes of the young (MODY) [191].
While specific AhR mutations are lacking, progress has been made towards identifying
correlations between AhR, environmental factors, and inflammatory diseases [192]. Clearly
additional studies are necessary to identify and understand mutations in AhR signaling
pathways and its impact on human inflammatory diseases.

8. AhR Crystal Structure and Possibilities of Developing New Drugs

As previously described, ligand binding induces conformational changes in AhR
exposing nuclear localization sequences [35]. AhR then forms a dimer with ARNT in the
nucleus and is recruited to DREs [193]. Through use of molecular dynamic simulations
(MDS), our laboratory has characterized the process of ligand binding to AhR. Results
from this study indicated that some ligands, such as I3C and DIM, are less stable in the
AhR ligand binding domain (AhRLBD) as compared to others, which may account for
the differences in binding affinity with more stable ligands such as FICZ having higher
affinity [121]. Studies have implicated this higher binding affinity with FICZ’s ability to
activate AhR and induce immunological changes at a low dose as compared to a lower
affinity ligand requiring doses that are not physiologically applicable [194]. Thus, it is
possible that development of high affinity drugs to the AhRLBD will be more appropriate
to induce immunological changes at a physiologically relevant dose without causing
overt toxicity.

Additionally, the crystal structure of heterodimer forms of AhR have also been de-
termined. Upon observation of both the AhR-ARNT heterodimer complexed with the
DRE and the AhRR-ARNT heterodimer, the structures appeared highly intertwined and
asymmetrical [193,195]. Similar to an inverted triangle, the two PAS domains of ARNT
appeared at the top points, while the bHLH domains were positioned at the bottom with
a centered PAS-A domain of AhRR [195]. Results also showed that a PAS-B region in
the AhRR is lacking, thus allowing for the development of therapeutic strategies to limit
excessive activation of AhR via AhRR repressive mechanisms [195].

Additional studies have suggested that the PAS-B domain of AhR (the ligand binding
domain) is only needed for translocation to the nucleus, and thus, not necessary for het-
erodimerization [196]. Therefore, a purified AhR and ARNT complex containing only the
PAS-A and bHLH domains bound to DNA was used and revealed three interaction inter-
faces that mediate stable dimerization. Induced mutations of the DNA binding residues
present in these interfaces inhibited the function of the complex and hindered gene activa-
tion. Consequently, it has been suggested that targeting of these three assembly interfaces
may be beneficial [197].

9. Concluding Remarks

Over the years, the aryl hydrocarbon receptor has been implicated in more diverse
functions than originally believed. While it was considered to be the key environmental
sensor regulating the toxicity of xenobiotics, there is an extensive amount of recent evidence
that suggests its role in immune regulation, microbial defense, and barrier organ homeosta-
sis suggesting this receptor as a beneficial target for the treatment and possible prevention
of autoimmune and inflammatory diseases. Bacterial and viral infections also contribute to
autoimmunity in that they could trigger the observed loss of tolerance via TLR signaling,
IL-2 reduction or autoreactivity, amongst others. Considering the indispensable role of
IL-2 in Treg function and AhR’s ability to induce Tregs, studies should explore the role
of AhR to maintain IL-2 levels in such infections. While this receptor could prove to be
a therapeutic option, there exists a dire need for more research and understanding of its
many implications. One of the biggest concerns is that it is unclear how some AhR ligands
such as TCDD can be highly toxic and carcinogenic, while other AhR ligands, especially the
dietary as well as endogenous, are beneficial in maintaining immune system homeostasis.
Secondly, it has been well established that the binding of ligands to AhR differs between
species, so further studies should be conducted to determine whether the immunological
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changes induced upon ligand-activation of the receptor has species specificity as well. It
is assumed that AhR is involved in immunomodulation, so it is imperative that studies
are not only conducted in mouse cells, but also further established in human cells and
humanized mouse models to increase their translational potential. In addition to species
specificity, AhR also has cell-type specificity which introduces another challenge. The
ability to control the tissue and cell-type in which AhR is activated is imperative to prevent
off-target effects. A possible solution to this with promising results has emerged in the form
of nanoparticle technology. Nanoparticles have been engineered to deliver ligands and
other compounds in vivo to induce specific cell phenotypes and reestablish tolerance via
AhR activation [198]. Together, the success of these studies would provide great promise
for AhR as a therapeutic for immunomodulation.
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