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ABSTRACT 22 

Work in many systems has shown large-scale changes in gene expression during aging. 23 
However, many studies employ just two, arbitrarily-chosen timepoints at which to measure 24 
expression, and can only observe an increase or a decrease in expression between “young” 25 
and “old” animals, failing to capture any dynamic, non-linear changes that occur throughout the 26 
aging process. We used RNA sequencing to measure expression in male head tissue at 15 27 
timepoints through the lifespan of an inbred Drosophila melanogaster strain. We detected 28 
>6,000 significant, age-related genes, nearly all of which have been seen in previous fly aging 29 
expression studies, and which include several known to harbor lifespan-altering mutations. We 30 
grouped our gene set into 28 clusters via their temporal expression change, observing a 31 
diversity of trajectories; some clusters show a linear change over time, while others show more 32 
complex, non-linear patterns. Notably, re-analysis of our dataset comparing the earliest and 33 
latest timepoints – mimicking a two-timepoint design – revealed fewer differentially-expressed 34 
genes (around 4,500). Additionally, those genes exhibiting complex expression trajectories in 35 
our multi-timepoint analysis were most impacted in this re-analysis; Their identification, and the 36 
inferred change in gene expression with age, was often dependent on the timepoints chosen. 37 
Informed by our trajectory-based clusters, we executed a series of gene enrichment analyses, 38 
identifying enriched functions/pathways in all clusters, including the commonly seen increase in 39 
stress- and immune-related gene expression with age. Finally, we developed a pair of 40 
accessible shiny apps to enable exploration of our differential expression and gene enrichment 41 
results.  42 
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INTRODUCTION 43 

Aging is marked by both a decline in organismal function and an increased risk for disease. As 44 
complex traits, both environmental and genetic factors contribute to variation in lifespan and 45 
health at old age. Identifying these factors, and their impact on life- and healthspan, enables 46 
understanding of the negative effects of aging, which is increasingly important as populations 47 
throughout the world age. In humans, the estimated heritability of longevity is 7-30% (Herskind 48 
et al. 1996; Kaplanis et al. 2018; Mayer 1991; Ruby et al. 2018), and genome wide association 49 
studies (GWAS) have been used to study the genetic basis of aging (Broer et al. 2015; Deelen 50 
et al. 2011; 2014; Joshi et al. 2016; 2017; Melzer, Pilling, and Ferrucci 2020; Newman et al. 51 
2010; Sebastiani et al. 2012; 2017; Pilling et al. 2016; 2017; Timmers et al. 2019; Zeng et al. 52 
2016). GWAS often rely on examining sets of individuals who are >90 years old (Deelen et al. 53 
2011; 2014; Newman et al. 2010; Sebastiani et al. 2012; 2017; Zeng et al. 2016), but this can 54 
constrain the sample size and power of such studies (Newman and Murabito 2013; Tan et al. 55 
2008). Creative approaches have enabled markedly increased sample size – for instance, Joshi 56 
et al. (2016) associate offspring genotype with parental lifespan phenotype – yet human lifespan 57 
GWAS have only discovered a handful of replicable associations, for instance near APOE, 58 
FOXO3, and CHRNA3/5 (Broer et al. 2015; Deelen et al. 2011; Joshi et al. 2016; 2017; Pilling et 59 
al. 2016; Timmers et al. 2019). 60 

Outside of a deficit of power in genetic studies, studying aging directly in humans can be difficult 61 
due to uncontrollable environmental variables, many of which can impact lifespan. For example, 62 
calorie restriction has been shown to increase lifespan and health in model organisms (Cypser, 63 
Kitzenberg, and Park 2013; Mattison et al. 2017; McCay et al. 1939; Pletcher et al. 2002), and in 64 
humans a two-year calorie restriction study showed a reduction in cardiometabolic risk factors 65 
including cholesterol and blood pressure (Kraus et al. 2019). However, effectively studying the 66 
impact of diet on lifespan in humans is challenging due to the difficulty accurately measuring 67 
calorie intake, the lack of adherence by participants, and several other concerns (F. B. Hu 68 
2024). Ideally, studies investigating the genetic and molecular contributions to aging would limit 69 
all other sources of variation, something that is not feasible or practical in human studies.  70 

Model organisms have proven useful conduits to study aging due to their shorter lifespans, ease 71 
of testing many individuals, and the ability to control both environmental and genetic variation. 72 
Both genetic and environmental contributors to aging have been successfully identified in 73 
vertebrate model systems (Cai, Wu, and Huang 2022; Gocmez et al. 2020; McCay et al. 1939), 74 
in invertebrates such as Drosophila melanogaster and Caenorhabditis elegans (Highfill et al. 75 
2017; Kenyon 2010; McCarroll et al. 2004; Pletcher et al. 2002), and in the fungi 76 
Saccharomyces cerevisiae and Podospora anserina (Z. Hu et al. 2014; Philipp et al. 2013). 77 
These models have helped identify and understand lifespan-associated genes and systems that 78 
have relevance for human populations. For instance, FOXO3 – a member of the forkhead box 79 
transcription factor O (FOXO) family – has been implicated in human aging via GWAS (Broer et 80 
al. 2015; Deelen et al. 2014; Willcox et al. 2008), and studies in C. elegans and D. 81 
melanogaster have also identified and characterized FOXO family genes that impact lifespan 82 
(Alic et al. 2014; Giannakou et al. 2007; Kimura et al. 1997; Lin et al. 1997; Taormina et al. 83 
2019). 84 
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Cellular processes do not remain static over an individual’s lifetime, and instead change, adapt, 85 
and sometimes break down over time. By measuring these changes, we can understand the 86 
cellular and physiological phenomena that are affected by aging. A common strategy to assess 87 
such age-related changes is with the use of gene expression analyses. These analyses often 88 
compare the genomewide gene expression profile between “young” and “old” individuals, and 89 
identify genes that are differentially expressed with age. This approach has been successfully 90 
employed in multiple systems (Bordet et al. 2021; Lu et al. 2004; X. Wang et al. 2022; Wilson et 91 
al. 2015), and has resulted in expression-based hallmarks of aging (Frenk and Houseley 2018), 92 
including increased expression of stress response and immunity genes (Bajgiran et al. 2021; 93 
Bordet et al. 2021; Lu et al. 2004; X. Wang et al. 2022), and decreased expression of genes 94 
associated with mitochondria and the electron transport chain (Bordet et al. 2021; Lu et al. 95 
2004). 96 

A challenge with two-timepoint, young versus old comparisons is that there is little consistency 97 
in the definitions of “young” and “old”, making comparisons across studies difficult. For instance, 98 
various studies in D. melanogaster have used “young” flies sampled between 1 and 10 days old, 99 
and “old” flies that were 35 to 61 days old (Bajgiran et al. 2021; Bordet et al. 2021; Carnes et al. 100 
2015; Girardot et al. 2006; Landis et al. 2004). While in some cases the “old” timepoint is 101 
determined by the survivorship of the aging cohort, rather than by chronological age (Doroszuk 102 
et al. 2012; Highfill et al. 2017; Landis et al. 2004). Additionally, two-timepoint expression 103 
analyses are limited to making binary conclusions about expression change; expression either 104 
increases or decreases with age. Aging is a complex process and this simplification may often 105 
fail to yield an accurate picture of age-related expression for most genes. Indeed, work in 106 
several systems assaying various molecular phenotypes at multiple timepoints throughout 107 
lifespan have identified many genes and gene products with non-linear trajectories (Gheorghe 108 
et al. 2014; Haustead et al. 2016; Lund et al. 2002; Pletcher et al. 2002; Olecka et al. 2024; 109 
Remondini et al. 2010; Schaum et al. 2020; Shen et al. 2024; Xie et al. 2022). 110 

Here we set out to robustly measure expression trajectories throughout the adult lifespan of an 111 
inbred D. melanogaster strain, focusing on head tissue from males. Flies were aged for 59 days, 112 
and sampled for RNAseq at 15 timepoints. We recorded the number of deaths in our aging 113 
cohort daily, allowing us to calculate a survival-based “physiological age” in addition to the 114 
“chronological age” for each time point, and endeavored to sample roughly evenly through both 115 
metrics. Subsequently, using multiple analyses we identified genes whose expression changed 116 
with aging, and clustered differentially expressed genes based on their expression trajectories. 117 
With the idea that genes with similar expression trajectories may share similar functional roles 118 
(e.g. Zhang et al. 2004), we did a series of enrichment analyses for each of our clusters, 119 
identifying numerous enriched pathways. To better understand the value of a multi-timepoint 120 
expression study, we subsequently re-analyzed our data in a two-timepoint, young versus old 121 
analysis framework. Finally, we compared the results of our work with a series of prior 122 
expression-based D. melanogaster aging studies. 123 

MATERIALS AND METHODS 124 

Fly rearing, maintenance, and aging: We employed a single inbred D. melanogaster strain, 125 
A4, which is one of the founders of the Drosophila Synthetic Population Resource (E. G. King et 126 
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al. 2012; Chakraborty et al. 2018), a panel of recombinant strains enabling the genetic 127 
characterization of complex traits. Following several generations of expansion, we generated 128 
200 replicate vials of the A4 strain, clearing adults to maintain roughly even egg/larval densities 129 
over vials. In the following generation we harvested 0-2 day old A4 males over CO2 anesthesia, 130 
collecting 132 vials of 40 males (for subsequent collection of aged animals for RNAseq), and 5 131 
vials of 10 males (for collection of 3 day old flies for RNAseq). The aging cohort was maintained 132 
in vials, flies were tipped to new vials every 2-3 days without anesthesia, and periodically the 133 
entire cohort was anesthetized and re-arrayed into groups of 40 animals in vials. Dead animals 134 
were counted daily. Supplementary Table A provides further description of how the aging cohort 135 
was treated. 136 

Flies were raised and maintained in standard narrow fly vials (Fisher Scientific, AS515) 137 
containing ~10-ml of a cornmeal-yeast-molasses media (see Supplementary Text A), and kept 138 
in an incubator under the following environmental conditions: 25°C, 50% relative humidity, and a 139 
12:12 Light:Dark cycle. 140 

Fly/tissue sampling: Multiple groups of flies were sampled from the population through the 141 
aging process, with animals for the first – Day 3 – timepoint coming from those vials initially 142 
holding 10 flies (see above). Flies were sampled without anesthesia via manual aspiration, and 143 
sampled flies were always given at least 24 hours between CO2 anesthesia and sampling. See 144 
Supplementary Table A for details on when flies were sampled. 145 

On collection, groups of 10 male flies were moved into screw-top tubes, flash frozen in liquid 146 
nitrogen, and kept at −80°C. Subsequently – after the entire cohort had died and flies from all 147 
timepoints had been sampled – tubes were removed from the freezer into aluminum dry bath 148 
blocks held on dry ice. We then went through the tubes one by one, subjected each to liquid 149 
nitrogen, briefly vortexed to separate heads/bodies, poured the body parts into the flat surface 150 
of an aluminum dry bath block placed on dry ice, and used a paint brush to manually collect 151 
heads into a fresh screw-top tube. These destination tubes were pre-filled with 4-6 glass beads 152 
(BioSpec Products, 11079127) that had been previously washed in bleach and thoroughly 153 
rinsed with distilled water. 154 

RNA isolation, sequencing library preparation, and sequencing: RNA was isolated using 155 
the Zymo Direct-zol MicroPrep kit (Zymo, R2062), largely following the manufacturer’s protocol 156 
(see Supplementary Text B). Samples were isolated over 6 batches, replicate samples from a 157 
given timepoint were isolated in different batches, and RNA quantity was measured using a 158 
NanoDrop ND-1000. 159 

Forty-eight RNA samples were used to generate mRNA sequencing libraries; 14 timepoints had 160 
3 replicates each, while one (Day 59, the final timepoint) had 6 replicates. We used 200-500ng 161 
of total RNA from these samples to initiate half-reaction volume mRNA sequencing library 162 
construction (Illumina TruSeq stranded HT kit using dual indexing), generating libraries across 2 163 
batches of 24 samples each. Libraries were quantified using a Qubit fluorometer, and a subset 164 
of 8 libraries from each batch were run on an Agilent TapeStation. Each of these libraries 165 
showed a single library peak, no evidence of adapter dimers, and estimated average fragment 166 
sizes of 277-294bp. See Supplementary Table B for details on RNA isolation / library 167 
preparation batching and quantification. Given the relatively uniform fragment sizes, equal 168 
quantities of all 48 libraries were pooled together. The final 48-plex pool had an average 169 
fragment size of 289bp, and was run over two Illumina NextSeq550 PE75 flowcells, yielding a 170 
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total of over 635 million read pairs, with an average of 13.2 million per sample (range = 9.0 – 171 
17.4 million). 172 

Quantifying expression level and identifying expression changes during aging: Reads 173 
from each of the 48 samples were processed using Salmon (Patro et al. 2017), employing 174 
release BDGP6.32 of the Drosophila melanogaster transcriptome/annotation from Ensembl. 175 
Salmon quantifications were then summarized to gene level using R/tximeta (Love et al. 2020). 176 
To identify genes whose expression significantly changed with aging (adjusted p-value < 0.05) 177 
we used R/DESeq2 (Love, Huber, and Anders 2014), executing three different analyses. First, 178 
we identified genes associated with chronological age (the “Day analysis”) by treating the age of 179 
the flies in each RNAseq sample as a continuous variable. Second, we identified genes 180 
associated with physiological age (the “Survival analysis”) by using the fraction of dead animals 181 
in the entire cohort at the point flies were sampled for RNAseq as a continuous variable 182 
(Supplementary Table C). Third, we identified genes showing expression variation through 183 
aging by considering the 15 sampling points as levels of a categorical variable (the “Sampling 184 
Point analysis”). This final analysis sought to identify genes with expression patterns not easily 185 
captured by the two continuous variables (day and survival). 186 

Clustering genes by their expression trajectories: Our three differential expression analyses 187 
(see above) collectively identified 6,142 unique genes, and we sought to cluster these genes 188 
into groups based on their expression trajectories through aging. To focus on expression 189 
trajectories, and avoid confounding with varying expression levels, we standardized the 190 
expression counts of each gene via z-scores. Briefly, for each gene we calculated the mean 191 
expression across replicates for each sampling point, along with the overall mean expression 192 
across all sampling points and replicates. We then subtracted the overall mean from the mean 193 
of each sampling point and divided by the overall standard deviation. 194 

The calculated z-scores for the 6,142 genes were used to create a dissimilarity matrix using the 195 
Pearson correlation method in R/factoextra (Kassambara and Mundt 2020). We used this 196 
dissimilarity matrix for hierarchical clustering of our identified genes, and then “cut” the resulting 197 
dendrogram into a designated number of gene groups/clusters. This was done using the hclust 198 
and cutree functions from the R/stats package (R Core Team 2021). 199 

There are a variety of ways to cut a gene dissimilarity matrix into clusters, and variation in the 200 
approach and parameters will yield different numbers and sizes of clusters. Our goal was to 201 
examine whether clusters of genes with similar expression trajectories were enriched for 202 
particular properties (e.g., gene ontology terms). To facilitate this, we sought to avoid clusters 203 
with either very small or very large numbers of genes, so targeted clusters with between 50 and 204 
500 genes. After exploring several methods, we grouped our 6,142 differentially expressed 205 
genes into 28 clusters (see Supplementary Table D and Supplementary Figure 3 for more 206 
information). 207 

Summarizing and classifying cluster expression trajectories: For each of the 28 clusters 208 
we created a representative expression curve by smoothing the mean z-score from all genes in 209 
the cluster for each sampling point (Figure 3). The smoothing was executed using 210 
geom_smooth from R/ggplot2 (Wickham 2016) and spline modeling with rcs from R/rms (Harrell 211 
Jr 2023). The resulting 28 curves show a diversity of trajectories, with some being generally 212 
linear, while others show a more complex pattern. To classify the cluster trajectories, we ran a 213 
linear regression between the mean z-scores and the age of the sampled flies. A trajectory was 214 
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designated as “Linear” if the p-value was less than 0.002 (0.05/28), or “Complex” otherwise. 215 
(Repeating this analysis using survival, or the numbered sampling points, 1-15, yields the same 216 
designations). Linear trajectories were further designated as “Up” (gene expression increases 217 
with aging) or “Down” (gene expression decreases with aging) based on the sign of the linear 218 
regression coefficient. To simplify subsequent discussion, clusters are named with these 219 
classifications (i.e., Complex, LinearUp or LinearDown), and given numeric codes based on the 220 
cluster position within the dendrogram (bottom to top in Figure 2 and left to right in 221 
Supplementary Figure 4). See Supplementary Table E for details on the trajectory-designating 222 
linear regression analyses. 223 

Cluster-specific enrichment analyses: To understand whether genes with similar expression 224 
trajectories share similar properties/functions, we used PANGEA (Version 1.1 beta December 225 
2022) (Y. Hu et al. 2023), an online gene set enrichment tool that can perform Gene Ontology 226 
(GO) analysis, identify enrichment of particular gene groups or pathways, and – importantly for 227 
our needs – can execute analyses on multiple gene lists simultaneously. For each cluster we 228 
ran 6 separate enrichment analyses, examining 3 Drosophila GO Subsets (SLIM2 GO BP – 229 
biological process, SLIM2 GO CC – cellular component, SLIM2 GO MF – molecular function), 2 230 
collections of gene groups (DRSC GLAD and FlyBase), and the REACTOME pathway set. For 231 
each analysis we used a custom background set of 13,303 genes that included only those with 232 
at least one mapped read in our dataset. We identified terms significantly enriched in each 233 
cluster using a Benjamini Hochberg false discovery rate (FDR) of 0.05. Each of the PANGEA 234 
tables are available as Supplementary Tables F-K and our enrichment analysis code is 235 
available at https://github.com/Hanson19/RNAseq-Aging.  236 

Comparing trajectory-based, multi-timepoint analysis results to analyses contrasting 237 
groups of young and old animals: Our design differs from some previous examinations of 238 
age-related expression in that we generated expression data from many points through the 239 
aging process. To examine what might be gained from our approach, we re-analyzed our data 240 
after dropping the bulk of the timepoints. The samples from Day 3 and Day 6 (N=6) collectively 241 
made up our “young” sample, while our “old” sample came from the last collection day, Day 59 242 
(N=6). Using R/DESeq2 (Love, Huber, and Anders 2014) we identified genes whose expression 243 
changed significantly between these age groups, and determined if gene expression increased 244 
or decreased over time. We subsequently repeated this analysis, comparing the Day 3+6 245 
“young” timepoint against every sequential pair of older timepoints (e.g., we compared Day 3+6 246 
to Day 10+14, Day 3+6 to Day 14+17, and so on). 247 

Comparison with previous Drosophila aging genomewide expression studies: We 248 
compared our set of 6,142 multi-timepoint significant genes with those identified in 8 previously 249 
published, two-timepoint aging expression studies (Supplementary Table M). These papers vary 250 
in the strains/populations employed, the sex of the animals targeted, the tissue that was 251 
employed, and the actual timepoints during aging that were sampled. We validated all gene IDs 252 
using FlyBase (FB2024_01) (Jenkins et al. 2022), identified genes shared between our study 253 
and these previous works, and compared the expression change reported in the previous 254 
studies (up or down in expression with age) with the expression trajectories these genes were 255 
grouped into in our study (LinearUp, LinearDown, Complex; Supplementary Figure 14). 256 

Shiny apps to enable data exploration: Our analyses generated a considerable amount of 257 
data, and to make our results more accessible, we developed two interactive apps using 258 
R/shiny (version 1.8.0) (Chang et al. 2023). The Gene and Cluster app allows users to look up 259 
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specific genes, receive information about the whether the gene was identified in our analysis, 260 
and if so in which cluster it was found, and what its expression trajectory is over time. The 261 
Cluster Enrichment app allows users to select specific clusters, or sets of clusters, and identify 262 
any enriched terms. For more information on how to run and use these apps see 263 
Supplementary Text C and D. 264 

Data availability: The A4 strain is available on request from the corresponding author. Raw 265 
FASTQ sequencing data is available from the NCBI SRA under BioProject accession number 266 
PRJNA1194574. All summary data and results are presented in supplementary files (available 267 
at WILL_INSERT_G3_FIGSHARE_SITE_URL_HERE), and all analysis code is available via 268 
GitHub (https://github.com/Hanson19/RNAseq-Aging). 269 

RESULTS AND DISCUSSION 270 

Over 6000 genes show expression change during aging: We aged a cohort of 5,330 271 
Drosophila melanogaster males from a single inbred strain, recorded the number of fly deaths 272 
each day, and collected several replicates of 10 flies at 15 timepoints throughout the adult 273 
lifespan. Samples were collected every ~4 days between day 3 (99.9% flies alive) and day 59 274 
(1.92% alive) to roughly evenly sample flies throughout lifespan (see Kaplan-Meier survivorship 275 
curve in Supplementary Figure 1 and detail on the timing of the sampling in Supplementary 276 
Table C). RNA was isolated from the heads of collected flies, converted into RNAseq libraries 277 
and sequenced, and subsequently reads were assembled to the transcriptome to quantify gene 278 
expression.  279 

Three separate analyses were used to identify genes with significant expression changes 280 
through aging. For two of the analyses, we associated gene expression with a continuous 281 
variable, defined as either the chronological age of the flies on the day samples were collected 282 
(Day analysis), or as the survivorship of the aging cohort upon sampling (Survival analysis). In 283 
the third analysis, we associated expression with a categorical variable with 15 levels, 284 
representing the sampling points when flies were collected for RNAseq (Sampling Point 285 
analysis). This third analysis has the potential to identify genes missed by the pair of continuous 286 
variable analyses, since expression variation of some genes may not follow a simple, 287 
continuous temporal pattern. 288 

The three analyses collectively identified 6,142 unique genes that were differentially expressed 289 
through lifespan (Figure 1), representing a little under half of the genes with detectable 290 
expression in our study (N=13,303). The analyses individually identified 5,449 (Day), 5,264 291 
(Survival), and 4,449 (Sampling Point) genes. Around 60% of the genes (3,706) were identified 292 
by all three analyses, and an additional 28% (1,432) were identified by both continuous variable 293 
analyses, Day and Survival. The large overlap of genes identified in both the Day and Survival 294 
analyses – well over 90% of the genes identified in each analysis are shared among the two – is 295 
expected since age in days and survivorship are strongly correlated (r = 0.98, p < 10−9; 296 
Supplementary Figure 2). The Sampling Point analysis identified the most genes unique to one 297 
analysis – 567 (9% of the total number of unique genes identified) – demonstrating its utility in 298 
capturing genes not easily found by either continuous variable analysis. 299 
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A diversity of gene expression trajectories through aging: Genes with similar functions, or 300 
that function in the same pathways, might be expected to share similar expression trends over 301 
time (e.g. Eisen et al. 1998; Zhang et al. 2004). To enable investigation of this, we normalized 302 
the expression trajectories of all 6,142 identified genes via z-scores and clustered them into 28 303 
groups (Figure 2, Supplementary Figure 4). Based on the results of linear regressions of cluster-304 
specific expression patterns (Figure 3) against time in Days, each cluster was assigned a 305 
trajectory designation of LinearUp or LinearDown (the mean cluster expression is significantly 306 
associated with time, and either goes up or down over time, respectively), or Complex (there is 307 
no significant association with time after correcting for multiple testing). See “Materials and 308 
Methods” for further details on this process and Supplementary Table E for statistical 309 
information. Over 80% of genes fall into the 6 LinearDown (2,596) and 8 LinearUp (2,536) 310 
clusters, with the remaining 1,010 genes split among 14 Complex clusters (Figure 3). In general, 311 
the Complex clusters harbor considerably fewer genes than the more linear clusters.  312 

Clearly the LinearDown and LinearUp clusters do not show perfect linear patterns of expression; 313 
For instance, genes in LinearDown-1 (Figure 3) show a slight increase in expression in mid-life, 314 
before decreasing in expression towards late life. However, the curves for the linear clusters 315 
typically appear more linear than those of the Complex clusters (compare LinearUp-8 to 316 
Complex-1), and primarily show monotonic increases/decreases in expression over time (see 317 
LinearUp-7). Furthermore, among the Complex class of clusters we see a great deal of variation 318 
in expression trajectory; Many are decidedly non-linear, and show wave-like patterns (e.g., 319 
Complex-5), or are curved with the highest expression in mid-life (e.g., Complex-10). However, 320 
some Complex cluster are somewhat linear and exhibit patterns not dissimilar to those of 321 
LinearUp/Down clusters (e.g., compare Complex-6 with LinearUp-4). We recognize that our 322 
“linear” clusters are not perfectly linear, and do vary in their trajectories over time, and that our 323 
“complex” clusters exhibit a wide spectrum of trajectories. However, to simplify presentation, we 324 
elected to employ a straightforward trajectory-based naming scheme for the clusters we identify 325 
(i.e., LinearUp, LinearDown, Complex). 326 

Genes with complex expression trajectories are often identified via the sampling point 327 
analysis: We examined the relationship between the statistical analyses a gene was identified 328 
in (Day, Survival, Sampling Point), the cluster in which it resides, and the trajectory it was 329 
assigned (LinearUp, LinearDown, Complex). More than 75% of the genes identified solely in the 330 
continuous variable analyses (i.e., Day only, Survival only, or both) reside in the LinearUp/Down 331 
clusters, whereas ~43% of those genes found in Complex clusters were uniquely identified in 332 
the Sampling Point analysis (Supplementary Figure 5). This result does not appear to be driven 333 
by specific clusters (Supplementary Figure 6). This again implies that the Sampling Point 334 
analysis has the potential to identify genes whose age-related changes in expression are 335 
difficult to capture with linear analyses based on chronological time or survivorship.  336 

Identification of known aging-relevant genes: Our analyses identified many genes previously 337 
associated with aging in Drosophila. We identified 107/176 genes associated with the Gene 338 
Ontology (GO) term “determination of adult lifespan” (GO:0008340), with at least one such gene 339 
being present in 24 of the 28 clusters. For instance, we identified I’m not dead yet (Complex-6, 340 
FBgn0036816), a transporter of Krebs cycle intermediates, which when mutated increases 341 
lifespan via a mechanism resembling the effect of caloric restriction (Rogina et al. 2000). We 342 
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found insulin signaling genes, including chico (LinearUp-8, FBgn0024248) and Insulin-like 343 
peptide 2 (Complex-11, FBgn0036046), for which loss-of-function mutations increase lifespan 344 
(Clancy et al. 2001; Grönke et al. 2010). We also identified the heat shock proteins Hsp22 345 
(LinearUp-6, FBgn0001223), Hsp26 (LinearUp-8, FBgn0001225), and Hsp68 (LinearUp-5, 346 
FBgn0001230) which when overexpressed can increase lifespan (Morrow et al. 2004; H.-D. 347 
Wang, Kazemi-Esfarjani, and Benzer 2004; M. C. Wang, Bohmann, and Jasper 2003).  348 

Exploring the biological functions of expression trajectory clusters: To understand if 349 
genes with similar expression trajectories share similar functions, we executed a series of 350 
enrichment analyses using the software PANGEA (Y. Hu et al. 2023), identifying enriched GO 351 
terms, gene groups and pathways within each of our 28 clusters. GO terms derive from the 352 
Drosophila GO subsets available within PANGEA (terms are indicated below by the “GO” stem), 353 
the gene groups are from DRSC GLAD (“GLAD”) and FlyBase (“FBgg”), and pathways come 354 
from Reactome information (“R-DME”). In total we identified 732 unique enriched terms, 595 of 355 
which are specific to just one of our expression trajectory designations (i.e., LinearUp, 356 
LinearDown, Complex), suggesting our three designations represent largely distinct sets of 357 
biological processes. Furthermore, most of the unique enrichment terms are found in just a 358 
single cluster, with only 67 terms being shared by multiple clusters. (The PANGEA output tables 359 
are available in Supplementary Tables F-K). 360 

Confirming common aging-related gene expression patterns: 361 

In Drosophila aging expression studies it is commonly observed that both general stress 362 
response genes and immunity genes increase in expression with age (Bordet et al. 2021; 363 
Carlson et al. 2015; Girardot et al. 2006; Highfill et al. 2017; Landis et al. 2004; Pletcher et al. 364 
2002; Zane et al. 2023), and we recapitulate this finding. Five of our clusters are enriched for 365 
genes that respond to stress (GO:0006950), all of which are designated LinearUp (LinearUp-2, 366 
3, 5, 7, 8; Figure 3). Previous studies have seen heat shock proteins increase in expression with 367 
age (V. King and Tower 1999; Landis et al. 2004; Manière et al. 2014), and we see these genes 368 
(FBgg0000501) enriched in two LinearUp clusters (LinearUp-5, 7). Of the 5 clusters that are 369 
enriched for stress response genes, 3 are more specifically enriched for immune response 370 
genes (GO: 0006955; LinearUp-2, 5, 8). LinearUp-5 and 8 are enriched for antimicrobial 371 
peptides (FBgg0001101), including Attacin-A (LinearUp-8, FBgn0012042), Listericin (LinearUp-372 
8, FBgn0033593), and Drosocin (LinearUp-5, FBgn0013088) which are commonly found to 373 
increase in expression with age in Drosophila expression studies (Bajgiran et al. 2021; Bordet et 374 
al. 2021; Carnes et al. 2015; Highfill et al. 2017; Lai et al. 2007; Landis et al. 2004; Zane et al. 375 
2023).  376 

A decrease in cognitive ability with advanced age has been reported in D. melanogaster 377 
(Tamura et al. 2003; Haddadi et al. 2014; Pacifico et al. 2018), mice (Lamberty and Gower 378 
1990; Kubanis, Gobbel, and Zornetzer 1981; Healy et al. 2024), and rats (Rowe et al. 1998; 379 
Sagheddu et al. 2024). Similarly, age-related neurodegeneration is commonly observed, with 380 
decreased neurogenesis with aging being reported in both mice (Maslov et al. 2004) and rats 381 
(Kuhn, Dickinson-Anson, and Gage 1996), and synaptic deterioration seen in the motor neurons 382 
of aged Caenorhabditis elegans (J. Liu et al. 2013). Three of our clusters – LinearDown-3, 4 and 383 
6 – are enriched for genes that are found in synapses (GO:0045202), are involved in synapse 384 
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organization (GO:0050808), as well as those associated with cognition (GO:0050890) and 385 
nervous system development (GO:0007399). LinearDown-4 and 6 are also enriched for genes 386 
encoding voltage-gated potassium and sodium channel subunits (FBgg0000506, 387 
FBgg0000595). Notably, LinearDown-6 harbors Atpα (FBgn0002921), a gene encoding a 388 
subunit of the NA+/K+ exchanging ATPase pump, and which has been shown to affect lifespan 389 
(Palladino et al. 2003).  390 

A decrease in the expression of genes involved with the electron transport chain (ETC) is a 391 
common finding in samples of aged individuals (Bordet et al. 2021; Girardot et al. 2006; Highfill 392 
et al. 2017; Landis et al. 2004; Pletcher et al. 2002; Zane et al. 2023). Such a decrease could 393 
lead to reduced ATP production, disruption of the NAD+/NADH ratio, and cellular senescence 394 
(Lenaz et al. 1997; Miwa et al. 2014; 2022). Our study supports a decrease in ETC-related gene 395 
expression; Genes in Complex-12 and LinearDown-6 show an overall decrease in expression 396 
across lifespan (Figure 3), and these clusters are adjacent to each other in the dendrogram 397 
resulting from hierarchical clustering (Figure 2 and Supplementary Figure 4). These two clusters 398 
are enriched for genes encoding mitochondrial ETC complex I and V (FBgg001836, 399 
FBgg0001849). LinearDown-6 is also enriched for genes that are part of mitochondrial complex 400 
III and IV (FBgg0001850, FBgg0001847). A series of ETC-related genes shown to influence 401 
lifespan are also present in these clusters; These include ND-20 (Complex-12, FBgn0030718) 402 
and ND-SGDH (LinearDown-6, FBgn0011455) (Copeland et al. 2009), levy (LinearDown-6, 403 
FBgn0034877) (W. Liu et al. 2007), and ATPsynD (LinearDown-6, FBgn0016120) (Sun et al. 404 
2014). Additionally, LinearDown-6 harbors stress-sensitive B (FBgn0003360), which is involved 405 
in the transport of ADP and ATP in and out of the mitochondrial matrix, and when mutated 406 
shortens lifespan (Celotto et al. 2006; Reynolds 2018). 407 

A distinction between cytosolic and mitochondrial ribosomal gene expression responses: 408 

A decrease in the expression of ribosomal proteins and ribosomal biogenesis genes with age 409 
has been documented in a number of yeast studies (Choi et al. 2018; Janssens et al. 2015; 410 
Kamei et al. 2014; Philipp et al. 2013; Yiu et al. 2008), with three of these showing a reduction in 411 
cytosolic ribosome (GO: 0022626) gene expression over time (Choi et al. 2018; Philipp et al. 412 
2013; Yiu et al. 2008). One fly study we identified (Doroszuk et al. 2012) observed a similar 413 
response, with enrichment of ribosome-related ontology terms in genes showing a reduction in 414 
expression with age in a given strain, including genes involved in ribosome biogenesis 415 
(GO:0042254) and mitochondrial ribosome (GO:0005761). 416 

In the analyses of our dataset, we saw enrichment of ribosomal-related ontology terms in six 417 
clusters. Five of these clusters show a general increase in gene expression with age (LinearUp-418 
1, 2, 4, 6, Complex-6; see Figure 3), and include genes associated with the terms ribosome 419 
biogenesis (GO:0042254), rRNA processing (R-DME-72312), cytoplasmic ribosomal proteins 420 
(FBgg0000141), and structural constituent of ribosomes (GO:0003735). The sixth (LinearDown-421 
6) shows reduced expression with age, and shows enrichment of mitochondrial ribosomal 422 
proteins (FBgg0000059). Thus, in an apparent contrast with prior results, it appears that in our 423 
data many ribosome-associated genes increase in expression with age, while only 424 
mitochondrial ribosomal protein genes decrease with advanced age. 425 
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To examine this further we extracted from our complete set of 6,142 differentially-expressed 426 
genes all those affiliated with any ribosome-related term (N=270, See Supplementary Table L 427 
for list of terms). We plotted their age-related expression, separating out mitochondrial 428 
ribosomal proteins (N=36, FBgg0000059), and can clearly see that while all mitochondrial 429 
ribosomal protein genes go down in expression with age, nearly all other ribosomal genes 430 
(220/234) increase in expression with age (Supplementary Figure 8). Furthermore, just 431 
contrasting cytoplasmic (N=80, FBgg0000141) and mitochondrial (N=36, FBgg0000059) 432 
ribosomal proteins, we see the former all go up, and the latter all go down in expression with 433 
age (Supplementary Figure 7). 434 

A D. melanogaster brain-specific, single-cell RNAseq study (Davie et al. 2018) appears to 435 
support our finding that – outside of mitochondrial ribosomes – ribosomal genes increase in 436 
expression with age. First, Davie et al. report that the cytosolic small ribosomal subunit (GO: 437 
0022627) gene stubarista (FBgn0003517) is statistically upregulated during aging; We also 438 
identified this gene in our LinearUp-5 cluster. Second, while Davie et al. see a reduction in the 439 
overall levels of RNA and transcription through aging – a result seen previously (Tahoe, 440 
Mokhtarzadeh, and Curtsinger 2004), and which we also observed (Supplementary Table B and 441 
Supplementary Figure 9) – on average, ribosomal protein genes show a lower decline in 442 
expression than other genes (see Fig. 5C in Davie et al. 2018). In a bulk RNAseq analysis 443 
framework this result would be expected to translate to a relative increase in the expression of 444 
ribosomal proteins over time. Nonetheless, that we see a result that contrasts with some of the 445 
prior work on gene expression changes through aging is intriguing and worthy of future 446 
examination. 447 

Various metabolic processes are enriched in some Complex clusters: 448 

Many of our Complex clusters have small gene counts, and relatively few enriched terms. 449 
However, 8/14 Complex clusters (2, 3, 4, 6, 7, 9, 10 and 12) are enriched for genes associated 450 
with metabolism (R-DME-1430728 and GLAD:24593). While this term is broad, when we focus 451 
on individual clusters more specific metabolic functions are evident. As described earlier, 452 
Complex-12 is enriched for genes involved with the ETC. Complex-2, 6, and 10 are specifically 453 
enriched for genes involved in the pentose phosphate pathway (R-DME-71336), a glucose 454 
catabolism pathway that produces NADPH and ribose sugars for nucleotide synthesis (Stincone 455 
et al. 2015). Notably, Complex-2 harbors Pgd (FBgn0004654) and G6pd (FBgn0004057) which 456 
are the two reducing enzymes involved in the pentose phosphate pathway (Gvozdev et al. 457 
1976; Geer, Bowman, and Simmons 1974). Complex-3 is uniquely enriched for genes involved 458 
in galactose catabolism (R-DME-70370) and glycogen synthesis (R-DME-3322077), one of 459 
which – Agbe (FBgn0053138) – is involved in lifespan (Paik et al. 2012). That all of these 460 
metabolic pathways/genes emerged from our Complex clusters suggests that nonlinear 461 
changes in metabolic activity occur throughout lifespan, as has been suggested in a large, multi-462 
omic study in humans (Shen et al. 2024).    463 

Enrichment for protein folding, modification, and transport in the LinearUp-7 cluster: 464 

LinearUp-7 – which shows only limited change in expression for the first third of life, followed by 465 
increasing expression until end of life – is enriched for multiple terms involved with proper 466 
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protein folding and modification, and transporting proteins from the endoplasmic reticulum to the 467 
golgi apparatus. We see enrichment for chaperones and co-chaperones (FBgg0001643), and 468 
heatshock proteins (see above), which can bind onto unfolded proteins (GO:0051082) and help 469 
correctly fold them (GO:0006457). Additionally, LinearUp-7 is enriched for genes involved in 470 
post-translation protein modification pathways (R-DME-597592). LinearUp-7 is the only cluster 471 
to be enriched for genes associated with both the endoplasmic reticulum (GO:0005783) and the 472 
golgi apparatus (GO:0005794). It includes genes that are involved in transport between these 473 
two organelles, and is enriched for both coat protein complex I (FBgg0000087) and II 474 
(FBgg0000116) genes, and genes involved in ER-to-Golgi anterograde transport (R-DME-475 
199977), and Golgi-to-ER retrograde transport (R-DME-8856688). These enrichment patterns 476 
further demonstrate that genes with similar roles can have very similar temporal expression 477 
patterns. 478 

Multi-timepoint trajectory-based datasets offer more detail than two-timepoint studies: 479 
Often aging expression studies compare “young” and “old” samples, and we sought to re-480 
analyze our data in this framework to discover what is gained from a multi-timepoint approach. 481 
Our “young” timepoint combined all the Day 3 and Day 6 samples (to achieve a sample size of 482 
6), and our “old” timepoint used the six Day 59 samples. Contrasting these two sets of samples 483 
yielded 4,533 differentially-expressed genes. Of the 6,142 genes identified in our multi-timepoint 484 
analysis, 4,347 (~71%) were re-identified in this two-timepoint analysis. The reduction in the 485 
number of genes is likely a combination of the switch in analytical approach, and a simple loss 486 
of power (since we have gone from 48 to 12 samples). Considering the assigned expression 487 
trajectories from our multi-timepoint analysis, the two-timepoint analysis recovered 77.5% of the 488 
LinearDown cluster genes, 72% of the LinearUp genes, but only 50.5% of the Complex genes 489 
(Figure 4). As anticipated, genes that do not exhibit a straightforward, monotonic 490 
increase/decrease in expression through lifespan are much less likely to be identified when 491 
sampling is restricted to very young and very old animals.   492 

A challenge with a two-timepoint analysis is that the only conclusion one can draw about the 493 
expression change is that it goes up or down with age. For those genes present in 494 
LinearUp/LinearDown clusters that were replicated in the two-timepoint analysis, the inferred 495 
direction of the expression change matched expectations 98-99% of the time (Figure 4), and 496 
this trend is consistent across the different LinearUp/LinearDown clusters (90%-100% matched) 497 
(Supplementary Figure 10). However, for the 50.5% of Complex genes that were re-identified in 498 
the two-timepoint analysis, 56% of them showed an increase in expression in old samples, and 499 
44% showed a decrease (Figure 4). Examining the two-timepoint expression change direction 500 
calls across Complex clusters reveals cluster-to-cluster variation (see Supplementary Figure 501 
10), and in most cases, re-identified genes within a given Complex cluster exhibit the same 502 
direction of expression change in the two-timepoint analysis (see Supplementary Figure 10). 503 
This likely reflects the particular, cluster-specific nature of each Complex expression trajectory, 504 
and what the precise expression levels were at the start and end of our experiment. For 505 
instance, Complex-7 shows a general increase in expression over time (Figure 3), and all genes 506 
re-identified in the two-timepoint analysis are marked as increasing in expression 507 
(Supplementary Figure 10). 508 
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In our initial analysis we chose Days 3+6 and Day 59 to represent our “young” and “old” 509 
samples. However, studies have used flies of quite different ages to represent young and old 510 
animals (Bajgiran et al. 2021; Bordet et al. 2021; Carnes et al. 2015; Girardot et al. 2006; Landis 511 
et al. 2004). To understand the impact of varying the “old” timepoint, we repeated the two-512 
timepoint analysis several times. In each case, we fixed the young timepoint using our Days 3+6 513 
data, and derived the old timepoint from two sequential sampling days (e.g., Days 10+14, Days 514 
14+17, Days 17+23, and so on) such that each analysis compared two sets of 6 samples. We 515 
then compared the differentially-expressed genes that emerged from these analyses, along with 516 
the inferred expression change, with our initial Day 3+6 versus Day 59 analysis. As might be 517 
expected, using old sampling points that occur earlier in life results in fewer significant 518 
differentially expressed genes (Supplementary Figure 11); there has simply been less time for 519 
change. As the old timepoint moves later in life there is increasingly greater overlap with the 520 
Day 3+6 versus Day 59 analysis, and 97-99% of the shared genes show the same change in 521 
expression (Supplementary Figure 11). Nonetheless, every alternative analysis with a different 522 
old timepoint identified genes we initially identified in our multi-timepoint trajectory analysis, but 523 
that were missed in our initial two-timepoint analysis (Supplementary Figure 11). Particularly in 524 
those analyses using old timepoints that occur earlier in life (up to Day 36, a little over halfway 525 
through the lifespan of our cohort), such genes are often associated with our multi-timepoint 526 
Complex trajectory clusters (Supplementary Figure 12). Between 9-17% of Complex genes 527 
found using the earlier alternative old timepoints, were not found in our initial Day3+6 versus 528 
Day 59 test. It is likely that the observed change in the expression of these genes over time is 529 
highly dependent on the exact timepoints chosen. In general, our analyses clearly demonstrate 530 
that the age when individuals are sampled impacts the genes identified. 531 

Comparison with other aging expression studies in flies: We compared the outcome of our 532 
multi-timepoint analysis with 9 datasets from 8 previously published expression analyses in D. 533 
melanogaster (Bajgiran et al. 2021; Bordet et al. 2021; Carnes et al. 2015; Girardot et al. 2006; 534 
Highfill, Reeves, and Macdonald 2016; Lai et al. 2007; Landis et al. 2004; Zane et al. 2023). 535 
These were all two-timepoint studies that varied in the sex of the flies, the target tissue, and the 536 
sampling points employed (Supplementary Table M). Around 95% of the genes resulting from 537 
our multi-timepoint analysis were identified in at least 1 of these datasets, and the number of 538 
previous studies that identified a given gene was not clearly associated with the trajectory 539 
designation (LinearUp, LinearDown, Complex) we assigned (Supplementary Figure 13). The 540 
high rate of gene re-identification across studies is notable given the diversity of the study 541 
designs in terms of fly sex, the tissue targeted, the sampling points used (Supplementary Table 542 
M), and the likely many differences in the precise rearing/maintenance conditions employed. 543 
That the same sets of genes are regularly identified suggests some similarity across 544 
genotype/sex/tissue in the age-related expression profile (Izgi et al. 2022).    545 

Similar to the comparisons between multi- and two-timepoint analyses within our own dataset 546 
(above), when we look at genes in our LinearUp/LinearDown clusters that were identified in 547 
prior studies, they broadly show the direction of expression change we would predict 548 
(Supplementary Figure 14). However, as might also be expected, the fraction of such genes 549 
showing the predicted expression change in a prior study is often lower than it is in our within-550 
study methodological comparison (compare Figure 4 with Supplementary Figure 14). The 551 
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highest fraction of LinearUp/LinearDown genes showing the expected expression change in a 552 
prior study – 95-98% – is with Highfill et al. (2016; Supplementary Figure 14), a study published 553 
by our group that used the same tissue type, employed a very similar fly maintenance 554 
environment, but targeted females rather than males. The other prior studies we examined 555 
varied more in their design, and these differences likely contribute to shared genes more often 556 
showing mis-matched expression changes (see Supplementary Figure 14). 557 

Benefits of a multi-timepoint, trajectory-based transcriptomics approach to exploring 558 
dynamic biological processes: It is increasingly clear that a complete view of the gene 559 
regulatory changes underlying a range of dynamic processes – from the response to infection 560 
(Schlamp et al. 2021) to cellular differentiation (Strober et al. 2019) to aging (Pletcher et al. 561 
2002; Shen et al. 2024; Gheorghe et al. 2014) – requires a timecourse experimental design, 562 
interrogating samples taken throughout the process of interest. Here, we showed that a two-563 
timepoint, young versus old analysis can successfully identify, and correctly infer the direction of 564 
expression change of many genes that have largely linear expression trajectories through aging. 565 
But we also showed that the set of genes identified depends on the pair of timepoints chosen. 566 
Furthermore, we showed that by limiting the sampling to just two timepoints, we would have 567 
failed to identify almost half of the genes with more complex, non-linear expression trajectories, 568 
and would not have captured the nature of the trajectories for genes that were identified. Even 569 
for those genes in the clusters we consider to be “linear” there is variation in rate of expression 570 
change with time, which can only be captured with a multi-timepoint approach (Gheorghe et al. 571 
2014; Haustead et al. 2016; Lu et al. 2004; Schaum et al. 2020; Shen et al. 2024). 572 

Another major benefit of being able to consider the trajectory of gene expression is that it 573 
enables the identification of genes with similar longitudinal expression patterns, and allows 574 
assessment of whether genes with similar patterns have similar functional/molecular properties. 575 
Our enrichment analyses support the contention that genes with similar expression trajectories 576 
share similar functions. Due to the multiple points we sampled throughout the aging process, 577 
around 70% of all significant, enriched gene ontology terms we identified were unique to a 578 
single cluster. This specificity allowed us to more precisely characterize the expression patterns 579 
of various sets of genes with related functional roles, rather than only – with a two-timepoint 580 
framework – being able to state that particular groups of genes are up- or down-regulated with 581 
age. Better understanding of the dynamic molecular changes underling aging will facilitate a 582 
deeper understanding of the cellular and physiological changes that occur as organisms age. 583 

Caveats: We recognize that the scope of our results may be somewhat limited due to the use of 584 
only males from one inbred strain, and the use of a single tissue type. Additionally, while our 585 
target tissue – the fly head – is enriched for brain/neuronal cells, since it also includes a mixture 586 
of other cells types, we lack true tissue specificity. This said, we were able to demonstrate some 587 
consistency over studies in the genes and expression patterns identified, despite these studies 588 
varying in multiple ways, making our results a useful resource for future aging investigations. 589 

Accessible data exploration via interactive shiny apps: Our expression, gene enrichment, 590 
and comparative analyses generated a significant amount of data. Above we have only 591 
discussed a subset of our observations. To make the results more accessible – in addition to 592 
sharing our raw data, summary data, and analytical code – we have developed two interactive 593 
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R/shiny apps that enable individuals to explore our gene identification, clustering, and cluster 594 
enrichment results. The apps allow users to look up specific genes, examine their expression 595 
trajectory through time in our cohort of flies, the cluster they belong to, as well as to explore 596 
enriched terms within and across clusters. See the Materials and Methods, along with 597 
Supplementary Texts C and D for more information on the development of the apps, and how to 598 
access and use them. 599 
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 1032 
Figure 1: Identification of 6,142 genes with age-related gene expression. We identified 1033 
genes whose expression was significantly associated with Day of life (N=5,449), with Survival 1034 
(N=5,264), and with Sampling point (N=4,449). The upper bar chart shows the number of 1035 
significant genes identified, with colored circles below showing which analysis the genes were 1036 
identified in (3706 genes were identified in all three analyses, 1432 genes were identified in both 1037 
the Day and Survival analyses, and so on).   1038 
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 1039 

Figure 2: Clustering all 6,142 1040 
age-related genes into 28 1041 
clusters via their expression 1042 
trajectories through lifespan. 1043 
A simplified dendrogram 1044 
representing the hierarchical 1045 
clustering of our gene 1046 
expression trajectory data. 1047 
Each horizontal colored line 1048 
represents all those genes in 1049 
each of our 28 clusters; The 1050 
closer clusters are to each 1051 
other on the plot, the more 1052 
similar their expression 1053 
trajectories (see Figure 3). 1054 
Each cluster is named based 1055 
on their expression trajectory 1056 
(LinearUp, LinearDown, 1057 
Complex). Complex-1 to 1058 
Complex-5 clusters are not 1059 
individually labeled since they 1060 
are very close together in the 1061 
plot. Supplementary Figure 4 1062 
shows the full dendrogram 1063 
highlighting the relationships 1064 
among all 6,142 genes.1065 
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 1067 
Figure 3: Representative expression trajectories for all 28 clusters. Within a cluster we 1068 
calculated the average z-score over genes for each timepoint, and present a smoothed curve 1069 
through those points highlighting the cluster-specific changes in gene expression over time. We 1070 
determined whether each cluster-specific set of mean z-scores was statistically associated with 1071 
age, and used this information to designate each cluster as LinearUp or LinearDown (we found 1072 
a significant association, and expression either increases or decreases over time), or as 1073 
Complex (there was no significant association between expression and age). This led to 14 1074 
Complex, 8 LinearUp, and 6 LinearDown clusters.   1075 
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 1076 
Figure 4: Differences between a multi-timepoint and a two-timepoint analysis: Our 3 1077 
trajectory-based analyses revealed > 6,000 differentially-expressed genes that were grouped 1078 
into 3 trajectories (Complex, LinearDown, LinearUp). We compared these results to a re-1079 
analysis of a subset of the same data, where we directly contrasted expression between young 1080 
(Day 3+6) and old (Day 59) samples. Each vertical bar depicts the fraction (in the figure) and 1081 
the number (y-axis) of genes in each of our expression trajectories that are absent in the young 1082 
versus old test (gray), are significantly up-regulated in old animals (blue) or are significantly 1083 
down-regulated in old animals (red). Most genes with linear trajectories are re-identified, and 1084 
~99% of those show the expected direction of change with age. However, only ~50% of the 1085 
Complex trajectory genes are re-identified in the two-timepoint analysis, and these are split 1086 
between those that appear to increase or to decrease in expression with age.  1087 
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