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Simple Summary: In the following study, methods of geometric morphometrics were used to identify
invasive forms of Harmonia axyridis. The study confirms the efficiency of geometric morphometrics as
a tool for identifying minimal shape plasticity in wing shape and patterns of sexual shape dimorphism
among invasive forms. Although more detailed studies are needed for further clarity, the study
demonstrates that these methods can analyze phenotypic differences among the forms and reveal
subtle phenotypic changes that explain genetic alterations within an invasive H. axyridis species.

Abstract: The Asian ladybird (Harmonia axyridis Pallas), native to Asia, is one of the 100 most invasive
species in the world and has spread worldwide. This study aimed to characterize color forms of
H. axyridis in Croatia and to analyze the variability of wing shape between populations and indicated
forms. Geometric morphometric methods were used to analyze a total of 129 left and right wings
in males and 126 left and right wings in females of H. axyridis collected from four different sites in
Croatia. The results show a significant difference in wing shapes between the studied forms. Each
form had its own specific morphotype that likely originated under the influence of genetic changes
in the species. This study demonstrates that the use of geometric morphometric analysis is effective
in studying the variability in H. axyridis populations. As this study is the first of its kind, for further
clarity, it is necessary to conduct additional studies on a larger number of sites and an equal number
of individuals of all forms.

Keywords: Harmonia axyridis Pallas; geometric morphometics; wing shape; morphotypes

1. Introduction

Among the world’s best-known biological control agents, approximately 90% of
Ladybird beetles (Coleoptera, Coccinellidae) are predators. In addition to native species,
13 alien coccinellids are known to occur in European agroecological systems [1]. Among
them, Harmonia axyridis (Pallas, 1773) is considered the most invasive and widespread
ladybird beetle in the world [2,3]. H. axyridis is native to eastern and western Asia [4] and
was intentionally introduced to North America and Europe in the 20th century as a classic
and inundative biological control agent of aphids and scale insects [2,5]. Occurring in at
least 26 European countries [6], H. axyridis has spread rapidly since the beginning of the
21st century [7,8]. Although considered a top predator of hemipteran insects [2], H. axyridis
is better known for its detrimental effects [9] by threatening native biodiversity through
predation and competition with other aphid predators (e.g., coccinellids) and non-target
species [3,10]. Long-term surveys in different habitats in England and Switzerland showed
that H. axyridis became a dominant coccinellid in some habitats, leading to a sharp decline
in native species such as Adalia bipunctata (Linnaeus, 1758) [8,10]. H. axyridis can also change
its feeding habits from carnivorous to herbivorous [9], which poses a threat to agricultural
production. Koch et al. [11] studied the phytophagous preferences of H. axyridis and found
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that, although it can directly damage some fruits such as raspberries, in most cases, it feeds
on fruits previously damaged by other pests. Indirect damage by H. axyridis has also been
observed in grape processing, where the presence of the beetle adversely affects product
quality [12]. The species is not only an agricultural pest but also an unpleasant urban pest,
as it accumulates in houses or buildings in search of overwintering sites [13]. It also emits
an unpleasant odor by reflexively secreting blood that stains household textiles [14] and
causes seasonal allergies (e.g., rhinitis, urticaria, asthma) in susceptible individuals [15,16].
H. axyridis, also known as the harlequin or multicolored Asian lady beetle, is characterized
by elytral color polymorphism, with more than 200 different morphs described in the
literature [17–19]. Morphs can generally be divided into two main groups, non-melanic
(f. succinea) and melanic (f. conspicua, f. spectabilis and f. axyridis). This phenotypic diversity
allows for local adaptation of species, suggesting that melanic forms have contributed to
the successful global expansion of H. axyridis [20]. According to Honek et al. [19], non-
melanic forms mainly occur in America [3], while polymorphic populations (non-melanic
and melanic) occur in Europe. Although the European continent is climatically diverse, the
observed differences in non-melanic forms were unrelated to the climatic characteristics
of this area [19]. On several continents, the dispersal potential of H. axyridis is extremely
high, estimated at 100 to 500 km per year [6]. In order to prevent further spread, it is
important to investigate the dispersal routes of the pest so that control measures can be
properly applied.

Along with genetic factors, complex abiotic and biotic conditions contribute to the
global spread of invasive insects [21] and are important for the study of pest populations
and their genetic variability. To study and detect this genetic variability and changes in
population structure, genetic studies are conducted using morphometric markers such
as geometric morphometrics [22,23]. This tool provides data by measuring the distance
between well-defined specific points (markers) placed at the intersections of veins on the
wings. Since geometric morphometrics has been frequently and successfully used in the last
decade to study various body parts of many insect species, particularly the wings [24–32],
it is an ideal tool for describing the phenotypic plasticity of H. axyridis.

This research aimed to identify forms of Asian lady beetle in Croatia, to analyze its
wings using geometric morphometric methods and to determine the presence of sexual
dimorphism and variability between populations and indicated forms.

2. Materials and Methods
2.1. Data Collection

From the 10th to 20th of October 2019, adult H. axyridis were collected by hand from four
different locations in Croatia when insects entered residential areas for hibernation (Figure 1).
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Collected adults were stored in 70% ethanol pending further analyses. Species and
sex were determined through the examination of the abdominal apex prior to wing dis-
section [33]. In addition to sex determination, H. axyridis individuals were also divided
according to their forms (succinea, axyridis, conspicua and spectabilis) [13,17,34]. The
left and right hind wings of each H. axyridis were removed and side-mounted using the
fixing agent Euparal (Carl Roth GmbH + Co. KG, Karlsruhe, Germany) based on standard
methods [35] for subsequent morphometric analysis. In total, 253 H. axyridis (129 males and
126 females) from 3 forms (182 f. succinea, 50 f. spectabilis, 21 f. conspicua) were analyzed via
the methods described hereinafter. Because only one individual f. axyridis was collected,
this form was not further analyzed.

2.2. Multivariate Analysis of Shape

Geometric morphometric analyses were performed using images of the left and right
hind wings of H. axyridis individuals taken by a Leica DFC295 digital camera (3 megapixel)
on a trinocular mount of a Leica MZ16a stereo microscope. The images were saved
in JPEG format using the Leica Application Suite v3.8.0 (Leica Microsystems Limited,
Heerbrugg, Switzerland).

Fifteen landmarks (LMs: anatomical homologous points) were digitized on each
image using tpsDig v2.10 software [36] (Figure 2). X-Y coordinates were obtained for
all landmarks and shape information was extracted using a Procrustes superimposition
method [37,38]. This procedure removes size, position and orientation information to
standardize each specimen based on centroid size. Shape variation among sex, forms and
populations was analyzed using principal component analysis (PCA) with the R package
Momocs [39]. To assess the influence of allometry in the data, a multivariate regression of
shape as the dependent variable (Procrustes coordinates) on centroid size (independent
variable) was calculated. For differences between groups, a mixed classifier between
forms (succinea, conspicua and spectabilis) and sex was created, and a canonical analysis of
variance (CVA) was performed to find the form features that best discriminate between
groups of specimens. All exploratory and analytic procedures were performed in the R
environment [40] using MorphoJ v1.05d [41].
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Figure 2. H. axyridis hind wing average shape with landmarks by different forms. Colors represent the three common forms:
green, conspicua (co); orange, spectabilis (sp); blue, succinea (su).

3. Results

Shape variation among the different forms of H. axyridis was quantified and visualized
using PCA (Figure 3). The first two principal components (major sources of shape variation)
account for 40.5% of the cumulative shape variance and the first five components account
for 66.1% of the cumulative shape variance (Figure 4).
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Almost half of the shape variance of all analyzed individuals can be represented by
the first two dimensions of the shape space (PC1: 26.4% and PC2: 14.1%). The multivari-
ate regression of shape on centroid size confirmed the absence of allometry in the data;
therefore, correction was not required (1.84%). Figure 3 shows that PC2 delineates the
shapes: the upper left section of the shape space corresponds to f. conspicua and the upper
right section corresponds to f. spectabilis, with the lower middle section of the shape space
mainly occupied by f. succinea. After superimposing an average shape for each shape
group, the landmark shifts for each group can be distinguished. Conspicua is the longer,
elongated form of the three with a posterior section of the wing, where landmark 15 has a
shift to the proximal posterior and enlarges the wing. Also noticeable is the elongation of
the anterior section with a shift of landmark 5. The forms succinea and spectabilis have a
similar shape, but succinea has a smaller and wider shape where landmark 13 has a shift
to the distal posterior in relation to the f. spectabilis; landmarks 4 and 5 shift closer and
widen the shape at the anterior section of the wing. We assessed the presence of sexual
shape dimorphism and found no evidence in the PCA, concluding that the wing shape is
not a sexual trait. After calculating the CVA to graphically discriminate between popula-
tions based on H. axyridis forms, we found that three populations had the conspicua form
(Figure 5A) and four populations had spectabilis and succinea forms (Figure 5B,C), which
were also present in fewer individuals. There was also a striking similarity in shape
between populations of the succinea form with a more superimposed graph (Figure 5C).
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Garešnica; orange, Ludbreg.

4. Discussion

In the present study, geometric morphometric methods were used to describe the forms
of invasive H. axyridis in Croatia. These beetles use the forms mainly as a strategy to colonize
different environments by changing certain sections of their morphology in relation to the
colonized population. This study confirms the efficiency of geometric morphometrics as a
tool for identifying minimal shape plasticity in wing shape of H. axyridis forms.

The ratio of males to females was 51%:49%, indicating a stable population in which
both sexes are equally represented. Because this was the collection of the population
entering overwintering, we also expected a higher proportion of females to be carriers of
the future population.

The hindwings study represents the first use of geometric morphometric methods
on H. axyridis. The following results confirm the efficiency of geometric morphometric
methods to detect three different morphotypes (forms) in the Asian ladybird H. axyridis
(Pallas 1773). As H. axyridis is an invasive species in Croatia, greater variability was
expected between populations collected from geographically distant locations, as is the
case with other invasive species (e.g., mosquitoes of the genus Aedes show great variability



Animals 2021, 11, 2436 6 of 8

and exhibit sexual dimorphism [42], the invasive beetle Diabrotica virgifera virgifera LeConte
develops great variability in newly invaded areas [25,29] and numerous other invasive
insects exhibit this trait) [32,43]. The studied wings of H. axyridis in our results did not
show any level of allometry or sexual dimorphism, with the detected differences primarily
due to the phenotypic variability in color forms. Nevertheless, the absence of sexual
shape dimorphism in wings could be related to non-sexual traits, where sexual pressure
is normally associated with the abdominal traits [44,45] or to the sex ration found in the
population [46–48].

In H. axyridis, this variability was most evident at landmarks #4 and #5 (intersection
of the radius posterior veins with the median flexion line) and #13 and #15 (medial bridge
vein and anal fold). These landmarks are typically associated with important anatomical
features used to distinguish between different wing morphotypes [27,29]. As an invasive
species, H. axyridis is a generalist insect that significantly deforms its wings (bending and
twisting) during flight while flapping similar to other flying beetles [49].

In general, this study found population variability in the studied area of continental
Croatia that results from the development of localized phenotypic plasticity of the popula-
tion. Phenotypic plasticity is defined as a change in phenotypic expression of a genotype in
response to ecological factors [50] and has been shown to have significant evolutionary con-
sequences [50,51]. Many studies suggest that newly invasive species exhibit higher levels
of phenotypic plasticity, although empirical tests of this theory are very rare [52,53]. Insect
wing plasticity can be caused by many factors; however, deformation can vary greatly
from beat to beat [54]. This leads to variance in asymmetry between half-beats that cause
wing deformation, important for the functionality of any aerodynamic cycle [55]. Because
an invasive insect must adapt its morphology to the locality it invades, shape variability
should be a key characteristic of H. axyridis. Given the high prevalence and invasiveness of
H. axyridis, as well as its demonstrated ability to adapt to different ecological conditions
(phenotypic plasticity), its spread and adaptation to previously uncharted areas and hosts
should be expected in times of significant climate change.

5. Conclusions

Over the last decade, researchers have increasingly used the methods of geometric
morphometrics to study multiple entomological phenomena and processes. This research
contributes to the application of geometric morphometric methods in the study of invasive
species by confirming the efficiency of geometric morphometrics as a tool for identifying
minimal shape plasticity in wing shape and patterns of sexual shape dimorphism among
invasive forms. Each form has its own specific morphotype that likely originated under the
influence of genetic changes in the species. Although more detailed studies are needed for
further clarity, this study demonstrates that geometric morphometric methods can analyze
phenotypic differences in forms and reveal subtle phenotypic changes that explain genetic
changes within an invasive H. axyridis species.
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