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Abstract

Background: Clinical and histological parameters are valid prognostic markers in renal disease, although they may
show considerable interindividual variability and sometimes limited prognostic value. Novel molecular markers and
pathways have the potential to increase the predictive prognostic value of the so called “traditional markers”.

Methods: Transcriptomics profiles from laser-capture microdissected proximal tubular epithelial cells from routine
kidney biopsies were correlated with a chronic renal damage index score (CREDI), an inflammation score (INSCO),
and clinical parameters. We used data from 20 renal biopsies with various proteinuric renal diseases with a median
follow-up of 49 months (discovery cohort). For validation we performed microarrays from whole kidney biopsies
from a second cohort consisting of 16 patients with a median follow-up time of 28 months (validation cohort).

Results: 562 genes correlated with the CREDI score and 285 genes correlated with the INSCO panel, respectively.
39 CREDI and 90 INSCO genes also correlated with serum creatinine at follow-up. After hierarchical clustering we
identified 5 genes from the CREDI panel, and 10 genes from the INSCO panel, respectively, which showed kidney
specific gene expression. After exclusion of genes, which correlated to each other by > 50% we identified VEGF-C
from the CREDI panel and BMP7, THBS1, and TRIB1 from the INSCO panel. Traditional markers for chronic kidney
disease progression and inflammation score predicted 44% of the serum creatinine variation at follow-up. VEGF-C
did not further enhance the predictive value, but BMP7, THBS1 and TRIB1 together predicted 94% of the serum
creatinine at follow up (p < 0.0001). The model was validated in a second cohort of patients yielding also a
significant prediction of follow up creatinine (48%, p = 0.0115).

Conclusion: We identified and validated a panel of three genes in kidney biopsies which predicted serum
creatinine at follow-up and therefore might serve as biomarkers for kidney disease progression.
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Background
In biopsy-proven renal diseases several clinical and histo-
pathological features have been established as markers
indicative of progression [1-5]. Nonetheless, most of these
traditional risk markers have limited accuracy and reliability,
which may be improved by including further molecular
markers. Microarray technology and integrative bioinfor-
matics strategies resulted in the identification of novel
molecular features, multi-gene expression patterns, and bio-
logical pathways being associated with renal disease
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progression. In native kidney disease, Reich and colleagues
identified a panel of eleven genes expressed in kidney biop-
sies which were related to the degree of proteinuria and
allowed to distinguish biopsies from patients with IgA neph-
ritis (IgAN) from control subjects [6]. Boettinger and co-
workers identified a panel of 30 TGF-beta 1-related
transcripts expressed in the renal tubulointerstitial compart-
ment which correlated significantly with eGFR in patients
with CKD I-V [7]. Our group showed that diminished renal
tubular expression of VEGF-A and increased expression of
hypoxia response genes at time of biopsy better predict renal
outcome in CKD patients than serum creatinine and pro-
teinuria [8]. In zero-hour renal allograft biopsies Perco et al.
reported a panel of three genes enhancing the predictive
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value for allograft function one year after kidney transplant-
ation by 2-fold as compared to traditional markers of allo-
graft function [9]. Einecke et al. published a panel of 30
genes from “for cause”-kidney transplant biopsies which
predicted graft loss better than pathohistological features or
function at time of biopsy [10]. More recently, Sellares
et al. developed a molecular score for antibody-mediated
rejection in kidney grafts consisting of the expression values
of 30 specific genes, which significantly predicted future
graft failure [11]. Pathways that have been identified as
highly affected in high-throughput Omics studies in the
context of progressive native kidney disease included for
example the VEGF-signaling and hypoxia response path-
ways in various glomerulonephritis [8], or the NF-κB mod-
ule NFKB_IRFF_01 pathway in diabetic nephropathy [12].
These studies further underline a substantial benefit of
multi-gene over single-gene patterns. However, most gene
expression studies on the association of renal transcripto-
mics and kidney function decline are cross-sectional with
only a limited number of longitudinal studies available.
The condition of the tubulointerstitial compartment and

in particular of proximal tubular epithelial cells (PTECs)
plays a pivotal role in the progression of chronic renal fail-
ure. A variety of mechanisms possibly responsible for renal
function decline have been identified in this context, such as
tubular atrophy, intersititial fibrosis, tubulointerstitial hyp-
oxia, capillary rarefaction, impaired angiogenesis, epithelial-
mesenchymal transition and inflammation [13]. Importantly,
these histopathological features can be found in various
renal diseases, such as FSGS, minimal change disease, lupus
nephritis or IgA nephropathy, independently from diagnosis
and correlate with poor renal prognosis. Therefore, we and
others focused on gene-expression profiles derived from mi-
crodissected PTECs or from the tubulointerstitial compart-
ment [8,12].
In this project we followed a longitudinal study setup

utilizing transcriptomics data from two of our recent stud-
ies [8,14]. The given gene expression sets derived from
laser-capture micro dissected (LCM) human renal prox-
imal tubule cells were correlated to histological character-
istics and to renal function after a median follow up of
49 months to identify candidate markers for the predic-
tion of renal disease progression. The results from the first
cohort were validated in an independent cohort of whole
kidney biopsies.

Methods
Renal biopsies, RNA isolation and microarray
hybridization
In the current study we analyzed pre-existing microarray
expression data of laser-capture microdissected (LCM)
PTECs from 50 renal biopsy samples from patients with
proteinuric kidney diseases (discovery cohort) from two of
our previous studies [8,14]. Of these samples those with
insufficient material for detailed histological assessment of
renal damage and inflammation score (see below) were
excluded. Additionally, we excluded those that were not
on a stable dosing of immunosuppression, where applic-
able (e.g. Lupus nephritis), prior to biopsy or developed
AKI within 1 week after biopsy. Finally, 27 renal biopsy
samples (discovery cohort) fulfilled these criteria and were
in depth analysed for histological signs of damage and in-
flammation (see below).
The degree of glomerular sclerosis (gs), interstitial fibrosis

and tubular atrophy (ifta) as well as interstitial inflamma-
tion (ii) was assessed for each of the biopsies as follows: 0 =
0% (none), 1 = 1 – 10% (slight), 2 = 11 – 25%, 3 = 26 – 50%
(moderate) and 4 > 50% (severe). The chronic renal damage
index (CREDI) for each biopsy was derived from the sum
score of gs and ifta. The degree of interstitial inflammation
resulted directly in the inflammation score (INSCO).
Follow-up laboratory data was available for 20 of these pa-
tients, with a median follow-up time of 49 months (range:
29 – 68 months).
A second group of patients with proteinuric kidney

diseases was used for validation. We analyzed microarray
expression data of whole kidney biopsies from 16 renal bi-
opsy samples from patients with proteinuric kidney diseases
(validation cohort). The degree of gs, ifta and ii was assessed
for each of the biopsies as stated above. The median follow-
up time was 28 months (range: 1 – 72 months).
In the discovery and the validation cohort progressive

disease was defined as either doubling of serum creatin-
ine or reaching end-stage renal disease during follow-up,
all other patients were defined as stable. For data secur-
ity purposes individual ages are not stated in the tables;
instead age groups have been defined: group 1 = age
<30 years, group 2 = age 30–45 years, group 3 = age 46–
60 years, group 4 = age > 60 years. However, we used in-
dividual ages for statistics concerning age comparing
progressive and stable patients.
The LCM, RNA isolation, and microarray hybridization

have been described in detail in previous work [14,15]. In
brief, PTECs were stained for alkaline phosphatase
using 4-nitro blue tetrazolium chloride/5-bromo-4-
chloro-3-indolyl phosphate under RNase-free condi-
tions, and the cells were isolated using the PixCell IIs
Laser Capture Microdissection System and CapSure™
LCM Caps (Arcturus, Mountain View, CA, USA). Total
RNA was isolated using the Pico Pure™ RNA Isolation
Kit (Arcturus, Mountain View, CA, USA). Owing to low
RNA amounts, we performed two rounds of linear RNA
amplification using the RiboAmp™ RNA Amplification
Kit (Arcturus, Mountain View, CA, USA). The quality
of the amplified RNA was assessed by spectrophotom-
etry (A260/280) and with the Agilent Bioanalyzer and
RNA6000 LabChip™ Kit (Agilent, Palo Alto, CA, USA).
cDNA-microarrays were obtained from the Stanford
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Functional Genomics Facility (https://microarray.org/
sfgf/). The arrays contained 41 792 spots, representing
30 325 genes assigned to a UniGene cluster and 11467
ESTs. Arrays were scanned using a GenePix 4000B
microarray scanner, and the images were analyzed
with the GenePix Pro 4.0 software (Axon Instruments,
Union City, CA, USA). All samples were processed in
technical duplicates and gene expression values were
averaged.
The Institutional Review Board (IRB) of the Medical

University of Innsbruck (Ethikkommittee Medizinische
Universtität Innsbruck) accredited the use of surplus ma-
terial from routine for-cause renal biopsies for research
purposes. A written consent was not obtained (and not re-
quired from the IRB) as the biospies were performed in
the context of clinical routine and have been analyzed
after patient treatment and hospitalization were ultimately
completed. All other patient records have been anon-
ymized and de-identified prior to analysis.

Establishment and validation of a biomarker model
predictive for follow-up creatinine
Correlation of genome-wide gene expression with histological
scores
We included genes with intensity values of more than 2.5
over background and a valid signal in more than 80% of
the processed arrays in further analysis. Pearson correl-
ation coefficients were calculated between gene expression
values and the CREDI as well as the INSCO scores,
respectively.
Significantly correlated genes (p-value < 0.01) with at

least one of the two histological scores were functionally
annotated using gene ontology terms as provided by the
SOURCE tool (http://source.stanford.edu). We further-
more searched for biological pathways being enriched or
depleted with respect to the set of significantly correlated
genes using the PANTHER (Protein ANalysis THrough
Evolutionary Relationships) Classification System [16-18].

Linear regression model for prediction of creatinine at
follow-up
Univariate linear regression models including expres-
sion values of candidate genes were computed to predict
serum creatinine values at follow-up. For genes showing
a significant prediction (p < 0.05) kidney-specific gene
expression was evaluated using information as provided
by the SOURCE tool. We focused on kidney-specific
genes by purpose as microarray data derived from laser-
capture microdissected renal proximal tubule cells.
From the set of candidate genes, the ones showing high
correlation to serum creatinine but low Pearson correl-
ation coefficients in their pairwise comparison (Pearson
R < 0.5 and > −0.5, respectively) were selected for build-
ing multivariate regression models. This procedure was
applied for avoiding the inclusion of highly correlated
variables into one model. Multiple linear regression
models for the prediction of kidney function were estab-
lished using a combination of genes based on either the
CREDI or the INSCO panel along with the gold stand-
ard parameters INSCO, CREDI, creatinine and protein-
uria at time of biopsy. The best model was generated in
a step-wise selection procedure. In order to get a 95%
confidence interval for the coefficient of determination
we applied a bootstrap sampling using 2000 case
resampled datasets. The confidence interval was com-
puted by the bias corrected algorithm [19].
For validation of the model found in the discovery co-

hort we performed linear regression analysis for the pre-
dictive value in a second cohort of patients (validation
cohort).
For a better comparison of our data with published lit-

erature we also calculated sensitivity and specificity for
each biomarker candidate using the renal endpoints
“end stage renal disease (ESRD)” and “doubling of serum
creatinine” for definition of progressive kidney disease
(see Tables 1 and 2). Using Youden’s J statistics [20] (J =
Sensitivity + Specificity – 1) we calculated the optimal
cut-off values [micro array fluorescence intensity values]
for each biomarkers with respect to maximized sensitiv-
ity and specificity.

General statistics
The following procedure was carried out to test signifi-
cance of findings: Values from stable and progressive
patients were tested for Gaussian distribution using
Kolmogorov-Smirnov- Test unless categorical data. In
case of non-Gaussian distribution non-parametric un-
paired Kruskal-Wallis test was applied. In all other cases
Student’s T-Test was used. P values below 5% were de-
fined as statistically significant.

Results
Establishment of a biomarker model predictive for follow-up
creatinine – discovery cohort
Patient characteristics
Detailed patient characteristics were published previously
and are summarized in Table 1 [8,14]. The proportion of
female patients was 37%. Ten patient samples showed a
CREDI of less than or equal to 2, seven samples had a
CREDI of 3 to 4, and ten samples showed severe damage
with a CREDI score above 4. Twenty-three samples had
INSCO values of 0 or 1, three samples had a score of 2,
and one patient sample was scored with a value of 3.
There was a significant correlation between CREDI and
INSCO (R = 0.57, p < 0.05). Twenty patients with sufficient
clinical follow-up data were included in the subsequent
correlation analysis of CREDI and INSCO associated
genes with kidney function during follow-up. There were
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Table 1 Patient characteristics – discovery cohort

Patient Age
group

Follow-up
time
[months]

Creatinine
at time of
biopsy [mg/dl]

Creatinine
at follow-up
[mg/dl]

eGFR (MDRD) at
time of biopsy
[ml/min/1.73 m2]

eGFR (MDRD)
at follow-up
[ml/min/1.73 m2]

Proteinuria
at time of
biopsy [g/d]

Proteinuria
at follow-up
[g/d]

Histological
diagnosis

SD/PD Endpoint IFTA GS IFTA +
GS =
CREDI

II =
INSCO

1 2 62 0.84 0.88 >60 >60 1.9 3.2 FSGS Stable - 2 2 4 0

2 2 49 0.76 0.84 >60 >60 4.7 4.7 mg/dl MCD Stable - 0 0 0 0

3 4 63 0.79 0.75 >60 >60 500 mg/dl 0.0 MCD Stable - 1 1 2 1

4 2 43 1.34 1.09 58.1 >60 0.4 45.1 mg/dl IGAN Stable - 1 2 3 1

5 1 49 0.77 0.76 >60 >60 7.4 43.0 FSGS Stable - 0 2 2 0

6 2 39 0.8 0.75 >60 >60 1.6 0.2 MCD Stable - 1 1 2 0

7 1 31 1.0 0.96 >60 >60 1.3 14.8 mg/dl IGAN Stable - 1 1 2 1

8 3 52 0.93 0.97 >60 >60 1.3 263.3 mg/dl IGAN Stable - 1 1 2 0

9 1 51 1.89 0.91 44.8 >60 42.0 42.0 FSGS Stable - 3 2 5 0

10 2 49 1.43 1.43 40.2 39.5 1.0 0.8 IGAN Stable - 3 3 6 1

11 2 50 1.56 1.8 51.8 42.9 1.2 NA IGAN Stable - 2 2 4 0

12 3 67 1.42 2.28 51.6 29.3 2.7 4.6 FSGS Stable - 2 2 4 1

13 2 68 1.71 3.63 46.9 20.9 1.6 3.6 IGAN Progressive 2xCrea 3 2 5 1

14 1 51 1.02 3.5 >60 21 12.0 17.5 FSGS Progressive 2xCrea 2 3 5 2

15 1 29 1.20 1.81 54.3 33.3 7.5 3.2 IGAN Stable - 2 3 5 0

16 4 42 1.50 7.02 34.5 <20 8.5 8.0 MGN Progressive ESRD 2 2 4 1

17 1 49 1.87 10.1 33.4 <20 6.5 NA RPGN Progressive ESRD 2 1 3 2

18 2 48 1.27 4.02 47.9 <20 6.5 1.3 LN4 Progressive 2xCrea 4 4 8 3

19 4 56 3.13 3.37 <20 <20 4.0 1.0 MPGN II Stable - 2 3 5 1

20 3 31 5.07 6.03 <20 <20 3.4 2.9 MPA Progressive ESRD 3 2 5 2

21 3 n.a. 4.67 NA <20 NA 10.6 NA IGAN NA NA 1 4 5 1

22 2 n.a. 0.71 NA >60 NA 10.2 NA FSGS NA NA 1 1 2 0

23 2 n.a. 1.12 NA >60 NA 0.5 NA IGAN NA NA 3 2 5 1

24 2 n.a. 1.09 NA >60 NA 6.3 NA FSGS NA NA 1 1 2 1

25 1 n.a. 1.0 NA >60 NA 1.2 NA IGAN NA NA 0 0 0 0

26 3 n.a. 1.4 NA 52.6 NA 10.0 NA MCD NA NA 1 1 2 0

27 4 n.a. 2.44 NA <20 NA 18.0 NA MCD NA NA 2 1 3 1

Median 33 49 1.42 1.26 2.7 3.4 2.0 2.0 4.0 1.0

Mean 39 49 1.66 2.64 4.0 5.5 1.9 2.0 3.8 0.9

SD 17 11 1.12 2.65 2.9 6.0 1.0 0.9 1.8 0.9

Median S 33 50 1.38 0.96 1.9 3.9 1.5 2.0 3.5 0.0
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Table 1 Patient characteristics – discovery cohort (Continued)

Median P 33 49 1.71 6.03 6.5 3.3 2.5 2.0 5.0 2.0

Mean S 39 49 1.4 1.29 3.2 3.9 1.5 1.8 3.3 0.4

Mean P 40 48 2.19 6.15 5.8 6.3 2.7 2.3 5.0 1.8

SD S 17 11 0.72 0.78 2.7 1.0 NA NA NA NA

SD P 19 12 1.65 2.59 2.9 7.5 NA NA NA NA

p-value n.s. n.s. n.s. 0.01 n.s. n.s. n.s. n.
s.

n.s. 0.004

FSGS Focal-segmental glomerulosclerosis, MCD Minimal change disease, IGAN IgA-Nephropathy, MGN Membranous glomerulonephritis, RPGN Rapid progressive glomerulonephritis, LN4 Lupus nephritis WHO IV, MPGN
II Membranoproliferative glomerulonephritis type II, MPA Microscopic polyangiitis, NA not applicable/ not assessed, IFTA interstitial fibrosis/tubular atrophy, GS glomerular sclerosis, II interstitial inflammation. Median,
Mean and standard deviation (SD) for the patients with follow-up and from stable (S) and progressive (P) patients are shown at the bottom of the table. Age groups have been defined as follows: group 1 = age
<30 years, 2 = 30–45, 3 = 46–60, 4 = age >60 years. p-values indicate statistical significance comparing clinical data (age, follow-up, creatinine, proteinuria) from stable and progressive patients.
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Table 2 Patient characteristics – validation cohort

Patient Age
group

Follow-up
time
[months]

Creatinine at
time of biopsy
[mg/dl]

Creatinine at
follow-up
[mg/dl]

eGFR (MDRD)
at time of biopsy
[ml/min/1.73 m2]

eGFR (MDRD)
at follow-up
[ml/min/1.73 m2]

Proteinuria
at time of
biopsy [g/d]

Proteinuria
at follow-up
[g/d]

Histological
diagnosis

SD/PD Endpoint IFTA GS II

1 2 5 4.60 6.67 <20 <20 4.8 2.0 IGAN Progressive ESRD Moderate 4 Moderate

2 2 51 0.88 0.96 >60 >60 1.9 1.5 IGAN Stable Moderate 2 Moderate

3 3 34 1.34 1.97 41.4 26.2 2.2 0.5 LN IV Stable Moderate 3 Moderate

4 1 23 1.09 0.98 >60 >60 3.0 0.3 LN IV Stable Moderate 2 Moderate

5 1 50 0.52 0.86 >60 >60 10.4 0.2 LN IV Stable Moderate 0 Moderate

6 1 41 1.05 5.46 >60 <20 1.7 3.3 IGAN Progressive ESRD Moderate 0 None

7 3 58 0.86 8.54 >60 <20 1.3 4.6 MGN Progressive ESRD Moderate 0 None

8 4 31 1.13 2.84 >60 22 2.5 2.8 MGN Progressive 2xCrea Moderate 0 None

9 3 25 2.59 6.61 25.5 <20 NA NA FSGS Progressive ESRD Severe 4 NA

10 3 72 1.43 7.60 53.2 <20 NA 5.2 IGAN Progressive ESRD Moderate 0 None

11 3 40 1.10 0.78 52.4 >60 NA 0.0 IGAN Stable Moderate 3 Moderate

12 3 1 4.86 6.34 <20 <20 7.9 12.5 IGAN Progressive ESRD Severe 4 None

13 3 23 1.62 1.59 44.3 45.1 4.8 0.8 IGAN Stable Severe 1 Moderate

14 2 7 0.91 0.82 >60 >60 10.0 0.8 IGAN Stable None 0 None

15 4 17 1.23 4.32 58.3 <20 6.3 6.5 IGAN Progressive 2xCrea Moderate 2 None

16 3 16 2.71 4.16 24.2 <20 1.0 1.1 IGAN Stable Severe 3 Severe

Median 50 28 1.18 3.50 3.0 1.5

Mean 47 31 1.75 3.78 4.4 2.8

SD 15 20 1.30 2.76 3.3 3.3

Median S 46.5 28.4 1.1 0.97 3.0 0.6

Median P 49.5 28 1.33 6.48 3.6 4.6

Mean S 43.9 30.4 1.27 1.52 4.8 0.7

Mean P 49.8 31.4 2.22 6.05 4.1 5.3

SD S 12.9 16 0.67 1.15 3.9 0.5

SD P 16.9 24.8 1.64 1.81 2.7 3.5

p-value n.s. n.s. n.s. <0.001 n.s. 0.01

Abbreviations see legend of Table 1.
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no significant differences in serum creatinine and protein-
uria at time of biopsy, and neither in the CREDI nor in
the INSCO values between subjects with and without
follow-up data. The same non-significant results were ob-
tained comparing stable versus progressive patients (in-
cluding follow-up time), despite a significant difference in
the creatinine at follow-up and INSCO values (Median
INSCO(progressive) = 2, INSCO(stable) = 0, p = 0.004).

Correlation of gene expression with chronic renal damage
index
Transcriptomics profiles from the 20 samples were corre-
lated to CREDI. The expression status of 562 unique genes
correlated significantly with CREDI. Of these 562 genes
222 showed a positive correlation (i.e. being upregulated)
with increasing damage score, and 340 genes showed a
negative correlation (i.e. being downregulated) with increas-
ing damage score, respectively (Additional file 1: Table S1).
Pathways found to be enriched either in positively or nega-
tively correlated genes are summarized in Table 3. Among
others the insulin-like growth factor-, the transforming
growth factor-, and the integrin signaling-pathway were sig-
nificantly enriched with genes in the list of 222 positively
correlated genes. Using the 340 downregulated genes we
identified 27 significantly enriched pathways. These path-
ways included, among others, metabolism (e.g. ATP synthe-
sis) signaling (e.g. FGF-signaling, EGF receptor signaling,
VEGF-signaling, angiogenesis), and inflammation (e.g. T-cell
activation, B-cell activation).

Correlation of gene expression with inflammation score
Next, we correlated gene expression data from the same
20 samples to INSCO. The expression values of 285
genes correlated with INSCO, of which 150 showed
a positive and 135 showed a negative correlation
(Additional file 1: Table S2). In the 150 genes three
pathways were significantly overrepresented, namely the
chorismate biosynthesis-, the nicotinic acetylcholine re-
ceptor signaling-, and the mannose metabolism-path-
way. Thirteen pathways were identified on the basis of
the 135 negatively correlated genes (Table 3). Several
pathways linked to amino-acid synthesis such as
leucine-, alanine-, valine-, isoleucine- and serine glycine
biosynthesis-pathways. Furthermore, mRNA splicing-
and general transcription by RNA polymerase I-path-
ways were identified as being enriched with down
regulated genes.

2-step approach for identification of candidate genes for
prediction of renal outcome
We correlated the expression values of genes showing sta-
tistically significant association to CREDI (562 genes) and
INSCO (285 genes) with follow-up creatinine. Significant
correlation (p < 0.05) was identified for 39 genes from the
CREDI group, and for 90 genes from INSCO set of genes,
respectively. To maximize the predictive value of selected
genes we applied a 2-step approach: Kidney specificity of the
genes was evaluated using information as provided by the
SOURCE tool (http://source.stanford.edu). Five (CREDI)
and ten (INSCO) genes were found to be highly expressed
in human kidney (Table 4). We further evaluated the pair-
wise correlation of expression to identify those candidate
genes showing the lowest correlation in expression, thus
having an independent predictive value for follow-up cre-
atinine. Four CREDI genes (vascular endothelial growth
factor C (VEGF-C), podoplanin (PDPN), semaphorin 6A
(SEMA6A), integrin beta 6 (ITGB6)), and six INSCO genes
(thrombospondin 1 (THBS1), tribbles homolog 1 (TRIB1),
bone morphogenetic protein 7 (BMP7), chordin-like 1
(CHRDL1), apoptosis-inducing factor 1 (AIFM), syntaxin 7
(STX7)) were identified following this approach.

Linear regression analysis
The predictive value of classical markers, creatinine at
time of biopsy and histopathological grading, was calcu-
lated, and the additive predictive value of a gene-panel
of CREDI or INSCO genes was calculated. Adjusted R2

values of the classical markers, creatinine at time of bi-
opsy, CREDI and INSCO were 0.18, 0.02 and 0.44 with
p-values of 0.0391, 0.2699 and 0.0012, respectively.
Hence, only INSCO but not CREDI classification was
able to predict 44% of variation of follow-up creatinine
with statistical significance. The best model based solely
on traditional markers consisted of creatinine at time of
biopsy and INSCO with an adjusted R2 of 0.51 (p =
0.0014) (Table 5). The best model after a step-wise selec-
tion using all traditional markers and the CREDI genes
resulted in a model consisting of VEGF-C and INSCO
with a comparable predictive value of 0.51 (p = 0.0009).
Using the INSCO genes together with the traditional pa-
rameters resulted in a model consisting of the three
genes thrombospondin 1 (THBS1), bone morphogenetic
protein 7 (BMP7), and tribbles homolog 1 (TRIB1). The
predictive value of this model was 0.94 (p < 0.0001), thus
predicting 94% of the variation of follow-up creatinine
for the given sample set with a median follow-up time of
49 months (Table 5). The bias corrected bootstrap confi-
dence interval for the coefficient of determination was
0.558 – 0.987.
These three genes were found to be significantly differ-

entially expressed when comparing array data from stable
and progressive patients. In progressive patients we found
a significantly higher expression of THBS1 (p = 0.009) and
TRIB1 (p = 0.011), whereas the expression levels of BMP7
were significantly lower (p = 0.007) as compared to stable
patients.
Using hard renal endpoints (see Table 1), e.g. doubling

of serum creatinine or ESRD, for definition of progressive

http://source.stanford.edu
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kidney disease we have calculated sensitivity and specificity
for each marker using ROC analysis. Sensitivity/specificity
was 1.00/1.00 for THBS1 (cut-off: 1.17), 0.67/0.83 for TRIB1
(cut-off: 2.42) and 0.93/0.68 for BMP7 (cut-off: −1.15),
respectively.

Validation cohort
Patient characteristics
In order to validate the established biomarker model micro-
arrays were performed using whole kidney biopsies of a 2nd

cohort of patients with proteinuric kidney diseases (n = 16).
The patient characteristics are shown in detail in Table 2.
This cohort consisted of 25% females. There was no signifi-
cant difference in age, follow-up time, creatinine/proteinuria
at time of biopsy comparing stable and progressive patients.
Comparing the clinical data with those from the discovery
cohort we found also no significant difference, except a
shorter follow-up time (49 vs. 28 months).

Linear regression analysis
The predictive value of the model creatinine at time of
biopsy plus the three biomarkers of the INSCO-panel
was calculated. The predictive value of this model was
0.4852 (p = 0.0115), thus predicting 48% of the variation
of follow-up creatinine for the given sample set with a
median follow-up time of 28 months. Comparing the
predictive value of the traditional parameter creatinine
at time of biopsy with the 3-biomarker panel yielded in
a significantly better prediction of follow-up creatinine
using the 3 biomarkers (p = 0.0236).
Again, these three genes were found to be differentially

expressed when comparing array data from stable and
progressive patients; however only TRIB1 reached statis-
tical significance (p = 0.023).
We have calculated sensitivity and specificity for each

marker using ROC analysis in this cohort. Sensitivity/specifi-
city was 1.000/0.625 for THBS1 (cut-off: 10.09), 0.625/0.750
for TRIB1 (cut-off: 8.03) and 0.875/0.625 for BMP7 (cut-off:
6225), respectively.

Discussion
In this project we performed a transcriptomics approach
to identify tubular gene expression profiles associated
with (i) glomerulosclerosis, tubular atrophy or intersti-
tial fibrosis, or (ii) interstitial inflammatory infiltration.
The histopathological features of tubular atrophy and
interstitital fibrosis correlate better with poor renal
prognosis compared to glomerular lesions, which is ac-
cordance with previously published data. The identified
activation of features assigned to IGF-, PDGF-, TGF
beta- and integrin-pathways in fibrotic tissue is in line
with data from various groups [21-23]. More interest-
ingly, a number of downregulated features was enriched
in specific pathways including several receptor- and
intracellular signaling-, metabolism-, cell cycle- and
angiogenesis-pathways. The impact on ATP-synthesis-
and cell cycle-pathways is in accordance with data show-
ing that hypoxia in particular in proximal tubule cells
depletes the cells of ATP, induces mitochondrial frag-
mentation, and finally leads to apoptosis [24].
We next correlated tubular gene expression with the

presence of interstitial inflammation. Several pathways
linked to amino acid synthesis, mRNA-splicing, transcrip-
tion, PDGF-signaling, apoptosis and p53-signaling showed
enrichment in downregulated genes. Seven of the 13 path-
ways were defined as significantly overrepresented because
of the presence of two genes: phosphoserine aminotransfer-
ase 1 (PSAT1) and branched chain amino-acid transamin-
ase 2, mitochondrial (BCAT2) (data not shown). PSAT1 as
a member of the PLP biosynthesis and the serine glycine
biosynthesis pathway is involved in serine, glycine and
threonine metabolic pathways, and also in the biosynthesis
of vitamin B6 (pyridoxine). BCAT2 is expressed in mito-
chondria and catalyzes the first step in the production of
the branched amino-acids leucine, isoleucine and valine.
These results may emphasize the role of mitochondrial dys-
regulation in CKD [24-26].
In the next step we aimed at the identification of novel

molecular markers indicative for progression of chronic
renal failure. Since the extent of tubulointerstitial fibrosis
represents an established risk factor for kidney disease pro-
gression, we hypothesized that genes from the CREDI panel
will outperform genes from the INSCO panel regarding the
predictive value. Surprisingly, only 39 of 562 (7%) CREDI
genes also correlated with serum creatinine during follow
up, while 90 of 285 (32%) INSCO genes showed a signifi-
cant correlation. Furthermore, INSCO itself predicted 44%
of follow-up creatinine variation (p = 0.0012), while the pre-
dictive value of CREDI was not significant. It has been gen-
erally accepted that tissue fibrosis and inflammation both
contribute to progressive renal scarring and are finally
associated with renal function decline [27]. Although some
uncertainty exists about details of the causal and chrono-
logical relationship, it has been generally proposed that
renal injury is followed by recruitment of inflammatory
cells, release of fibrogenic cytokines, and finally the activa-
tion of collagen-producing cells [28]. Our results of signifi-
cant correlation of inflammation but not fibrosis with renal
function decline point towards a biopsy bias favouring
acute inflammatory glomerulonephritis rather than slowly
progressing fibrosing renal disease. On the other hand these
findings might also be compatible with the chronological
sequence of inflammation followed by fibrosis processes.
We identified a panel of three genes which were highly

predictive for the variation of follow-up creatinine after a
median follow up time of more than 4 years. Using the ex-
pression values of THBS1, BMP7 and TRIB1 we were able
to predict an additional 43% of creatinine variance on top



Table 3 Pathways enriched/depleted in differentially regulated genes correlating with CREDI and INSCO

Pathways enriched/depleted in differentially regulated genes correlating with CREDI

Upregulated genes (n = 222)

Pathways # Genes P value

Hedgehog signaling pathway 3 0.002

Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade 3 0.006

Formyltetrahydroformate biosynthesis 2 0.006

PDGF signaling pathway 6 0.006

TGF-beta signaling pathway 5 0.018

Transcription regulation by bZIP transcription factor 3 0.018

Muscarinic acetylcholine receptor 2 and 4 signaling pathway 3 0.027

Ornithine degradation 1 0.030

Integrin signaling pathway 5 0.040

Serine glycine biosynthesis 1 0.050

Downregulated genes (n = 340)

Pathways # genes P value

ATP synthesis 4 0.000

FGF signaling pathway 8 0.001

EGF receptor signaling pathway 8 0.002

GABA-B_receptor_II_signaling 4 0.004

Alzheimer disease-amyloid secretase pathway 5 0.006

T cell activation 6 0.006

Endogenous_cannabinoid_signaling 3 0.007

Histamine H1 receptor mediated signaling pathway 4 0.007

Metabotropic glutamate receptor group II pathway 4 0.009

B cell activation 5 0.010

Axon guidance mediated by netrin 3 0.012

Endothelin signaling pathway 5 0.015

Oxytocin receptor mediated signaling pathway 4 0.016

Thyrotropin-releasing hormone receptor signaling pathway 4 0.018

Muscarinic acetylcholine receptor 2 and 4 signaling pathway 4 0.018

Cholesterol biosynthesis 2 0.018

Metabotropic glutamate receptor group I pathway 3 0.020

5HT2 type receptor mediated signaling pathway 4 0.025

Succinate to proprionate conversion 1 0.031

VEGF signaling pathway 4 0.032

5HT1 type receptor mediated signaling pathway 3 0.033

Angiogenesis 7 0.033

Inflammation mediated by chemokine and cytokine signaling pathway 9 0.037

PDGF signaling pathway 6 0.042

DNA replication 2 0.044

Cell cycle 2 0.048

Heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha mediated pathway 6 0.050

Pathways enriched/depleted in differentially regulated genes correlating with INSCO

Upregulated genes (n = 150)

Pathways # Genes P value
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Table 3 Pathways enriched/depleted in differentially regulated genes correlating with CREDI and INSCO (Continued)

Chorismate biosynthesis 1 0.000

Nicotinic acetylcholine receptor signaling pathway 3 0.033

Mannose metabolism 1 0.049

Downregulated genes (n = 135)

Pathways # Genes P value

mRNA splicing 2 0.002

General transcription by RNA polymerase I 2 0.007

PLP biosynthesis 1 0.013

Leucine biosynthesis 1 0.013

Alanine biosynthesis 1 0.013

Vitamin B6 metabolism 1 0.019

Valine biosynthesis 1 0.019

Isoleucine biosynthesis 1 0.019

PDGF signaling pathway 4 0.019

Serine glycine biosynthesis 1 0.031

Histamine H1 receptor mediated signaling pathway 2 0.037

p53 pathway feedback loops 2 2 0.044

Apoptosis signaling pathway 3 0.045

Biological pathways being enriched or depleted with respect to the set of significantly correlated genes were analyzed using the PANTHER (Protein ANalysis
THrough Evolutionary Relationships) Classification System. # genes … number of genes.
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of traditional progression markers, being creatinine and
inflammation score at time of biopsy. Again, all three
genes were identified from the inflammation gene panel
further emphasizing the relevance of tissue inflammation
in progressive renal failure.
Table 4 Top candidate marker genes for prediction of
creatinine at follow up

Symbol Genelist Corr. FU-Crea. p-value

THBS1 INSCO 0.781 0.000

TRIB1 INSCO 0.776 0.000

NCF1C INSCO 0.675 0.001

SEMA6A CREDI 0.522 0.038

PDPN CREDI 0.495 0.026

SPP2 CREDI 0.485 0.048

ITGB6 CREDI 0.471 0.036

GREM1 INSCO −0.447 0.048

BMP7 INSCO −0.465 0.039

AIFM1 INSCO −0.572 0.013

CTH INSCO −0.578 0.015

PRPH INSCO −0.603 0.010

STX7 INSCO −0.631 0.004

VEGFC CREDI −0.636 0.003

CHRDL1 INSCO −0.665 0.002

These genes represent the top candidates which correlated with histological
damage (CREDI or INSCO) and creatinine at follow up, and which are known
to be expressed in kidney tissue.
In order to validate this model found in microdissected
renal proximal tubule cells, we performed microarrays from
whole kidney biopsies in a 2nd cohort of patients suffering
from proteinuric kidney diseases. We decided to use whole
kidney biopsies by purpose, as LCM of renal proximal tu-
bule cells is not a standard procedure in histopathological
work-up after kidney biopsy and we were interested if gen-
omic patterns derived from LCM proximal tubule cells can
be found in the background signal from all other cell types
in whole kidney biopsies. Using our 3-biomarker model we
were able to predict 48% of creatinine variance at follow up
(p = 0.0115).
We used creatinine at follow-up as the clinical out-

come parameter in this project, since worsening of cre-
atinine (e.g. doubling of serum creatinine) and reaching
end-stage renal disease (ESRD) are the only established
endpoints in clinical renal research approved by the
food and drug administration (FDA). Alternatively, one
can use eGFR or eGFR slope as parameter for changes
in kidney function, but eGFR formulas (MDRD, CKD-
EPI) are not reliable at eGFR values above 60 and below
20 ml/min/1.73 m2 [29-31]. In our cohorts (Tables 1
and 2) a substantial number of patients are in these
GFR ranges, hence we did not correlate gene expression
data with eGFR or eGFR slope. However, creatinine at
follow-up showed a strong and significant correlation
(Pearson R = 0.848, p < 0.0001) with creatinine slope,
and also the three identified biomarker candidates
showed a significant correlation with creatinine slope



Table 5 Linear regression analysis

Creatinine at follow-up

Best single clinical parameter Parameter estimate p-value adj R2

INSCO 1.799 0.0012

Total 0.0012 0.44

Creatinine at follow-up

Best clinical parameter combination Parameter estimate p-value adj R2

INSCO 1.472 0.0065

Crea_biopsy 0.755 0.0834

Total 0.0014 0.51

Creatinine at follow-up

Clinical parameters + CREDI genes Parameter estimate p-value adj R2

INSCO 1.277 0.0248

VEGFC −0.812 0.0268

Total 0.0009 0.51

Creatinine at follow-up

Clinical parameters + INSCO genes Parameter estimate p-value adj R2

BMP7 −0.67 0.0015

THBS1 1.160 0.0035

TRIB1 0.534 0.0007

Total < 0.0001 0.94

Adjusted R2- and p-values for different models for prediction of follow-up creatinine are shown.

Neuwirt et al. BMC Medical Genomics  (2014) 7:75 Page 11 of 14
(Pearson R = 0.722 (THBS1, p = 0.038), 0.685 (TRIB1, p =
0.026), −0.562 (BMP7, p = 0.010)). These results further
underline the validity of these three marker candidates.
The primary approach of this study was to establish a

model to predict serum creatinine levels at the follow-up
time point. By establishing multiple linear regression
models using continuously distributed biomarker candi-
dates and gold standard parameters (e.g. creatinine or
proteinuria at time of biopsy), we identified a model
consisting of 3 biomarkers (THBS1, TRIB1 and BMP7).
In addition we calculated sensitivity and specificity of
each of these markers to facilitate the interpretation of
our data in the context of published literature [32,33].
For this purpose we defined progression of chronic kid-
ney disease using established parameters, i.e. doubling of
serum creatinine and ESRD. Furthermore, best cut-off
values for the single markers were calculated using
Youden’s statistics [20]. We found that THBS1 was the
best marker, followed by BMP7 and TRIB1. It was sur-
prising that THBS1, providing a sensitivity and specifi-
city of 1.00 in the discovery cohort, performed that well.
However, given the limited number of patients investi-
gated these results should not be generalized to other
populations without caution. We are currently planning
to establish a staining of our three biomarkers in patient
kidney biopsy samples in order to prospectively address
the predictive value of this biomarker.
Concerning the role of TRIB1, Kiss-Toth and co-
workers first described tribbles homologes as MAPK ac-
tivity controlling proteins [34]. Recently, it was shown that
TRIB1 might be utilized in renal allografts as biomarker
for chronic antibody-mediated rejection [35]. Further-
more, TRIB1 expression was correlated to non-diabetic
end-stage renal disease [36]. BMP7 is a member of the
TGF-beta superfamily and has been shown to be impli-
cated in regulation of renal function and determination of
the number of renal progenitor cells [37]. In particular,
various groups have described the pivotal role of BMP7 in
EMT, but results are controversial. Xu et al. [38,39] pub-
lished data providing evidence that BMP7 exerts antifibro-
tic effects via blocking and reversing TGF-beta 1 induced
EMT, whereas Dudas and colleagues did not find an in-
hibitory effect of BMP7 on TGF-beta 1 mediated EMT
[40]. In a previous project we were able to show increased
expression of BMP7 mRNA and protein in renal tubule
cells in biopsies from proteinuric renal diseases as com-
pared to controls [14]. However, most of the patients in-
cluded in this former study showed a stable course of
kidney disease with virtually no decline of kidney function
over time. Recently, a low BMP7 RNA levels were pro-
posed to be an early marker of renal allograft dysfunction
[41]. In amyloidosis patients Denizli et al. described a
non-significant correlation of high levels of BMP7 and
CKD progression [42].
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Thrombospondin 1 is a subunit of a disulfide-linked
homotrimeric protein. This protein is an adhesive glycopro-
tein that mediates cell-to-cell and cell-to-matrix interactions.
Hugo et al. [43] have shown that THBS1 precedes and is an
early marker for the development of tubulointerstitial kidney
disease, which might be explained by its role as an endogen-
ous activator of TGF-beta in type 1 diabetes [44] and fibrotic
renal disease [45]. Cui et al. have shown that THBS1 is an
important mediator of obesity-induced kidney dysfunction
[46]. Recently, a THBS1 short hairpin RNA suppressed
peritubular capillary injury and tubulointerstitial fibrosis
in unilateral ureteral obstruction (UUO)-induced renal fi-
brosis [47].
To summarize, THBS1 and BMP7 are involved in TGF

beta pathways, which have been shown to be activated in
progressive CKD.
This paper has several limitations. More clinical and

demographic data are needed to adjust the calculated
models to confounders, such as hypertension or hyper-
cholesterolemia. However, it was not possible to assess
this information from the patients’ records. Another inter-
esting issue would have been to analyse the gene expres-
sion patterns in response to therapeutic interventions.
First, the cohorts and the interventions (if there were any
at all) were to heterogenous to collect and to analyze data
in a reliable manner. Second, some of the patients were
not treated at our center, so a significant proportion of
intermediate follow-up data is missing. And third, we did
not continuously perform kidney biospies during the
follow-up, so the outcome of the interventions on the
histological and genomic level is unclear. Hence, it was
not possible to investigate the predictive value of changes
of gene expression in response to treatment.
We correlated gene expression data with the variability of

creatinine at follow-up, which might be a very hard endpoint
and thus more subtle transcriptomic changes are missed.
Due to the limitations of eGFR mentioned above we did not
correlate the expression of the transcripts with delta eGFR.
However, the significant correlation between creatinine at
follow-up and creatinine slope, and between the expression
values of the three biomarker candidates and creatinine
slope corroborates our results.
Certainly, the degree to which the 3-gene panel can be

generalised to other chronic kidney disease cohorts needs to
be tested in further studies in larger validation sample sets,
as the predictive power delineated on the given cohort is
probably an overestimation of the true predictive value due
to the small size of the 1st study cohort. However, the boot-
strap sampling using 2000 case resampled datasets resulted
in a bias corrected confidence interval of 0.558 – 0.987, sug-
gesting nevertheless a higher predictive value of these 3
genes than a combination of traditional parameters such as
creatinine and INSCO. The procedure for delineating such
gene sets as presented in this work might well be applicable
for larger cohorts. Additionally, we have analysed the 3-
biomarker model in a 2nd validation cohort of patients and
also found a predictive value, which was statistically signifi-
cant, for follow-up creatinine.

Conclusion
We identified distinct gene expression profiles from laser-
capture microdissected renal tubule cells associated with
chronic renal damage or inflammation. The 3-gene panel
THBS1, BMP7 and TRIB1 from the inflammation gene
panel predicted follow-up creatinine significantly better than
traditional markers such as serum creatinine at time of bi-
opsy and the presence of inflammatory infiltrates in the bi-
opsy. These data were validated using gene expression
profiles from whole kidney biopsies in a second cohort of
patients.
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