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During gestation, sex hormones cause a significant thymic involution which enhances

fertility. This thymic involution is rapidly corrected following parturition. As thymic

epithelial cells (TECs) are responsible for the regulation of thymopoiesis, we analyzed

the sequential phenotypic and transcriptomic changes in TECs during the postpartum

period in order to identify mechanisms triggering postpartum thymic regeneration.

In particular, we performed flow cytometry analyses and deep RNA-sequencing on

purified TEC subsets at several time points before and after parturition. We report

that pregnancy-induced involution is not caused by loss of TECs since their number

does not change during or after pregnancy. However, during pregnancy, we observed

a significant depletion of all thymocyte subsets downstream of the double-negative 1

(DN1) differentiation stage. Variations in thymocyte numbers correlated with conspicuous

changes in the transcriptome of cortical TECs (cTECs). The transcriptomic changes

affected predominantly cTEC expression of Foxn1, its targets and several genes that

are essential for thymopoiesis. By contrast, medullary TECs (mTECs) showed very

little transcriptomic changes in the early postpartum regenerative phase, but seemed

to respond to the expansion of single-positive (SP) thymocytes in the late phase of

regeneration. Together, these results show that postpartum thymic regeneration is

orchestrated by variations in expression of a well-defined subset of cTEC genes, that

occur very early after parturition.

Keywords: thymic regeneration, thymic epithelial cells, postpartum thymic regeneration, RNA sequencing,

thymopoiesis

INTRODUCTION

Thymic involution that occurs during pregnancy is characterized by an important decrease
in thymic mass and cellularity. This decrease affects all thymocyte subpopulations, including
CD4−CD8− double negative (DNs), CD4+CD8+ double positive (DP) and single positive (SP)
CD4+ and CD8+ thymocytes (1, 2). This phenomenon of acute thymic involution is not caused by
massive apoptosis of DP thymocytes, as found following sublethal irradiation or dexamethasone
administration, but rather through a pause in thymocyte differentiation and proliferation (1).
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That blockade in thymocyte development occurs between the
DN1 and DN2 stages (CD44+CD25− and CD44+CD25+,
respectively), leading to an accumulation of DN1 thymocytes
during gestation (3). Pregnancy-induced thymic involution is
conserved in all mammalian species examined and certainly
represents a major biological challenge. Indeed, failure to regain
immunocompetence would jeopardize survival of both females
and their progeny (4).

Pregnancy-associated thymic involution is dependent on
the presence of sex hormones produced during gestation, i.e.,
estrogens and progesterone (5). However, sex hormones do not
act directly on thymocytes, but rather through stromalmediators.
Indeed, sex hormones have been shown to have pervasive effects
on TECs (6, 7). In particular, the expression of the progesterone
receptor (Pgr) specifically by the thymic stromal compartment
is necessary and sufficient for pregnancy-associated involution
to occur (8). This suggests that progesterone induces alterations
in the thymic stromal niche responsible for DN thymocytes
development. Many genes involved in thymocyte development
are downregulated during pregnancy: (i) the chemokines Ccl25,
Ccl21/19, Cxcl12, which encode for ligands of CCR9, CCR7,
and CXCR4, respectively, necessary for thymocytes migration
in the thymus (3), (ii) the cytokines interleukin-7 (Il7) and
Kitl, essential for thymocytes expansion and maturation (9–11),
and (iii) Dll4, a Notch ligand essential for lymphoid precursors
differentiation toward the T cell lineage (12, 13).

Recent studies have identified important players in adult
thymic regeneration using other models of thymic involution.
Bredenkamp et al. (14) showed that overexpression of Foxn1 in
TECs, a key transcription factor involved in TEC differentiation
and necessary for the expression of genes involved in the
regulation of thymopoiesis, was sufficient to induce thymic
regeneration of fully involuted thymus in aged mice (12 or 24
months old) (14). Wertheimer et al. (15) more recently showed
that production of BMP4 by thymic endothelial cells promoted
thymic regeneration following sublethal irradiation, and acted by
inducing the expression of Foxn1 and its targets in TECs (15).
However, we do not know whether these mechanisms are at
play in other models, such as postpartum thymic regeneration.
More specifically, very little is known on the sequence of
events and the cells responsible for triggering and regulating
thymic regeneration.

In an effort to identify factors involved in adult thymic
regeneration, we analyzed TEC and thymocyte subpopulations
during the postpartum thymic regenerative phase. In this
study, we show that pregnancy-induced thymic involution
is not associated with cell loss in the thymic epithelium,
and that postpartum thymic regeneration is orchestrated by
transcriptomic and phenotypic changes occurring primarily in
cortical TECs (cTECs).

MATERIALS AND METHODS

Murine Experiments
All mice were bred and housed under specific-pathogen-free
conditions in sterile ventilated racks at the Institute for Research
in Immunology and Cancer. B.6SJL-Ptprca Pep3b/BoyJ-CD45.1

female mice (Jackson Laboratory, #002014, also called B6.SJL)
were mated with BALB/cJ males (Jackson Laboratory, #000651).
Allogeneic mating was selected in order to increase the frequency
of successful mating. No differences were observed in the
pregnancy-induced thymic involution or the rate of thymic
regeneration postpartum in females following syngeneic or
allogeneic mating. As lactation causes a delay in postpartum
thymic regeneration, pups were removed at birth. Recent thymic
emigrants weremeasured in RAG2p-GFPmouse [FVB-Tg(Rag2-
EGFP)1Mnz/J, Jackson Laboratory, #005688], which were kindly
provided by Dr. Moutih Rafei. All procedures were in accordance
with the Canadian Council on Animal Care guidelines and
approved by the Comité de Déontologie et Expérimentation
Animale de l’Université de Montréal.

Enzymatic Digestion of Thymic Stroma
Stromal cell enrichment was performed as described (16, 17)
Briefly, thymi were cut in small pieces in RPMI with HEPES
(Gibco) at room temperature (r.t.), and gently agitated using
P1000 pipet with wide-bore tips to remove thymocytes. This
step was repeated until no more thymocytes were released
(supernatant stayed translucid). Then, the supernatant was
removed and replaced with 1mL of RPMI with HEPES
containing papain 0.5 mg/ml (Worthington Biochemical
Corporation), DNase 0.1 mg/ml (Sigma) and collagenase IV
0.25 mg/ml (Sigma) and incubated at 37◦C for 3 × 15min.
Stromal fragments were agitated using wide-bore tips first, and
then standard P1000 tips between each incubation. After the
second incubation, supernatant was removed and placed in a
falcon tube containing 5ml of PBS 1X with 0.5% bovine serum
albumin (Sigma) at r.t. and the remaining stromal fragments
were incubated once again with 1ml of enzyme solution. Cells
are pooled after the third incubation, centrifuged at 4◦C and
filtered. At this point, cells were kept at 4◦C (or on ice) for
antibody staining and analysis. Analysis of thymic epithelial
populations were performed following enrichment of EpCAM+

cells using anti-EpCAMmicrobeads (mouse, Miltenyi) and LS or
MS columns (Miltenyi Biotec), depending on the total number
of cells after enzymatic digestion. The list of antibodies used for
flow cytometry analyses can be found in Supplementary Table 1.
Throughout the paper, TECs are defined as EpCAM+CD45−,
while the cTEC and mTEC subsets were defined as UEA1– and
UEA1+ TECs, respectively (see Supplementary Figure 1 for
gating strategy).

RNA-Sequencing
Poly-A enriched mRNA sequencing was performed on cTECs
and mTECs. Purified cell populations from non-pregnant
females (NP), pregnant females at 18 days of gestation
(D-2) and following parturition (D0–D28) were extracted
using fluorescence activated cell sorter (FACS) after enzymatic
digestion of the stroma. Each replicate was extracted from one
mouse (each sample containing between 13,800 and 96,700 cells).
RNA extraction was performed using TrizolTM as recommended
by the manufacturer (Invitrogen), and purified using RNeasy
Micro columns (Qiagen). Samples quality was confirmed using
Bioanalyzer RNA Pico (Agilent). Transcriptome librairies were
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synthesized with KAPA RNA HyperPrep PolyA (Roche), and
validated with Bioanalyzer (Agilent). Sequencing was performed
with the Nextseq500 (NextSeq High Output, 75 cycles) at the
genomic core facility of the Institute for Research in Immunology
and Cancer (Université de Montréal).

Adapter sequences and 3′ regions of low quality were removed
using Trimmomatic (version 0.35) (18). Reads were aligned to
mouse reference genome (GRCm38) with STAR version 2.5.1b
(19) and gene expression was quantified with RSEM tool and
expressed as Fragments Per Kilobase of transcript per Million
mapped reads (FPKM) (20).

Subsequent analyses were performed using the publicly
available statistical software package “R” (http://www.r-project.
org/). Lowly expressed genes (average expression < 0.5 FPKM)
were removed from analyses.

Identification and Analysis of DEGs
Differentially expressed genes (DEGs) between D-2 and D6 were
identified using the limma-voom package (21) in R software
with thresholds of FC ≥ 2 and an adjusted p ≤ 0.01. Gene
ontology (GO) enrichment analysis was performed using the
DAVID database (https://david.ncifcrf.gov/) (22, 23).

RESULTS

Thymic Epithelium Does Not Suffer Cell
Loss During Pregnancy
We confirmed that during pregnancy, the thymus undergoes a
transient involution characterized by a ∼60 and ∼80% decrease
in thymic mass and cellularity, respectively, compared to non-
pregnant controls (NPC, Figure 1A) (1, 3). This involution is
caused by a depletion of all thymocyte subsets (Figures 1B–D),
due to an arrest in thymocyte proliferation and differentiation
at the DN1–DN2 stage. This translates into an increase of DN1
proportions in the thymus (Supplementary Figure 2A) (1, 3).

To understand the factors involved in postpartum thymic
regeneration, we studied lymphocyte and epithelial cell
populations in the first month following parturition. As lactation
prevents rapid thymic rebound following parturition (2, 24),
pups were removed at birth. The blockade of DN1–DN2
thymocyte differentiation resolved shortly after parturition
between day 3 (D3) and D6 postpartum, after which the
proportion of DN1 cells returned to age-matched levels
(Supplementary Figure 2A). Global thymic cellularity and
the size of each thymocyte subset reached age-matched levels
within 12 days postpartum (Figures 1A–D). Thereafter, the
thymus reaches a hypertrophic state between D16 and D28,
when its mass and cellularity reached 1.3–1.5× that of NPC
(Figure 1A), mostly due to the accumulation of DP thymocytes
(Figure 1C). Interestingly, CD4+ and CD8+ SP thymocytes
(SP4 and SP8, respectively) showed slightly different patterns
of reconstitution during pregnancy-induced involution and
postpartum regeneration (Figure 1D). While both levels of SP4
and SP8 decrease around parturition and rebound between D12
and D28, the reduction in SP4 cell loss was more pronounced and
its reboundmore rapid than that of SP8 thymocytes. Accordingly,
the decreased proportion of recent thymic emigrants (GFP+

cells) in peripheral blood of RAG2p-GFP mice reached statistical
significance (p < 0.05) at D7 and D14 postpartum for CD4T
cells, but not for CD8T cells (Figure 1E).

As all thymocyte populations undergo significant cell loss
during gestation, we sought to determine if the thymic epithelium
also suffered cell loss during this process. Contrary with
previous observations (3), we did not observe any decrease in
TEC numbers during gestation or in the postpartum period
(Figure 1F and Supplementary Figure 1). This difference could
be caused by the use of different enzymatic digestion protocols
in the two studies: while the first study used a mix of Dispase I,
collagenase II and DNase1, we used a mix of papain, DNase1 and
collagenase IV, optimized for maximal recovery of live TECs (16).
Of note, the papain-based digestion method that we used yielded
∼5×more TECs per thymus, with an average of 7.5× 104 TECs
when using the Dispase I enzyme mix (3) compared to 4 × 105

TECs when using the papain mix (Figure 1C). We conclude that
pregnancy-induced thymic involution is not caused by depletion
of TECs.

While cTEC numbers increased transiently at D3 (on
average ∼2.5× higher compared to NPC), prior to the
expansion of thymocyte subpopulations, their number
returned to NPC levels at D6 and remained stable during
the whole process of thymocyte regeneration (Figure 1F).
As cTEC and mTEC numbers are similar to NPC during
the active thymic growth phase (D6 and D12, Figure 1F and
Supplementary Figure 2B), this suggests that no increase
in TEC numbers is necessary for postpartum regeneration.
Nonetheless, mTEC numbers increased during the late phase
of postpartum thymic regeneration (1.6–2.6-fold vs. NPC
between D16 and D28, Figure 1F) in synchrony with the
apex of thymocyte rebound (Figure 1A). This suggests that
the expansion of SP thymocytes occurring between D12 and
D28 might have led to the increase in mTEC numbers. This
is consistent with the fact that the development of the mTEC
compartment during embryogenesis requires interaction
between TECs and positively selected thymocytes (25–31),
and suggests that a similar crosstalk is instrumental to the
maintenance of mTECs in the adult thymus. Representative
profiles of cTECs and mTECs at different time points
during pregnancy and postpartum regeneration are shown
in Supplementary Figure 1.

Expression of Foxn1 Is Modulated During
Postpartum Regeneration
As the swift postpartum thymic regrowth does not require TEC
expansion, we hypothesized that it might rather depend on
qualitative changes in TECs. We therefore performed RNA-
sequencing of cTECs and mTECs extracted fromNPCs, and at 15
time points spanning between D-2 (i.e., 2 days before parturition)
to D28 postpartum (Supplementary Figure 3). Based on the
analysis of cell population numbers (Figure 1), we distinguished
two phases in the process of postpartum regeneration: (i)
D0–D12: early regeneration, during which thymic cellularity
gradually increases, and (ii) D16–D28: late regeneration, when
thymic cellularity exceeds that of NPC. We first analyzed the two
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FIGURE 1 | Thymocyte loss during pregnancy does not correlate with a decrease in TEC numbers. (A) Thymic mass (mg) and cellularity (×108, n = 5–13). (B) Cell

numbers of DN, (C) DP, and (D) SP thymocytes (n = 3–6). (E) Variation in thymic output, as measured by the percentage of recent thymic emigrants (RTE, n = 5). (F)

TEC numbers (×106, n = 5–13). NPC refers to the non-pregnant controls, D-2 to pregnant females at day 18 of gestation and D0 to the day of parturition. All analyses

were performed in thymi of B6.SJL mice except for those depicted in (E) where we used peripheral blood of RAG2p-GFP female mice. Means are displayed as bars,

each dot representing an individual. Significance was assessed with one-way ANOVA followed by post-hoc Tukey test. p-values (*p < 0.05 and **p < 0.01) are shown

against NPC only.

genes previously reported to be instrumental in other models of
thymic regeneration in adults: Foxn1 and Bmp4 (14, 15).

Foxn1, a transcription factor expressed by TECs, is essential
for their expansion and differentiation. While Foxn1 is highly
expressed in TECs of young individuals, its expression declines
with age, which contributes to senescence-related thymic
involution (32). Furthermore, overexpression of Foxn1 in a

severely involuted thymus (in 1 or 2 year-old mice) can induce
thymic rejuvenation, characterized by an increased thymic
cellularity and by phenotypic qualities associated with young
thymi (14). We found that at the end of gestation (D-2),
Foxn1 expression was reduced in cTECs (∼2×), but not in
mTECs (Figure 2A). During the early regenerative phase, Foxn1
expression rapidly increased in both cTECs and mTECs (as early
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FIGURE 2 | Transcriptomic changes in TECs during postpartum regeneration. (A) Foxn1 expression in cTECs and mTECs. Each replicate is represented with a dot.

Black lines represent non-linear regression and the 95% confidence intervals are displayed as shaded areas (blue for cTECs, red for mTECs). Average expression in

NPC is depicted with a dashed line. (B) Expression of FOXN1 target genes, as defined by (33). Gene expression is shown as relative expression (Z-score), for D-2 to

D28 (one column per time point). (C) Average fold-change in expression of FOXN1 targets between D-2 and D6. Odds Ratio and significance were assessed with

Fisher exact test, for fold-change > 2. Gene expression for each time point represents either average expression for triplicates, or raw expression value for individual

replicates. (D) Differential gene expression in cTECs between D-2 (pale blue) and D6 (dark blue). (E) Enriched GO-terms in cTECs between D-2 and D6. (F) Differential

gene expression in mTECs between D-2 (pale red) and D6 (dark red). (G) Enriched GO-terms in mTECs between D-2 and D6.

as D0 for cTECs, Figure 2A). This translated into upregulation
of FOXN1 target genes (33) from D2 postpartum and reaching
its maximum around D6 in cTECs (Figures 2B,C). As increased
expression of Foxn1 enhances thymic cellularity and output (34),

our results provide strong evidence that Foxn1 is involved in
postpartum thymic regeneration. Notably, the overexpression
of Foxn1 and its target genes in cTECs was transient. Indeed,
during the late regenerative phase, their expression regressed
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to levels found at D-2 (Figures 2A,B). As the downregulation
of Foxn1 with age depends on the presence of differentiating
DP and SP thymocytes (32), our data suggest that thymocyte
expansion during late postpartum thymic regeneration induces
an negative feedback loop that inhibits Foxn1 expression. Of
note, Foxn1 activation was independent of WNT signaling
(Supplementary Figure 4).

A recent study showed that secretion of BMP4 by thymic
endothelial cells promotes thymic regeneration following acute
involution induced by sub-lethal total body irradiation (15).
Increased BMP4 signaling was observed in thymic stromal cells
4–7 days following irradiation, and was accompanied by an
upregulation of Foxn1 and its target genes in TECs. While we
have not analyzed BMP4 expression in thymic endothelial cells,
we observed that despite expression of BMP receptors in both
cTECs and mTECs (Supplementary Figure 5A), expression
of BMP target genes was unchanged in the early postpartum
regeneration (GO:0030510, Supplementary Figures 5B,C).
These results provide strong evidence that BMP4 is not involved
in postpartum thymic regeneration. In order to get a global
picture of genes that may contribute to postpartum thymic
regeneration, we next compared the transcriptome of cTECs and
mTECs at the time of maximal thymic involution (D-2) vs. the
time of maximal growth (D6) (Supplementary Figure 2B). We
identified differentially expressed genes (fold-change ≥ 2 and p
≤ 0.01) and performed a GO-term enrichment analysis. Several
genes overexpressed in cTECs at D-2 are involved in steroid
hormone response (Figures 2D,E) and included the nuclear
progesterone receptor Pgr, whose expression in thymic stromal
cell is necessary for pregnancy-induced involution (8). We also
observed onD-2 an upregulation of genes that negatively regulate
T cell proliferation (Figure 2E). Consistent with the pronounced
expansion of DP thymocytes at D6, genes involved in T cell
activation, proliferation and differentiation were upregulated in
cTECs during the early regenerative phase (D6). Interestingly,
we also observed on D6 an upregulation of genes involved
in MHC-I antigen presentation and proteolysis in cTECs,
such as Psmb9, Psmb10, and Psmb11. In mTECs, variations in
gene expression were more modest than in cTECs: only 2% of
expressed genes were differentially expressed in mTECs (360
genes) as opposed to 4.7% in cTECs (741 genes) (Figures 2D,F).
While mTECs also presented an upregulation of genes involved
in cell communication and T cell lineage commitment at D6
(Figure 2G), no changes in antigenic presentation were detected.
We conclude that pregnancy-induced sex hormone variations
have a more dramatic effect on cTECs than mTECs.

The Pivotal Role of cTECs in Postpartum
Thymic Regeneration
Many FOXN1 targets in cTECs regulate various steps of
thymopoiesis: (i) regulation of lymphoid precursors migration in
the thymus (Ccl25 and Cxcl12), (ii) DN thymocyte survival and
proliferation (Ccl25, Cxcl12) and differentiation (Dll4, Cxcl12),
and (iii) cortico-medullary thymocyte migration (Psmb11) (9,
13, 33, 38–44). In cTECs, FOXN1 targets also include genes
involved in antigenic presentation essential for positive selection,

such as cTEC-specific proteases (Psmb11, Prss16, and Ctsl) and
stimulatory molecules important in TCR signaling (MHC-II,
Cd83) (45–50). During pregnancy and postpartum regeneration,
all these genes followed a pattern of expression similar to
that of Foxn1: (i) downregulation during pregnancy-induced
involution; (ii) upregulation in early regeneration; and (iii)
downregulation again in late regeneration (Figure 3A and
Supplementary Table 2). Two other cTEC genes play crucial
roles in the early stages of thymopoiesis: Il7, which is FOXN1-
independent, and Kitl whose FOXN1-dependence is unclear (13,
33, 51). In our mice, the expression of Il7 followed the pattern of
FOXN1-regulated genes, but Kitl did not (Figure 3A). Globally,
the upregulation of Il7 and FOXN1-regulated genes (between D0
and D3, Figures 2A,B, 3A,B) preceded the release of DN1–DN2
differentiation (between D3 and D6, Supplementary Figure 2A),
supporting the idea that postpartum thymic regeneration was
triggered by transcriptomic changes in cTECs.

Upregulation of Il7 and FOXN1-regulated transcripts
coincided with increased proportion and numbers of MHC-IIhi

cTECs (Figures 3B,C), which include most of the proliferating
cTECs (Ki67+, Figure 3D). Indeed, the proportion of MHC-
IIhi cTECs, which was very low at D-2 and during late
regeneration, increased during early regeneration when the
thymus was in expansion, and decreased at D28 when thymus
was hypertrophic (Figures 3C,D). A recent analysis of the thymic
stroma in embryonic thymi using single-cell transcriptomics
revealed that most of the key cTEC genes modulated during
postpartum regeneration (Foxn1,Ccl25,Cxcl12,Dll4,Ctsl, Prss16,
Psmb11, Cd83, Ly51, and MHC-II) are co-expressed by a single
subpopulation of cTECs, which the authors called cTEC4 (52).
Therefore, our data suggest that postpartum thymic regeneration
may be driven by an expansion of the cTEC4 compartment. It
also seems likely that variations in the proportion of MHC-IIhi

cTECs is strongly associated with the transcriptomic changes
observed in cTECs.

mTECs Proliferate and Differentiate After
Thymic Regrowth
We next analyzed expression of genes associated with mTEC
differentiation and involved in SP thymocyte maturation and
selection: (i) costimulatory molecules (Cd80, Cd86, and Cd40),
(ii) promiscuously expressed genes (35) and the Autoimmune
regulator (Aire), and (iii) MHC-II expression at the cell
surface (detected by flow cytometry). Interestingly, almost
all these molecules (Cd80, Cd40, Aire, Aire-dependent and -
independent TRGs and MHC-II) were downregulated during
early regeneration and upregulated during late regeneration
(Figures 4A–C). Genes associated with cornified cells, Hassall’s
corpuscles and tuft cells (36, 37), which have been associated
with different subsets of terminally differentiated mTECs, were
also upregulated during the late regenerative phase compared to
the early postpartum phase (Figure 4C). These transcriptomic
and phenotypical changes in mTECs occurred simultaneously
with the increase in mTEC proliferation rate and the increase
in proportions of SP thymocytes during the late regenerative
phase (Figures 1D, 4C). These results suggest that cross talk
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FIGURE 3 | Upregulation of genes involved in thymopoiesis in cTECs precedes the release of thymocyte differentiation blockade in early postpartum regeneration.

(A) Expression of genes involved in DN thymocytes migration and differentiation and in cTEC antigenic presentation. Each replicate is represented with a dot and a

non-linear regression and the 95% confidence intervals (blue shaded area) are displayed. Average expression in NPC is depicted with a dashed line. (B) Proportions of

MHC-IIhi (n = 5–13) and Ki67+ (n = 4–5) cTECs. Means and individual replicates are depicted as bars and dots, respectively. Significance was assessed using

one-way ANOVA followed by post-hoc Tukey test. p-values (**p < 0.01) are shown against NPC only. (C) MHC-IIlo and MHC-IIhi cTEC numbers (×106, n = 5–13).

(D) Representative profiles of MHC-II and Ly51 expression for total (gray) of Ki67+ (red) cTECs.

with SP thymocytes is required for the maturation of mTECs
in the adult thymi, like it is during embryonic development
(26). This hypothesis is supported by the correlation between
global thymic cellularity and the number of Ki67+ mTECs in

the late regenerative phase (Figure 4D). Interestingly, no such
correlation can be found with the number of Ki67+ cTECs
(Figure 4D). Taken together, these results suggest that mTECs
do not trigger thymic regeneration but rather seem to proliferate
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FIGURE 4 | Expansion of SP thymocytes precedes differentiation of mTECs postpartum. (A) Expression of genes involved in SP thymocytes negative selection and

associated with mTEC maturation. Each replicate is represented with a dot and a non-linear regression and the 95% confidence interval are displayed as lines and

shaded area, respectively. Average expression in NPC is depicted with a dashed line. (B) Relative expression (Z-score) of Aire-dependent, Aire-independent

tissue-restricted genes (TRG) (35), of genes associated with cornified cells, Hassall’s corpuscles (HC) and tuft cells (36, 37) in mTECs during postpartum regeneration

(NPC is shown in the first left column, then D-2 to D28 postpartum). Gene expression for each time point represents either average expression for triplicates, or raw

expression value for single replicate. (C) Percentage of MHC-IIhi (n = 5–13) and Ki67+ (n = 4–5) mTECs. Means and individual replicate are depicted as bars and

dots, respectively. Significance was assessed using one-way ANOVA followed by post-hoc Tukey test. p-values (*p < 0.05 and **p < 0.01) are shown against NPC

only. (D) Pearson correlation between global thymic cellularity and the number of Ki67+ cTECs or mTECs from D12–D28.

and differentiate in response to the increased numbers of
SP thymocytes.

DISCUSSION

We have shown that postpartum thymic regeneration is mostly
associated with qualitative changes in the cTEC population,
beginning very early after parturition. Contrary to previous
results (3), we did not observe a decrease in TEC numbers
during pregnancy, the discrepancies most likely explained by
the different enzymatic digestion protocols used in the two
studies. Nonetheless, both studies have revealed a decrease in the
expression of Ccl25, Cxcl12, and Dll4 in cTEC during pregnancy.
We have shown that these same genes are also upregulated during
early postpartum regeneration, highlighting their importance in
the regulation of thymopoiesis. In opposition, mTECs show very
little phenotypic changes during gestation: expression of Foxn1,

Cd80, Cd86, MHC-II, Aire, and of tissue-restricted genes are
similar at D-2 vs. NPC. These results strongly suggest that the
cTECs are the main regulators of the rate of thymopoiesis and
are driving both pregnancy-induced involution and postpartum
regeneration, while the mTECs proliferate and differentiate in
response to the increasing presence of SP thymocytes in the late
regenerative phase.

The MHC-IIhi subpopulation of cTECs diminishes drastically
during gestation, and reappears gradually in early regenerative
phase. As this population has been shown to co-express many
genes involved in thymopoiesis (such as Ccl25, Cxcl12, Dll4,
Psmb11, etc.) (52, 53), this suggests that the presence of MHC-
IIhi cTECs is instrumental in thymic regrowth. Indeed, the
majority of cTECs expressed high levels of MHC-II during
the most active growth phase of the thymus, from the end
of embryonic development (E18) to the postnatal period (54).
Interestingly, the MHC-IIhi cTEC population also expands in the
transient hypertrophy following sex steroids ablation, 7 days after
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castration (54). Furthermore, the decreased expression of Foxn1
and its targets in the late regenerative phase, when the number
of DP and SP thymocytes was greatly increased, suggests the
presence of a negative feedback loop regulating the expression
of Foxn1 in cTECs. This is in line with previous results showing
that the presence of more differentiated thymocytes (>DN3) is
necessary for the age-related decrease in Foxn1 expression (32).

In conclusion, our study further extends the pervasive role
of Foxn1 in thymus biology, as it was shown to be involved in
all models of thymic growth, regeneration, and involution to
this day (14, 15, 34, 53, 55, 56). Also, unlike what is observed
following irradiation-induced involution (15), no evidence of
BMPR signaling or of damage to the epithelial population was
detected in postpartum thymic regeneration. These data imply
that the mechanisms involved in triggering thymic regeneration
differ depending on the context leading to thymic involution.
Moreover, our study demonstrates that the Foxn1 pathway is
tightly regulated in a time sequential manner before and after
parturition. This raises a fundamental question: how is Foxn1
regulated by sex hormones? This regulation could result from
direct and/or indirect effects of sex hormones on the Foxn1
pathway in TECs and is the subject of our ongoing studies.
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