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Abstract

Background: The PIWI/piRNA pathway is a conserved machinery important for germ cell development and fertility.
This piRNA-guided molecular machinery is best known for repressing derepressed transposable elements (TE)
during epigenomic reprogramming. The extent to which piRNAs are involved in modulating transcripts beyond
TEs still need to be clarified, and it may be a stage-dependent event. We chose chicken germline as a study model
because of the significantly lower TE complexity in the chicken genome compared to mammalian species.

Results: We generated high-confidence piRNA candidates in various stages across chicken germline development
by 3′-end-methylation-enriched small RNA sequencing and in-house bioinformatics analysis. We observed a significant
developmental stage-dependent loss of TE association and a shifting of the ping-pong cycle signatures. Moreover, the
stage-dependent reciprocal abundance of LINE retrotransposons, CR1-C, and its associated piRNAs implicated the
developmental stage-dependent role of piRNA machinery. The stage dependency of piRNA expression and its
potential functions can be better addressed by analyzing the piRNA precursors/clusters. Interestingly, the new
piRNA clusters identified from embryonic chicken testes revealed evolutionary conservation between chickens
and mammals, which was previously thought to not exist.

Conclusions: In this report, we provided an original chicken RNA resource and proposed an analytical methodology
that can be used to investigate stage-dependent changes in piRNA compositions and their potential roles in TE
regulation and beyond, and also revealed possible conserved functions of piRNAs in developing germ cells.

Keywords: Germ cell, Chicken, piRNA cluster, Development, Transposable elements

Background
Primordial germ cells (PGCs) experience genome-wide
epigenetic reprogramming for acquiring germ cell-specific
features, such as meiosis, spermatogenesis and oogenesis,
and regaining zygotic totipotency upon fertilization [1, 2].
This process is accompanied by burst expression of trans-
posable elements (TEs), primarily autonomous retrotran-
sposons such as long interspersed nuclear elements
(LINEs) and long terminal repeats (LTRs) [3, 4]. The

activation of transposable elements and their capability of
insertion into the host genome through random transposi-
tion can lead to epigenomic and genomic instability [5].
The PIWI/piRNA pathway is evolutionarily adapted

for effective mitigation of burst TE transcripts from re-
programming and is essential for proper germ cell develop-
ment and fertility [6–8]. PiRNAs, namely, PIWI-interacting
RNAs, are germ cell-enriched small RNAs that bind to
PIWI protein and form piRNA-induced silencing com-
plexes (piRISCs). Studies in Drosophila showed that the
PIWI/piRNA pathway is critical for regulating TE activities
in developing germ cells [6, 9]. In mice, defects in the
PIWI/piRNA pathway result in aberrant expression of TEs
that leads to germ cell depletion and subsequently small
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testes and infertility [10–13]. Knockdown of the chicken
PIWI proteins, CIWI and CILI, also leads to an upregula-
tion of chicken LINEs – chicken repeat 1 (CR1) elements,
and hence supports the conservation of the PIWI/piRNA
pathway in TE repression [14, 15].
The molecular mechanisms by which piRNAs modu-

late TEs are partly implicated through their biogenesis
pathway. The primary piRNA precursor transcripts from
piRNA clusters are transported to the perinuclear
electron-dense region, the so-called nuage structure, for
the maturation process [16]. The 5′ end of a piRNA is gen-
erated through MITOPLD (in mice)/Zuc (in Drosophila)
cleavage and loaded onto the PIWI nucleotide binding
pocket in 5′ uracil (1 U) preference fashion [16, 17]. The
Drosophila Nibbler, or PARN-family exonucleases in other
species, are reported to be involved in trimming the 3′ ends
to form 24–32 nt small RNA fragments [18–20], which
then have their 3′-end modified by 2’-O-methylation via
HEN1 and form primary piRNAs [21–23]. Mature piRISCs
identify transcripts antisense to their piRNA sequences and
slice the targeted transcripts by the endonuclease function
of PIWI protein at the position corresponding to the 10th
nucleotide of piRNA [24, 25]. The cleaved transcript frag-
ments are bounded by other PIWI proteins, such as MIWI,
MILI, and MIWI2 in mice, and are then processed into
antisense piRNAs, which also form piRISCs capable of
slicing other transcripts [26]. This ping-pong cycle machin-
ery of looped sense-antisense targeting, which is mainly
processed via MILI in mice, can rapidly amplify secondary
piRNAs by consuming TE transcripts [9, 27, 28]. Due to
the preferred U for the first nucleotide of primary piRNAs
and reverse complementary targeting over the ping-pong
cycle, these secondary piRNAs feature the enrichment
of adenine at the 10th nucleotide (10A) [27, 29]. Com-
paratively, Drosophila AGO3 and AUB participate in a
ping-pong cycle in which they, respectively, bind with
sense and antisense TEs [9, 30, 31]. PiRISCs composed
of certain PIWI family members, such as MIWI2 in
mice or PIWI in Drosophila, can also transport cyto-
plasmic piRNAs into the nucleus and mediate epigenetic
gene silencing through H3K9 di- or tri-methylation and
euchromatic de novo DNA methylation [32–37]. Hence,
piRNAs may operate via post-transcriptional gene silen-
cing (PTGS) and transcriptional gene silencing (TGS) to
modulate TE expression and possibly beyond.
The emerging evidence implies diverse roles of the

PIWI/piRNA pathway along germ cell development in a
stage-dependent fashion. For instance, changes in piRISC
composition were reported along the different mouse
germ cell developmental stages [38]. The conditional in-
activation of the Miwi2 gene revealed that MIWI2 is es-
sential for prospermatogonia development in mice [39]. In
contrast, MIWI is expressed and involved in ping-pong
cycle-independent TE silencing after birth [10, 29]. PiRNA

cluster analysis of MILI-interacting piRNAs showed
distinct genomic associations, from the pre-pachytene
TE-rich piRNA population and pachytene intergenic
piRNA population [26]. Moreover, a recent study demon-
strated the switching of dominant TE silencing machinery
from the PIWI/piRNA pathway in spermatogonia to DNA
methylation in meiotic spermatocytes [40], which is a
further indication of stage-dependent regulation in the
PIWI/piRNA pathway. Here, we extend our investigation
to the roles of piRNAs along different germ cell develop-
mental stages.
Since the development of the chicken embryo can be

synchronously controlled and the chicken embryo devel-
opmental stages are well documented [41–43], chicken is
a suitable model organism for studying stage-dependent
effects of conserved machinery, such as stage-associated
piRNA regulation. In addition, TEs constitute less than
10% of the chicken genome, which is significantly lower
than TE occupancies in other tetrapod vertebrates, such
as 48% in the human genome (hg38) and 41% in the
mouse genome (mm10) [44–47]. Chicken TEs are also
less complex than their mammalian counterparts. More-
over, chicken serves as an important evolutionary model
for the conservativity of the PIWI/piRNA pathway. To-
gether, these factors make chicken a plausible model
for analyzing the roles of piRNAs in and potentially be-
yond TE modulation throughout different developmen-
tal stages. The expression of PIWIL1 in chicken PGCs
has been reported [48]. In addition, the presence of
piRNAs has been reported in chicken PGCs and adult
testes [15, 49, 50]. Nevertheless, the stage-dependent
expression and genomic association of chicken piRNAs
has yet to be systematically analyzed.
In this study, we performed an in-depth analysis of

piRNA clusters based on 3′-end-2’-O methylation-enriched
small RNA sequencing on germ cells taken at different de-
velopmental stages. Here, we show the stage-dependent
transition in piRNA compositions and their roles in TE
regulation. Our in-depth investigation of piRNAs be-
fore and after spermatogonia formation reveals that
piRNA-associated TE regulation may also contribute to
gene regulations. In extension, our results display the
stage-dependent expression of some genomic loci em-
bedding putative piRNA clusters. We further investi-
gated a functional implication of these stage-dependent
clusterable piRNAs and propose a possible role of
PIWI/piRNA pathways in germ cell fate decision.

Results
Implementation of a computational workflow for
high-confidence piRNA discovery
To identify piRNA candidates among gonadal small
RNA pools, we applied sodium periodate oxidation
combined with small-RNA high-throughput sequencing
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(small RNA-seq) and in-house developed computational
workflow dedicated to the identification of piRNA candi-
dates (Additional file 1: Figure S1). In vertebrates, only
piRNAs but not miRNAs contain a 3′-end 2’-O-methyl
modification, which resists oxidation treatment and re-
mains ligatable at the 3′-end for sequencing library con-
struction [51]. This 3′-end 2’-O-methylation signature
has been observed in chicken piRNAs [49], thus sup-
porting the applicability of this method in our study.
Reads from the oxidized small RNA libraries were then
processed through our bioinformatic pipeline. Our imple-
mentation of the bioinformatics pipeline aimed to identify
potential piRNA reads by eliminating other forms of small
RNAs instead of considering only TE-derived reads [52].
Briefly, after genomic mapping, reads that annotated to
rRNA, tRNA, and miRNA were removed. To ensure the
elimination of false positives, we also eliminated reads
that may have originated from predicted microRNA
precursors.
Given the expression of chicken PIWI/piRNA pathway-

associated genes found in blastoderm [48, 52], cultured
PGC [15, 48], and adult testes [49], we validated that these
genes are also expressed in enriched embryonic germ cells
around spermatogonia formation stages (Additional file 1:
Figure S2, S3). Our in-house bioinformatic pipeline was
then applied over 3′-end-2’O methylation-enriched small
RNA-seq datasets from blastodermal cells (BC), cultured
PGCs from E7 gonads (E7PGC), and E11 and E14 embry-
onic gonads (E11G and E14G, respectively) generated in
our lab. PiRNA datasets of adult testes (AT) published by
Li et al. [49] were included to evaluate the accuracy of our
piRNA candidate analysis pipeline and provide a piRNA
dataset of germ cells undergoing meiosis. The small RNA
categories and read densities through each step of fil-
tering and final piRNA candidacy are summarized in
Additional file 1: Table S1. The high proportion of
mapped reads was categorized as piRNA candidates
based on our analysis pipeline predictions (Additional
file 1: Figure S1C). The reduction of reads mapping to
miRNAs in the oxidation-treated libraries compared to
the untreated counterparts demonstrated the success of
enriching 3’end modified small RNAs.
The characterization analysis results showed that the

adult testicular piRNA candidates are shorter in length,
mostly ranging from 24 to 27 nt, relative to piRNA can-
didates from other samples, which range from 26 to
29 nt (Fig. 1a). We further validated the piRNA candi-
dates in each sample with known piRNA characteristics.
The resultant piRNA candidates showed strong 5′-end
uracil (1 U) enrichment (Fig. 1b), which supported the
1 U-bias of piRNAs due to structural preferences of the
nucleotide binding pocket of the PIWI MID domain
[53]. In addition, we investigated the ping-pong cycle ac-
tivities, which are characterized by a frequent mutual

overlap of 10 nt at the 5′-end and 1U10A enrichment.
We observed frequent 5′-10 nt overlapping (Fig. 1c;
Additional file 1: Figure S4) relative to other 5′ overlap-
ping lengths. However, the low sequence overlap rate
among embryonic samples implied limited ping-pong
cycle activities. The nucleotide enrichment analysis of
5′-10-nt overlapping piRNAs showed a 10A bias in sam-
ples other than BC. Interestingly, we observed a gradual
loss of 10A feature along germ cell development (Fig. 1d).
This observation supported stage-dependent variations
in piRNA composition.
Remarkably, over 90% of the piRNA candidates from

BC mapped to TEs, and less than 5% mapped to inter-
genic regions. In contrast, adult testes showed signifi-
cantly higher intergenic association over 65% (Fig. 2a). A
reduced TE association of piRNA candidates was also
observed in cultured E7PGC, E11G and E14G, compared
to that from BC. PiRNA candidates from cultured
E7PGC had almost 50% of their reads mapped to inter-
genic regions, but only approximately 35% of the piRNA
mapped to TEs. These observations suggested dynamic
regulation of genomic associations of piRNAs toward
the prevalence of intergenic loci along germ cell devel-
opment. While the chicken PIWI/piRNA pathway may
encompass stage-dependent biosynthesis machineries fa-
voring production of piRNAs in a certain length range
[54], we observed no significant correlation between
piRNA length distribution and genomic association in a
stage-dependent manner (Additional file 1: Figure S5).

PiRNA candidates demonstrated stage-dependent
association to TE subfamilies
Given the involvement of piRNAs in TE regulation [55],
their reduced TE association in a stage-dependent man-
ner may be due to TE repression (Fig. 2a, b). This effect
may be more prominent for piRNAs assigned to LINEs
(Fig. 2c). Expression analysis by RT-qPCR of a purified
embryonic chicken germ cell population generally
showed a downregulation of LINE components between
PGCs and enriched germinal cells at late embryonic
stages (Fig. 2d, e). Notably, we observed the dynamic
expression of LINEs from the enriched germ cell popu-
lations among cultured PGCs from E3 and E7 and
freshly isolated germ cells from E11G and E14G. This
implies that TE expression may also be regulated in a
stage-dependent manner. Indeed, we further observed
stage-dependent reciprocal correlations between the ex-
pression of LINE members and the abundance of their
corresponding piRNAs (Fig. 2c-e). Among the tran-
scriptionally repressed LINE members CR1-C, CR1-F,
and CR1-H, there were more LINE associated piRNAs
mapped antisense to LINE, than the piRNAs mapped
to the sense direction, by 2 to 5 fold. Intriguingly, we
observed a high abundance of antisense piRNAs
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associated with CR1-B, CR1-F, and CR1-G, in accord-
ance with the high repressive strength at BC. In con-
trast, we observed that the expansion of piRNAs
associated with CR1-C occurred later, at E11 (Fig. 2c).
Strand-specific RT-qPCR on CR1-C showed a downreg-
ulation of both sense and antisense transcripts at E11G
and E14G. In addition, both PGCs and gonadal germ
cells showed higher levels of antisense transcripts, and
this finding supported the positive correlation with the
associated antisense piRNAs (Fig. 2d, e). These results

indicate that the PIWI/piRNA pathway may have a role
in the stage-dependent transient expression of TEs.

Investigating the possibility of piRNA-mediated
modulation beyond TEs in chicken embryonic gonads
To evaluate the possible contribution of the develop-
mentally regulated piRNAs in modulating transcriptome
beyond TEs, we first tested the hypothesis that differen-
tially expressed piRNAs between E11G and E14G go-
nads may be involved in modulating spermatogonia

Fig. 1 PiRNA candidates show distinct piRNA features across different developmental stages. a Length distribution of piRNAs. PiRNA reads per
million (piRPM) is calculated for each read length; b Nucleotide enrichment analysis on piRNA candidates in each sequencing sample. c Relative
enrichment of pairable piRNAs by the overlapping length. PiRPM is calculated for the number of pairable piRNAs with each overlapping length. d
Nucleotide enrichment analysis of piRNA candidates of 10 bp antisense overlapping at the 5′ end in each sequencing sample
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formation, which was estimated to occur around E13
[43]. Approximately 20% of piRNA candidates from
E11G and E14G were mapped to either the sense or
antisense strand of genes/transcripts, in which half of these
piRNA-associated transcripts were not TE-associated
(Fig. 2a). This finding suggested that piRNAs may have
roles beyond but not mutually exclusive with TE regulation.
Among the top 500 piRNA-associated transcripts

heavily mapped by piRNAs (with at least 70 piRPM) for
E11G and E14G of both Leghorn layer and Cobb500
broiler breeds, we selected the 416 and 414 overlapped

genes from the two chicken strains of E11 and E14 tes-
tes, respectively. We found 510 transcripts that were po-
tential piRNA associated transcripts of E11G and E14G
in union (Fig. 3a), among which 193 transcripts were dif-
ferentially expressed (fold change > 2) before and after
spermatogenesis (E11G vs E14G). Among these candi-
date transcripts, we identified 58 protein-coding genes,
132 uncharacterized genes from Ensembl, and 3 snoR-
NAs (Fig. 3b). However, none of the Gene Ontology
(GO) terms was significantly enriched with these genes.
The differential expressions of 15 of the targets between

Fig. 2 Developmental stage-dependent genomic associations and TE expression modulation of piRNA candidates. a Genomic association varied
in stage-dependent fashion. Each feature was calculated in proportion to the respective total piRNA candidates. b PiRNA candidates mapped to
TEs. piRPM is calculated for each enlisted category. c The stage-dependent association of piRNAs to subfamilies of LINEs. PiRNA sequences are
preferentially mapped antisense to TEs. d Expression of CR1 subfamily members from enriched embryonic germ cells. e Stranded RT-qPCR
analysis (N = 3) over CR1-C transcription among cultured E3 circulating PGC (E3PGC), cultured E7 gonadal PGC (E7PGC), and germ cell enriched
population, E11Germ and E14Germ, from E11 and E14 Gonads, respectively. ** represents p-value < 0.01
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E11 and E14 germ cells were examined by RT-qPCR
(Fig. 3c-f ). Three of these genes showed negative cor-
relations between gene expression and the associated
piRNAs, which were predominantly mapped on or
approximate to TEs within those genes (Fig. 3c, e;
Additional file 1: Figure S6). Uniquely mapped piRNAs
associated with the 3 candidate genes were highly

represented, which indicated that even when consider-
ing the repetitive nature of the TE sequences within
genes, only a small portion of piRNA reads associated
with the aforementioned genes can also be mapped to
the identical sequences residing on the other part of
the chicken genome. The preferential TE-associated
piRNA mappings were also observed in most of the

Fig. 3 Identification of potential piRNA associated genes before (E11G) and after (E14G) spermatogonia formation. a Venn diagram of
piRNA-associated target transcripts before and after spermatogonia formation. The top 500 target transcripts were selected from each
sample, and the union of reproducible piRNA associated transcripts from E11 and E14 gonads revealed 510 potential piRNA modulated
transcripts. b Transcripts with 2-fold difference in normalized piRNA counts are identified, of which 58 are annotated genes. c-d PiRNAs
mapped to the sense or antisense of their associated genes. e-f Comparison of relative expression levels of potential piRNA associated
genes between enriched germ cells from E11 and E14 gonads (N = 3). *represents p-value < 0.05; **represents p-value < 0.01; ***represents
p-value< 0.001. Five genes are reciprocally expressed compared to the amount of associated piRNAs (e), while 12 genes do not have
reciprocal relative expression levels to the numbers of piRNAs mapped to them (f)
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other top piRNA-associated transcripts (Additional
file 2: Table S2). However, due to the lack of a strong
reciprocal correlation between antisense piRNA mapped
reads and the expression of targeted transcripts across
different developmental stages, gene silencing based
on piRNA-mediated targeting and slicing may not be
a common event in embryonic chicken testes. We do
not exclude the possibility that some of the piRNA-associ-
ated transcripts were regulated by piRNAs via
post-transcriptional slicing or piRNA-mediated epige-
nomic silencing.

piRNA cluster analysis identified stage-dependent piRNA
expression patterns
To systematically illustrate developmental changes in
piRNA compositions, we performed piRNA cluster
analysis to identify genomic regions likely transcrib-
ing piRNA precursors (Fig. 4a). Our analysis showed
that more than 70% of piRNAs can be assigned to
potential piRNA clusters, with most being 3–10 kilo-
bases in length and some reaching megabases in
length (Additional file 1: Figure S7A). Cross-stage

comparison of the genomic loci of piRNA clusters
revealed globally similar expression patterns (Fig. 4a).
However, some clusters demonstrated significant de-
velopmental stage-dependent differential piRNA pro-
duction (Fig. 4a; Additional file 1: Figure S7B).
Moreover, we identified a set of piRNA clusters that
exhibited strict stage dependencies. The intersection
of joined overlapping piRNA clusters across samples
and transcriptome information allowed us to better pre-
dict the piRNA cluster boundaries (Additional file 1: Fig-
ure S8; see Material and Method). This adjustment
granted a slight increase in the number of piRNA candi-
dates that may be assigned to piRNA clusters despite be-
ing initially discarded by proTRAC, a software program
for piRNA cluster detection (Additional file 1: Table S3).
Multidimensional scaling analysis showed a strong associ-
ation between piRNA cluster expression patterns and de-
velopmental stages (Fig. 4b). As demonstrated, the
expression profiles of piRNA clusters between E11G and
E14G were less distinguishable, suggesting similarities in
piRNA modulations before and after spermatogonia for-
mation. Hence, we categorized the expression profiles of

Fig. 4 PiRNA cluster analysis reveals stage-dependent differential expression of piRNA precursors. a PiRNA cluster locus identified in each sample
via proTRAC. Each bar represents a cluster at the plus (up) or minus (down) strand. Length and color depth denote the piRNA density in percentile.
b Multidimensional scaling reveals the stage-associated piRNA cluster expression profile. Eigenvalues approximate the degree of variation explained by
each dimension. c Identification of stage-enriched piRNA clusters (piRCs), each of which has piRPKM 1.5-fold higher than the second-highest stage.
Stage-enriched piRNA clusters from blastodermal cells (BC), primordial germ cells (PGC), embryonic gonads from E11 and E14 (EG), and adult testes
(AT) are included

Chang et al. BMC Genomics  (2018) 19:425 Page 7 of 16



piRNA clusters according to the developmental stages, as
BC-enriched piRNA clusters (BC-piRC), PGC-enriched
piRNA clusters (PGC-piRC), embryonic gonadal-enriched
piRNA clusters (EG-piRC), and adult testes-enriched
piRNA clusters (AT-piRC). We found that nearly 70% of
the 7269 piRNA clusters showed stage dependency, with
an expression cutoff of 0.1 piRPKM and 1.5-fold expression
enrichment (Fig. 4c). Remarkably, the piRNAs that mapped
to these stage-enriched piRNA clusters showed similar gen-
omic association patterns as the mapping results from the
piRNA samples: the enriched TE-associated piRNAs in
BC-piRCs; the enriched intergenic-associated piRNAs in
AT-piRCs; and the “in-between” piRNA pool in PGC-piRCs
and EG-piRCs. The developmental stage-specifically upreg-
ulated piRNA clusters implied the existence of open gen-
omic regions for piRNA precursor transcription that may
play stage-associated regulatory roles.

Stage-dependent chicken piRNA clusters revealed
evolutionary conservation with eutherian piRNA clusters
The conservation of piRNA clusters between avian and
eutherian mammals has not been discovered. With the

newly identified chicken piRNA clusters from embryonic
gonads (Additional file 1: Figure S7), we re-investigated
the potential conservation of piRNA clusters with pre-
viously reported eutherian-conserved piRNA clusters
[56]. We identified several syntenically conserved
piRNA clusters between chickens, mice and humans,
for example, the intergenic piRNA clusters residing be-
tween PRMT8 and TSPAN9, and between GADD45G
and DIRAS2 (Fig. 5). Interestingly, the transposable ele-
ments from these two conserved clusters are very simi-
lar among the three species. Both potentially conserved
chicken piRNA clusters are expressed only at E11 and
E14 gonads but not in adult testes (Fig. 5). This sug-
gests that the expression of these conserved piRNA clus-
ters is modulated in a developmental stage-dependent
manner in chickens.

piRNAs from E11 and E14 gonad-enriched piRNA clusters
preferentially targeting neural lineage-associated genes
The stage-dependent expression of piRNA precursors
from each cluster likely contributes to the changes in
piRNA composition during germ cell development. We

Fig. 5 Potential stage-dependent syntenically conserved piRNA clusters shared between eutherian and chicken. The intergenic chicken piRNA
cluster expressions were reported as piRPM at between (a) PRMT8 and TSPAN9; and (b) GADD45G and DIRAS2. These loci were reported
syntenically conserved in eutherian by Chirn et al., and are respectively listed at (c) and (d) for comparison. Both human and mouse piRNA
clusters are listed. Stage-enriched piRNA clusters from chicken blastodermal cells (BC), primordial germ cells (PGC), embryonic gonads from E11
and E14 (E11G and E14G), and adult testes (AT) are included. The novel syntenically conserved clusters between eutherian and chicken were
revealed from our original piRNA datasets from embryonic gonads
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found that stage-enriched piRNA cluster-derived piRNAs
targeted similar TEs, which are predominantly CR1 and
ERVL elements (Additional file 3: Table S4). On the
other hand, these different stage-enriched piRNAs
mapped antisense to a large variety of genes (Additional
file 1: Figure S9). We then applied GO enrichment ana-
lysis via Enrichr [57] using the piRNA-targeted tran-
scripts for potential functional annotations. Surprisingly,
the genes targeted by EG-piRC piRNAs were predomin-
antly expressed in the brain, based on the Mouse Gene
Atlas category [57], and were primarily associated with
synaptic transmission and neural development based on
our gene ontology enrichment analysis (Additional file 1:
Figure S10, S11; Additional file 3: Table S4). From the
gene list associated with GO term: “positive regulation of
nervous system development (GO:0051962)”, we ran-
domly selected several EG-piRC piRNA-targeted genes for
expression analysis via RT-qPCR on enriched germ cells
of different developmental stages. We found that the ex-
pression of these genes decreased in germ cell-enriched
samples at E14 gonads compared with earlier develop-
mental stages (Additional file 1: Figure S12). Further in-
vestigation revealed that piRNAs associated with these
genes were predominantly mapped to the TEs embedded
within the gene bodies. Since there was a significant
representation of uniquely mapped piRNAs to these TE
regions, any potential biases resulting from multiple map-
ping due to identical sequences have been minimized.
Nevertheless, whether a specific subset of TE-embedded
genes can indeed be modulated by piRNAs and cause sig-
nificant biological consequences relies on further func-
tional analysis.

Discussion
PIWI/piRNA pathway in chicken and mouse
PIWI family members are known for having stage-specific
expression in mouse germline development [10, 33]. Miwi,
also known as Piwil1, is expressed from the pachytene
stage of meiosis to the haploid round spermatid; Mili, also
known as Piwil2, is expressed from PGCs to the round
spermatid; and Miwi2, also known as Piwil4, is expressed
mainly in quiescent prospermatogonia. However, only the
Piwil1 and Piwil2 homologous genes, CIWI and CILI, and
not Piwil4 are annotated in the chicken genome [14]. In
this study, the RNA transcripts of CIWI and CILI were de-
tected in male embryonic gonads after sex differentiation
(E8) to spermatogonial formation (E14). CIWI and CILI
transcripts were reported to be detectable in PGCs and
adult gonads [14]. These data supported the existence of
PIWI/piRNA pathways along chicken germ cell develop-
ment but also indicated that, unlike in mice, chicken PIWI
family genes likely do not exert stage-specific functions.
However, the variations in the length distribution of

piRNA candidates, and the gradual loss of the 10A

feature conservation in piRNA candidates involved in
the ping-pong cycle along germline development, sup-
ported the possibility that distinct PIWI/piRNA pathway
machineries operate in a stage-dependent manner.
Moreover, the dominant expression of CIWI from E8G
to E14G further implied roles of CIWI in the chicken
PIWI/piRNA pathway (Additional file 1: Figure S3).
Whether components within a PIWI complex affect
PIWI-piRNA binding and processing machineries re-
mains elusive. Our results showed the upregulation of
PIWI/piRNA-associated genes, which may be associated
with the stage-dependent co-factor composition within
PIWI complexes.

Comparison of the piRNA composition along germ cell
developmental timelines between chicken and mouse
Our piRNA-seq analysis revealed changes in piRNA
population among BC, cultured E7 PGC, E11 and E14
gonads, and adult testes, which, respectively, correspond
to PGC precursors, gonadal PGCs, prospermatogonia,
spermatogonia, and mature germ cell population. Since
galGal5 chicken genome assembly came from red jungle
fowl (origin of domesticated chicken), our “no-mismatch”
piRNA candidates analysis pipeline identified piRNA se-
quences of the wildtype chicken piRNAs prior domestica-
tion. We found that the piRNA composition changed
from highly TE-associated BC piRNAs to predominantly
intergenic region-associated adult testicular piRNAs.
Comparatively, emerging studies in mouse germ cell
piRNAs have implied a distinctive border for piRNA
compositions, which are predominantly TE-associated
pre-pachytene piRNAs and predominantly intergenic
orientated pachytene piRNAs [13, 58–60]. We observed
a similar reduction of TE-associated piRNAs from early
to late germ cell development between chickens and
mice. Since the PIWI/piRNA pathway may contribute
to epigenetic silencing via H3K9me3 and DNA methy-
lation onto the piRNA targeted regions [33, 61], piR-
NAs expressed in primordial germ cells may silence
their host transcripts and may thus reduce the tran-
scription activities from the same region in later germ
cells. Interestingly, however, piRNAs from cultured
E7PGC and gonads from E11 and E14 showed “in-betw-
een” genomic associations with similar representation of
TEs and non-TE loci. Since chicken male germ cells enter
meiosis after sex maturation approximately 10 weeks after
hatching [43], the transition of chicken piRNA composi-
tions from TE-targeting piRNAs to intergenic-associated
piRNAs in male germ cells might be a progressive event.
Moreover, our analysis showed a significant number of
intergenic gonadal piRNAs before entering meiosis, sug-
gesting differences in piRNA-associated TGS machineries
between chickens and mice.
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It is curious that our piRNA candidate analysis pipe-
line identified the presence of rRNA and tRNA derived
small RNAs at early embryonic stage from the 3′-end
modified population after periodate oxidation treatment
(Additional file 1, Figure S1). The low number of micro-
RNAs in our 3′-end modification enriched population con-
firmed the success of oxidation treatment (Additional file 1:
Figure S1C, Non-enriched vs. Oxidation Enriched). Our
data suggests the presence of rRNAs and tRNAs editing, in-
cluding methylation. We haven’t been able to obtain direct
evidence for 3′-end modification in rRNAs and tRNAs in
this study, but 2’-O methylation modifications on rRNA
and tRNA have been reported in eukaryotes, including
yeast and human. Additionally, other methylation editing
may also block the oxidation reaction. The RNA modifica-
tion information has recently been summarized in RMBase
(http://rna.sysu.edu.cn/rmbase/) [62]. Hence, despite RNA
modifications in chicken are scarcely studied, the possibility
exists that RNA methyltransferase may be highly active in
chicken blastodermal cells and leads to 2’-O methylation
on rRNA and tRNA, including potentially 3′-end methyla-
tion. Alternatively, cleavage of rRNA and tRNA, may also
expose 2’-O methylation site at 3′-end, and are therefore
included in our 3′-end enriched small RNA population.
Further studies may reveal their potential roles in early
chicken embryo and germ cell development.
Although our high throughput datasets were gener-

ated from multiple chicken breeds, the conclusion of
stage-specific piRNA modulation should not be solely
attributed to genetic background mediated bias. When
taking a full set of piRNA sequencing datasets from
blastodermal cells (BC1, BC2), E11 (E11G2) and E14
(E14G2) and adult testes (Adult) sequencing results all
from Leghorn breed, we confirmed that all of the stage
dependent differences we demonstrated in this paper were
also observed within the LH breed (Figs. 1a, c, 2a-c, 4c
and Additional file 1: Figure S7B). Studies of genomic
occupancy profiling such as ChIP-seq and bisulfite
genomic sequencing may further elucidate the links
between the PIWI/piRNA pathway and epigenetic
regulation along chicken germ cell developmental
states. The developmental stage-dependent modula-
tion of TE subfamilies and their importance in estab-
lishing or maintaining pluripotency have only recently
been appreciated [63–65].

Chicken PIWI/piRNA pathway machineries may exhibit
multiple regulatory strategies
According to the distribution of piRNA counts within
targeted genes, PIWI/piRNA might regulate their ex-
pressions through various mechanisms. In mice, PIWI/
piRNAs regulate TE expression through the ping-pong
cycle, which amplifies the piRNAs that lead to the rapid
post-transcriptional degradation of TE transcripts and/or

facilitate histone modification and de novo methylation
for repressing TE transcriptions [12, 32, 58, 66]. The re-
cently discovered phased primary piRNA processing
mechanism, which is triggered by initial piRNA targeting,
can generate a series of downstream, non-overlapping pri-
mary piRNAs through the PIWI slicer activity and there-
fore enrich piRNA pools [67, 68]. Mouse PiRNAs were
also reported to be involved in silencing of protein-coding
genes via transcript deadenylation or direct transcript tar-
geting, endonucleolitic cleavage and degradation [69–72].
Nevertheless, while piRNAs have a global repressive effect
on TEs, piRNA-mediated post-transcriptional regulation
may apply to only a small subset of genes [40]. In support
of this notion, the moderate expression changes in the
piRNA-associated genes, including EDIL3 and PIP5K1B,
before and after spermatogonia formation imply minor
roles of the PIWI/piRNA pathway in regulating these
genes. Interestingly, however, piRNAs mapped to EDIL3
showed strong ping-pong cycle features and were not
restricted specifically to the embedded TEs (Fig. 3;
Additional file 1: Figure S6). In contrast, PIP5K1B re-
gions produce piRNA candidates mostly from the sense
strand centralized around the embedded TEs, whereas
few piRNAs mapped to the antisense strand (Additional
file 1: Figure S6). This phenomenon resembles the foot-
print from the piRNA phasing mechanism [73]. Further
analysis of the uniquely mapped piRNAs revealed the
possibility that a small number of trans-acting antisense
piRNAs may trigger the piRNA production from the
sense-paired transcript via the phasing mechanism
(Additional file 1: Figure S6E-H).

Stage-dependent regulation over piRNA clusters may
evolutionarily acquire roles in germ cell development
We observed that more than half of the overall piRNA
clusters displayed strong correlations with the germ
cell developmental stages. PiRNA profiling analysis in
embryonic gonads allowed the discovery of novel
conservation of piRNA clusters between chicken and
mammalian species. This finding suggests that the
earlier conclusion of the lack of conservation of
piRNA clusters between eutherian and chicken was
mainly due to a lack of information from the prenatal
stages [56]. The conservation of piRNA clusters may
be stronger than expected, given the stage-dependency
features. Apart from the stage-dependent modulation
of TE expressions, our data also implied that the piR-
NAs produced from E11 and E14 gonadal-enriched
piRNA clusters may have preferential targeting to
genes involved in neural lineage development and
functions. The significant drop of expressions of the
piRNA-targeted genes in the E14G germ cell-enriched
population suggested potential incidence of repressive
roles of chicken piRNAs. The delayed response for
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piRNA targeting and gene suppression may be par-
tially explained by the involvement of piRNA-guided
chromatin repression machinery [34, 74].
The potential roles of developmentally enriched

piRNA in repressing neural lineage genes may imply a
strengthening germ cell fate during a critical period of
spermatogonia stem cell formation. When looking
closely into the antisense-mapped piRNAs within these
genes, we further observed a stronger reciprocal associ-
ation between the quantity of these piRNAs and the
transcripts bearing intragenic TEs of the same direction
(Additional file 4: Table S5). It is therefore possible that
while piRNAs modulate the intragenic TE components,
they also repress the genes bearing identical sequences.
This is reminiscent of the recent finding describing sui-
cide shRNAs that repress genes via the off-target mech-
anism because of sequence similarity [75]. Our ongoing
functional analysis would provide further evidence of how
selected genes are specifically targeted by stage-dependent
piRNAs while the other genes associated with piRNAs
may not receive biologically significant repression. Pre-
vious researches have reported that spermatogonial
stem cells (SSCs) may regain pluripotency in response
to inductive culture condition and adapt a different cell
fate including neuron-like cells [76–81]. This suggests
that repression of these genes in SSCs is likely reversible.
Nevertheless, whether the PIWI/piRNA pathway activities
in chicken gonocytes contribute to the establishment of
such reversible epigenetic states remains elusive. This will
be worth investigating with respect to piRNA-mediated
histone modification (H3K9me3) and DNA methylation
profiling.

Conclusions
In this report, we investigated the changes in piRNA
compositions in different chicken germ cell developmen-
tal stages and explored potential roles of PIWI/piRNA
pathways in modulating different stages of germ cell de-
velopment. We showed a progressive transition of piRNA
compositions from TE to intergenic association. Addition-
ally, we showed that piRNAs may be involved in modulat-
ing stage-dependent TE expression. Our investigation of
the stage-dependent activities of piRNA clusters implied
stage-dependent roles in modulating germline develop-
ment. Unexpectedly, we revealed the potential evolution-
ary conservation of piRNA clusters between chickens and
eutherian mammals.

Methods
Animals and tissue sample collection
The fertilized eggs of Cobb500 broiler (Gallus gallus)
and Leghorn chickens were provided by Taiwan
Chunky G.P. Farm Co. and Animal Health Research
Institute, Council of Agriculture, Executive Yuan,

Taiwan, respectively. Fertilized eggs were incubated at
37.5 °C under 50–60% relative humidity. The protocol
has been reviewed and approved by the Institutional
Animal Care and Use Committee at National Taiwan
University (NTU-100-EL-55; NTU-101-EL-116). For
high-throughput small RNA sequencing, samples E11G1
and E14G1 were collected from eggs of the Cobb500
broiler, samples BC1, BC2, E11G2, and E14G2 were col-
lected from eggs of Leghorn layer. For strand-specific
mRNA sequencing and quantitative RT-PCR, samples
were collected from eggs of JA57 broiler and Leghorn
chicken, respectively. Blastoderms were collected from
non-incubated eggs. PGCs were isolated from E3 and E7
embryos of the Arbor Acres broiler (Gallus gallus) pur-
chased from Chu Lin Farm Co., Ltd., Taiwan. Male go-
nads were dissected from chicken embryos incubated
ranging from 8 days (E8, HH34) to 14 days (E14,
HH40) for germ cell isolation. Samples were processed
for total and small RNA isolation by TRIzol reagent
(Thermo Fisher Scientific, Waltham, MA, USA) and
miRNeasy Mini Kit (Qiagen, Valencia, CA, USA), re-
spectively, according to the manufacturers’ instructions.
A full set of data solely from Leghorn layer has been
extracted from blastodermal cells (BC1, BC2), E11
(E11G2) and E14 (E14G2) and adult testes (Adult) se-
quencing results to confirm the conclusion.

High-throughput next-generation sequencing of 3′-end-
2’O-methylated small RNAs
RNA extracted from 10 to 15 blastodermal embryos,
cultured E7 PGC, 8–10 E11 left-side embryonic gonads,
and 8–10 E14 left-side embryonic gonads were preceded
for small RNA-sequencing and strand-specific total
RNA-sequencing (ssRNA-seq). The quality and concen-
tration of RNA samples were determined using Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA). The RNA integrity numbers (RIN) of all our
total RNA samples were between 9.9 and 10.0, which in-
dicates minimized RNA degradation induced complica-
tion. Small RNA-seq libraries were constructed using
the Illumina TruSeq Small RNA sample preparation kit
(Illumina, San Diego, CA, USA). For piRNA enrichment,
small RNA samples were oxidized by NaIO4 before library
construction as described (Additional file 1: Figure S1A)
[82]. We used the same oxidation treatment protocol that
was applied by Li et al. for the adult testes sample prepar-
ation [49]. After adaptor ligation, the small RNA libraries
were reverse transcribed, followed by amplification through
15 PCR cycles. Sequencing was performed using either an
Illumina MiSeq (for E11G1 and E14G1) or an Illumina
Solexa Platform (Illumina, San Diego, CA, USA, for BC1,
BC2, E7PGC1, E7PGC2, E11G2, E14G2), with read length
setting of 50 bp and 75 bp, respectively. Details for
ssRNA-seq analysis are described below.
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Bioinformatic filtering for piRNA candidates
Periodate oxidation-treated small RNA-seq datasets for
blastodermal cells, E7 PGCs, E11 and E14 gonads were
generated in our laboratory. We also obtained the oxidized
small RNA sequencing for adult testes (GSM1096613)
from Li et al. [49]. For all in-house generated small
RNA-seq, we applied adaptor trimming via cutadapt [83]
with a 3′ adaptor sequence “TGGAATTCTCGGGT
GCCAAGGAACTCCAGTCAC” and parameters -m 15
-M 45 to restrict a small RNA size for the follow-up ana-
lysis. We applied FastQC [84] to identify adaptor se-
quences to be trimmed by cutadapt for adult testes
small RNA-seq. Adaptor-trimmed small RNA reads
were mapped to the galGal5 genome via Tophat2
(v2.0.12) [85], with parameters -g 1 -N 0 –read-
gap-length 0 –read-edit-dist 0 –read-realign-edit-dist 0
–max-insertion-length 0 –max-deletion-length 0, to fil-
ter out non-chicken reads and reads containing indels
or mismatches (Additional file 1: Table S1). We used
chicken galGal5 Refseq transcriptome obtained from
UCSC genome browser [86, 87] as the splice junction
database to identify reads spanning splice junctions. For
stringent piRNA candidate selection, we removed reads
mapping to galGal5 rRNA and tRNA sequences from
Rfam [88] and Ensembl database (release 87) [89], then
to chicken miRNA precursors from miRBase (release 19)
[90] and predicted novel miRNA precursors identified via
miRDeep (v2.0.0.7; default parameter setting), with param-
eters -n -c -j -l 18 -m -p [91]. We applied Bowtie (v 1.1.1)
[92] with parameters allowing no mismatches for iden-
tifying miRNAs with complete sequence match. Finally,
we reckoned sequencing reads with 24–34 nt as piRNA
candidates (Additional file 1: Figure S1B).

Strand-specific RNA-seq analysis
We constructed strand-specific paired-end mRNA se-
quencing for blastodermal cells and E11 and E14 go-
nads following Illumina TruSeq stranded total RNA
sample preparation with 12 PCR-cycle amplification,
and then sequenced via Illumina HiSeq sequencing sys-
tem, with read length setting to 100 bp. The raw
RNA-seq reads were curated by trimming adaptors and
low score reads, followed by genomic mapping using
Tophat2 (v2.0.12) [85] with standard settings for
paired-end sequencing. We applied reference guided
sequence assembly using Cufflinks (v2.2.1) [93, 94] with
default parameters, followed by merging transcriptome
assemblies and filtering out potential isoforms. We then
annotated the merged contigs based on galGal5 Refseq
and Ensembl databases (release 90). Gene expression
quantification for each dataset was calculated based on
the merged transcriptome annotations, including novel
transcripts.

piRNA cluster analysis
We adapted proTRAC (v2.0.5) and reconfigured it to
allow the discovery of dual-stranded piRNA clusters, in
addition to single- and bi-directional piRNA clusters [95].
For cross-stage comparison, we merged the piRNA clus-
ters in each profile based on their genomic position. Con-
sidering that the transcriptional activities between an
expressing piRNA precursor and its sense-overlapping ex-
pressing mRNA precursor may not be distinguishable by
sequencing information, because both precursors are tran-
scribed via RNA Pol II [96], we extended a candidate
piRNA cluster to cover its overlapping transcripts with
FPKM > = 1 in at least one in-house RNA-seq dataset
(Additional file 1: Figure S8). The expressions of piRNA
clusters were measured as the number of piRNA reads
per kilobase per million reads (piRPKM) for cross-sample
comparison. Data analyses including multidimensional
scaling, Heatmap [97], and violin plots [98] were
conducted via R [99].

PGC isolation and in vitro culture
Circulating PGCs (cPGCs) were derived from embryonic
blood of E3 embryo (HH15–16), initiated by seeding ap-
proximately 2 μL of blood in 48-well plates with 300 μL
of FAcs medium [100]. Gonadal PGCs (gPGCs) were de-
rived from E7 embryonic gonads (HH28–30), initiated
by seeding homogenized embryonic gonads in 500 μL of
FAcs medium in 24-well plates as described [100]. Every
2 days, one-third of the total medium was changed with
fresh medium until reaching > 70% confluence. Suspend-
ing cells were collected and subcultured in larger wells.
One million cells were obtained by in vitro PGC cultures
for approximately 1 month for both cPGCs and gPGCs,
which were subjected to further RNA isolation process-
ing. PGC cultures were maintained at 37.5 °C incubator
with 5% CO2 supply.

Germ cell purification from E11 and E14 embryonic
gonads
We harvested male gonads from E11 and E14 embryos.
For one batch of purification of the same stage, we
pooled approximately 40 E11 embryonic male gonads or
approximately 30 E14 embryonic male gonads. The
pooled gonads of the same stage were homogenized by
Gibco™ 0.25% trypsin-EDTA (Thermo Fisher Scientific,
Waltham, MA, USA) treatment at 37 °C for 6 min. The
homogenized cells were filtered through 70 μm Falcon™
Cell Strainers (Thermo Fisher Scientific, Waltham, MA,
USA); resuspended in DMEM with 1% FBS and 1 mM
EDTA supplement at approximately 6 × 106 cells per
150 mm tissue culture treated dish; and then placed in an
incubator (37.5 °C, 5% CO2) for 4 h. Germ cell-enriched
populations (suspension) and germ-depleted populations
(adherent) were collected separately and dissolved in
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TRIzol reagent (Thermo Fisher Scientific, Waltham, MA,
USA) for RNA extraction. We kept a small portion of the
sample to check for germ cell enrichment efficiency via
immunofluorescent staining.

Immunocytochemistry
We applied immunofluorescent staining to evaluate the
germ cell enrichment efficiency. Cells were loaded onto
slides, fixed (4% PFA in PBS) for 20 min at room
temperature, quenched (10 mM Tris pH 7.5, 50 mM
KCl, 20 mM EDTA) for 5 min, permeabilized (0.1% Sap-
onin in PBS) for 5 min, with PBS wash in each step.
Samples were blocked (1% BSA in PBS) overnight at 4 °C.
The cells were incubated at room temperature with pri-
mary anti-CVH antibody (#9C4-2E4; Biotem, Apprieu,
France) at 1:1000 dilution in 1% BSA for 1 h, washed sev-
eral times with PBS, and then incubated with secondary
goat anti-mouse DyLight® 594 antibody (#ab96873;
Abcam, Cambridge, MA, USA) at 1:10000 dilution in 1%
BSA for 1 h. We then applied Hoechst 33,342 nucleic acid
staining (Thermo Fisher Scientific, Waltham, MA, USA)
at 1:10000 dilution in 1% BSA for 5 min. After several
washes, samples were mounted and stored at − 20 °C.
Fluorescent images were observed under a fluorescence
microscope. Germ cell-enriched populations with isolation
efficiency above 80% were used for the subsequent expres-
sion analysis via RT-qPCR.

RT-qPCR primer design
All in-house developed primers were designed via
Primer3 [101, 102] against gene or transcript sequences
obtained from UCSC genome browser [86, 87]. For the
design of primers against chicken LINE sequences, we
obtained 10 longest sequences for each of CR1-B to
CR1-H from the galGal5 genome sequence, and then
identified consensus sequences via R-packages [99] for
Multiple Sequence Alignment (msa) [103] and Biological
Sequences Retrieval and Analysis (seqinr) [104]. Primer
target specificity was validated via in-silico PCR in
UCSC genome browser [87].

Total RNA isolation from enriched germ cells and reverse
transcription real-time PCR (RT-qPCR)
For total RNA extraction, equal volume of ethanol was
added to a sample in TRIzol, and then loaded onto a fil-
ter column provided by the miRNeasy Mini Kit (Qiagen,
Valencia, CA, USA). The RNA extraction protocol was
then performed according to the manufacturers’ in-
struction, with the exception of two-time DNase treat-
ments (once on-column, and once prior to cDNA
synthesis) to ensure minimal DNA contamination. One
microgram (1 μg) of extracted RNAs was reverse
transcribed according to instructions provided by the
Invitrogen™ SuperScript® III First-Strand Synthesis

System (Thermo Fisher Scientific, Waltham, MA,
USA). The temperature settings for reverse transcrip-
tion were 5 min at 25 °C, 60 min at 50 °C, and 15 min
at 70 °C, and the samples were then chilled on ice. For
qPCR, KAPA SYBR® FAST qPCR Master Mix (Kapa Bio-
systems, Wilmington, MA, USA) was used, followed by
real-time PCR in Roche Light Cycler® 480II for 10 min
95 °C preheat, then 40 PCR cycles of 10 s at 95 °C, 10 s at
50 °C, and 10 s at 70 °C. The primers used for qPCR are
listed in Additional file 1: Table S6.
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