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SUMMARY

Smartphones offer unique opportunities to trace the convoluted behavioral pat-
terns accompanying healthy aging. Here we captured smartphone touchscreen
interactions from a healthy population (N = 684, �309 million interactions) span-
ning 16 to 86 years of age and trained a decision tree regression model to esti-
mate chronological age based on the interactions. The interactions were
clustered according to their next interval dynamics to quantify diverse smart-
phone behaviors. The regression model well-estimated the chronological age in
health (mean absolute error = 6 years, R2 = 0.8). We next deployed this model
on a population of stroke survivors (N = 41) to find larger prediction errors
such that the estimated age was advanced by 6 years. A similar pattern was
observed in people with epilepsy (N = 51), with prediction errors advanced by
10 years. The smartphone behavioral model trained in health can be used to study
altered aging in neurological diseases.
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INTRODUCTION

The impact of aging on biology and behavior is complex. Interestingly, quantifying the impacts reveals sub-

stantial similarities in how people age. Some of these similarities have been leveraged to build a range of

models that can estimate chronological age by using biological measurements, from blood samples to

structural scans of the brain (Baecker et al., 2021; Belsky et al., 2020; Fedintsev et al., 2017; Marquand

et al., 2016; Schultz et al., 2020). The age-estimating (normative) models contribute toward making the

otherwise complex biological measurements interpretable and in parallel provide an opportunity to detect

disease-induced deviations from healthy aging (Marquand et al., 2016). For instance, chronological age can

be estimated by machine learning models based on rich structural MRI scans obtained from individuals

sampled across the life span (Cole et al., 2017). The gap between the estimated age and the chronological

age increases in diseases such as stroke and epilepsy as if the diseased brains are ‘‘older’’ than healthy

brains (Baecker et al., 2021). According to subjective self-reports, real-world behavior also undergoes com-

plex alterations with age, but these largely unstructured measurements are difficult to leverage toward

quantitative modeling of aging in health and diseases (Ding et al., 2018; Lawton, 1971; Testa and Simonson,

1996).

Real-world data stemming from the ubiquitous use of smartphones can be used to quantify and model the

behavioral impact of healthy aging. The time series of smartphone touchscreen interactions (tappigraphy)

contains information on sleep, diurnal rhythms, the brain’s reward pathways, sensorimotor process, and

abnormal brain events in epilepsy (Balerna and Ghosh, 2018; Borger et al., 2019; Duckrow et al., 2021;

Huber and Ghosh, 2021; Westbrook et al., 2021). Interestingly, the speed of touchscreen keyboard interac-

tions declines with age and can be used to infer chronological age (Vesel et al., 2020; Zulueta et al., 2021).

By organizing the time series of smartphone interactions (across all apps) according to their next interval

dynamics, we recently discovered that in healthy adults age-related behavioral alterations vary according

to the underlying temporal dynamics (Ceolini et al., 2022). The probability of short (�100 ms) consecutive

intervals declines with age, whereas that of the long (�4s) intervals increases with age. These observations

revealed strong correlations with chronological age and help pave the way toward generating a normative

model of healthy aging based on smartphone behavioral inputs.
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Figure 1. A normative model of healthy aging based on smartphone touchscreen interactions

(A) We accumulated the time series of smartphone interactions (tappigraphy) and quantified the next-interval dynamics using a joint interval distribution

(JID). In this distribution, the inter-touch intervals (ITI) are clustered according to the underlying temporal dynamics.

(B) XGBoost used the vectorized JID to estimate the chronological age.

(C) The model predictions (predicted age) in comparison to the real age (chronological age) are based on unseen data, accumulated over 10 folds of the

model training.

(D) The impact of the maximum duration of the recordings on the model performance. The mean absolute error (MAE) is shown and the 95% confidence

intervals are shaded.

(E) The (mean Shapley value across the population) importance of the different features in estimating the chronological age was captured by using the SHAP

method.
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In this study, we recorded the timestamps of smartphone touchscreen interactions by using a background

app (on the subject’s device) in a sample of healthy individuals spanning the adult life span. The timestamp

at the onset of any touchscreen interaction event on the screen—may it be a swipe or a tap—across all apps

was recorded. The interactions were accumulated for a minimum of 7 days and up to 180 days. These data

were subsequently clustered according to the next-interval dynamics resulting in a joint interval distribu-

tion (JID). The JID used here captured the diverse behaviors in 2,500 two-dimensional bins and provided

an interpretable separation of behaviors—for instance, consecutive short intervals (say due to typing) are

represented in distinct two-dimensional bins as opposed to interactions that involve transitioning from a

long interval (say due to reading) to a short interval (say due to typing) (Ceolini et al., 2022; Duckrow

et al., 2021). Next, we used decision tree regressions to generate a healthy aging behavioral model such

that chronological age could be estimated based on the smartphone behavioral JID. The explainability

of the model was leveraged to identify which forms of smartphone behavior—in terms of the next-interval

dynamics—were utilized for the age estimations.We deployed the normative data-drivenmodel on people

with epilepsy and stroke survivors to address the impact of these conditions on behavioral aging. Using this

approach, we demonstrate the presence of rich age-related information distributed in real-world behavior

in health and capture the distinct pace of behavioral aging in neurological disease.

RESULTS

Normative smartphone behavioral model of healthy aging

We gathered smartphone data from self-reported healthy adults. The generic quality-of-life questionnaire,

SF-36, was further used to assess the overall health status. The mental component score of the sampled

population was 80 (median, 10 interquartile range [iqr]), and the physical component score was 75 (median,

13 iqr, Figure S1). These values were well above what is reported in diseases (Riazi et al., 2003). For the

behavioral model to estimate chronological age, the time series of smartphone touchscreen interactions

were accumulated for a maximum duration of 180 days. The next-interval dynamics were quantified using

a JID and used as model input (Figure 1), along with the gender, the number of interactions per day, the

entropy of the JID, and the screen size (Figure S1). According to the predictions generated using

10-fold cross-validations, the XGBoost model performed with a mean error (ME) of �0.53 years and

mean absolute error (MAE) of 6.38 years, and the predicted and real chronological ages were strongly

related (R2 = 0.79). Note that we report the ME (apart from the MAE) as we later compare this measure

to the populations with stroke and epilepsy where a ME > 0 would be indicative of accelerated aging.

The explainability of the XGBoost model was leveraged to derive the Shapley values to reveal which of the

input features were used by the model and if they contributed to a positive (i.e., to increase the predicted

age) or negative (i.e., to reduce the predicted age) output (Figure 1). The two-dimensional bins capturing

the rapid consecutive intervals showed both positive and negative Shapley values indicating that the sub-

second rapid interactions were prominently used by the model to arrive at the age estimates. Interestingly,

slower interactions disproportionately contributed to higher age estimation in the model (positive Shapley

values at the slower intervals but only sparsely present negative values at the same intervals). Notably,

gender, screen size, overall smartphone usage, or JID entropy played a negligible role in the age estima-

tion in contrast to the JID two-dimensional bins.

We addressed the amount of data necessary for the normative model trained using the maximum of

180 days of data (median 117 days). When the model was provided with less than 90 days of data during

the testing phase, the performance was marginally worse (Figure 1). Still, with 5 days of recording, the

model performedwith aME of�1.28 years andMAE of 7.25 years, and the predicted and real chronological

ages were strongly related (R2 = 0.76).
iScience 25, 104792, August 19, 2022 3
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Figure 2. Deviations from healthy aging in stroke and epilepsy

(A) We deployed the normative model based on healthy individuals on stroke survivors. The distribution of typical

(median) errors based on healthy individuals age-matched to the stroke survivors (10,000 iterations, in green). The

distribution of errors from the same model was obtained from stroke survivors (N = 41, 10-folds). Further examination of

the model performance at the level of each stroke survivor reveals that accelerated aging was pronounced in survivors

under 60 years of age. In stroke survivors, the model output was weakly correlated with the real age (insert). The shaded

areas represent the 95% confidence intervals.

(B) The (mean Shapley value across the population) importance of the different features in estimating the chronological

age of stroke survivors, captured using the SHAP method, the contributions are separated in positive (red) and negative

(blue).

(C) The normative model is deployed in people with epilepsy. The distribution of errors was shifted indicating advanced

age in epilepsy (N = 51) in contrast to the age-matched healthy population. Further examination at the level of each
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Figure 2. Continued

person with epilepsy indicated advanced aging across distinct ages. In people with epilepsy, the model output was

moderately correlated with the real age. Persons implanted with the responsive neurostimulator (RNS) are marked

using larger filled circles. The distribution of errors was smoothed with a Gaussian kernel (bandwidth 0.6) for display.

The shaded areas represent the 95% confidence intervals.

(D) The (mean Shapley values across the population) importance of the different features in estimating the chronological

age of people with epilepsy, captured using the SHAP method, the contributions are separated in positive (red) and

negative (blue).
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Age estimation using the normative model in stroke survivors

We deployed the normative model in people with stroke who were able to operate smartphones. The ma-

jority of the survivors had a cortical stroke (35.7%), followed by a subcortical (26.2%), brain stem (28.6%),

and cerebellar (3%) stroke. The time elapsed from the stroke was 28 days (median). The XGBoost model

prediction error in the stroke survivors—who were between 22 and 83 years of age—was 5.47 years

(mean across 10-folds, Figure 2). We first contrasted this error to the model predictions based on age-

matched healthy people using an iterative subject selection (10,000 iterations). The ME across these

iterations was 3.05 years, with the healthy and stroke distributions well-separated from each other

(t = 5.21, p = 1.96 3 10�7, two samples t-test). Subsequently, we analyzed the predictions at the level

of each patient by comparing the model-predicted age with the real age. Although the model

performed poorly (MAE: 9.02 years), the predicted and real ages were weakly correlated with each other

(t (39) = 3.62, p = 0.0008, R2 = 0.25, robust linear regression). Interestingly, the model estimated an age

of �60 years for the stroke survivors, and this was distinct from the default model output based on null in-

puts (Figure 2).

The Shapley values helped determine which behavioral patterns contributed to the advanced age

estimate in stroke (Figure 2). The two-dimensional bins capturing the fast (sub-second) consecutive intervals

showed mostly positive Shapley values and marginal negative values, indicating that these patterns were

altered in diseases contributing to the advanced aging predictions (see Figure S2 for single subject

attributions).
Age estimation using the normative model in people with epilepsy

We used the same approach as in the stroke survivors to estimate behavioral aging in people with epilepsy.

The majority of the seizure foci involved the temporal lobe (41 of 51 patients); this includes onset zones

spanning multiple lobes (e.g. frontotemporal). An extratemporal focus was present in 10 of the people

with epilepsy (1 occipital, 3 parietal, 3 frontal, 2 insular, and 1 amygdala and thalamus). Eight of these sub-

jects were implanted with a responsive neurostimulator and reported previously (Duckrow et al., 2021). The

error of the model in people with epilepsy—who were between 20 and 70 years of age—was 9.64 years

(mean across 10-folds, Figure 2). In age-matched healthy people (10,000 iterations) the ME was �1.43.

The error distributions were well separated from each other (t = 20.26, p = 1.64 x 10�89, two samples

t-test). Next, we focused on the predictions at the level of each patient by contrasting the predicted age

with the real age. As in stroke, here too the model performed poorly (MAE: 12.79 years), but the predicted

and real ages were moderately correlated with each other (t (49) = 5.99, p = 2.36 x 10�7, R2 = 0.42, robust

linear regression). Unlike in stroke, where themodel output typically approached�60 years, themodel out-

puts in epilepsy covered the entire age range (Figure 2).

As for the patients with stroke, here too we used Shapley values to better understand which behavioral pat-

terns underlay the advanced aging estimates. The two-dimensional bins of the JID capturing the short

consecutive intervals mostly contained positive values, indicating that these patterns contributed to the

advanced age predictions in people with epilepsy (see Figure S3 for single subject attributions).
DISCUSSION

A decision tree regression model performed well to infer the chronological age by using smartphone

behavioral inputs in healthy individuals. The performance of the model was on par with age-estimating

models based on biological inputs such as structural scans of the brain or blood samples. The transforma-

tion of smartphone behavior as a measure of healthy aging enabled us to address the nature of behavioral

aging in two neurological diseases. In both epilepsy and stroke, themodel estimated amore advanced age

as if the diseases induced older behavior than the behavior in healthy aging.
iScience 25, 104792, August 19, 2022 5
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In healthy individuals, the interpretable nature of the machine learning model could be used to estimate

which aspects of the behavioral dynamics captured in the 2,500-bins large feature space contributed to

the age estimation. The fast consecutive intervals were particularly useful to the model, albeit other behav-

iors covering a broad range of dynamics were also used. By using a range of cognitive tests, we recently

found that the probability of fast consecutive intervals was correlated with sensorimotor, memory, and ex-

ecutive processes (Ceolini et al., 2022). The important role of the fast consecutive intervals in our model may

stem from the convergence of multiple cognitive processes necessary to generate these behaviors.

Our finding that behavioral age in epilepsy and stroke is ‘‘older’’ than in healthy aging parallels the rich

number of studies based on structural MRI of the brain that similarly demonstrated advanced aging in

neurological diseases (Baecker et al., 2021). Interestingly, in stroke survivors and people with epilepsy,

the MRI-based age was found to advance irrespective of the diverse brain regions at the disease epicenter

(Cole et al., 2017; Sone et al., 2021). Similarly, in this study, diverse forms of stroke and epilepsy and cor-

responding medical histories were included, yet the aging appeared advanced irrespective of the detailed

clinical descriptors. This pattern suggests that both brain and behavioral aging stem from more complex

network changes and that the impact of the disease does not remain localized to specific neural or behav-

ioral processes.

The extent of aging was advanced by � 10 years in people with epilepsy in contrast to the advance of �6

years in stroke survivors (note, in the healthy group age-matched to the stroke group there was an advance

of�3 years). A similar pattern of results also appears in theMRI-based age estimates such that the extent of

advanced aging in people with epilepsy is more pronounced than that in stroke (Baecker et al., 2021). We

speculate that the relatively smaller advanced aging in stroke is partly due to the conflation between the

changes induced by natural aging and the disease.

Day-to-day behavior captured on the smartphone is a rich and largely unexploited source of information on

aging in health and its perturbation in neurological disease. Limited smartphone behavioral data—span-

ning just 5 days—contained age-related information and suggest that our approach may even be appli-

cable in settings where longer-term data acquisition is not possible. The parallels between age estimation

using smartphone behavior and structural scans of the brain indicate that our behavioral approach is a

widely accessible complement to brain measurements. Capturing behavioral patterns of healthy aging

on the smartphone may help understand the behavioral alterations that occur in diseases.
Limitations of the study

The decision tree regression model to capture healthy aging was trained on a Dutch sample spanning the

adult life span. For this model to be used generally, broader sampling would be needed cutting across de-

mographics and cultures. Furthermore, there were relatively sparse samples frommiddle-aged adults, and

better sampling of this range is expected to improve the model performance. The self-reported healthy

cohort could be further characterized according to lifestyle assessments and genetic susceptibilities to

capture the spectrum of health instead of using a simple binary label of healthy versus unhealthy. The

model may show a considerable loss of performance over the years because of the ever-shifting behavioral

trends such as the use of a swiping keyboard, and it may be necessary to routinely update the model with

new data samples. Toward the modeling, the smartphone behavioral features were captured using a JID

based on the next-interval dynamics. Alternatives to the JID may be further explored to help improve

the model performance. A few possible alternatives are to consider one-after-the-next-interval dynamics

and include the type of app in use. Finally, a larger sample of people with stroke and epilepsy along

with a more detailed analysis of the clinical status (as opposed to merely using the diagnosis labels as con-

ducted here) may help better understand why some individuals showed more advanced behavioral age

than others.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python version 3.8 Python Software Foundation https://www.python.org

MATLAB MathWorks https://www.mathworks.com/

KernelDensity, AdaBoost from sklearn v0.24.1 Pedregosa et al., (2011) https://scikit-learn.org/stable/

XGBoost (Gradient Boosting) Distributed (Deep) Machine Learning

Community

Chen and Guestrin, 2016

https://github.com/dmlc/xgboost

SHAP (SHapley Additive exPlanations) Lundberg and Lee (2017) https://github.com/slundberg/shap

Data processing, model definition and

statistical analysis

This paper https://github.com/codelableidenvelux/

BehavioralAge_2022
RESOURCE AVAILABILITY

Lead contact

Further information and requests for code and data should be directed to and will be fulfilled by the lead

contact Arko Ghosh (a.ghosh@fsw.leidenuniv.nl).
Materials availability

This study did not generate any materials.

Data and code availability

d The analyzed data from the level of the JID and the associated age, public id to connect with other

studies using the same smartphone data, and gender information is made available on dataverse.nl

within a month after the publication according to the Leiden University Institute of Psychology

guidelines.

d The codes used to analyze the links between JID and age are deposited on the Leiden University Cogni-

tion in the Digital Environment (CODELAB) git repository https://github.com/codelableidenvelux/

BehavioralAge_2022.

d Any additional information required to reanalyze the data reported in this paper and shared is available

from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants

Self-declared healthy participants were recruited via the ongoing agestudy.nl data collection platform

aided by a Dutch repository of volunteers for research (Ceolini et al., 2022; Zwan et al., 2021). The recruit-

ment site usage locations included The Netherlands and Denmark. Previously reported data gathered via

e-mail and in-person recruitments conducted primarily on campus in The Netherlands were additionally

included (Borger et al., 2019; Huber and Ghosh, 2021; Westbrook et al., 2021). All participants provided

informed consent and the data was gathered according to protocols approved by the Ethical Committee

at the Institute of Psychology at Leiden University. The inclusion criteria were:R 16 years of age, owned an

(unshared) smartphone running the Android operating system, no neurological or mental health disorder

(self-reported), no permanent injuries of the fingers, and access to a computer (public or private). Some of

the participants opted to address the quality of life questionnaire (SF-36), from which mental and physical

summary scores were derived (Laucis et al., 2015).

Participants with stroke were recruited as part of the ongoing QuantStroke study, (General Data Protection

Regulation Aarhus University, Denmark, reference number 2016-051-000001, serial number 1766).
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Participants were offered participation while they were admitted to acute treatment or rehabilitation for

first-ever or recurrent stroke. The included patients suffered from different levels of motor and cognitive

impairments. They had to be R 18 years with expected discharge to home and the ability to comply

with study procedures including operating a smartphone. All participants provided informed written

consent.

Participants with epilepsy were recruited from Stichting Epilepsie Instellingen Nederland (SEIN) and Kem-

penhaeghe in the Netherlands as part of the ongoing study ‘Using day-to-day behavior on smartphones to

improve epilepsy management’ (NCT04617418). This study was approved by the medical ethical commit-

tee Leiden-the Hague-Delft (METC LDD). Patients were screened by their treating neurologist at the outpa-

tient clinics and eligible for inclusion in the study if they were 18 years old or over, diagnosed with refractory

focal epilepsy and the diagnosis was supported by EEG and/or MRI abnormalities, had a high seizure fre-

quency (R1 per month), had one seizure type or multiple seizure types corresponding to one onset zone,

had daytime seizures, were mentally competent and able to keep a seizure diary. All participants provided

informed written consent. Eight epilepsy patients implanted with the responsive neurostimulation (RNS,

Neuropace, Mountain View) were additionally included and the details of these patients have been re-

ported previously (Duckrow et al., 2021).
Participant selection

As the data collections were part of ongoing studies, for instance, 3 years for the agestudy.nl platform. The

number of participants used here is according to the database frozen on 27th October 2021.

Towards the healthy data pool, we considered a total of 804 participants of which 636 were recruited via the

agestudy.nl platform. Of the 804 recruits, 719 successfully installed the smartphone data logging app and

reported their age in terms of themonth and year of birth (259males, 449 females, 11 unreported or unclear

gender reports, 16 to 86 years of age). From this cohort, we analyzed 684 (median age 52 years, median

recording duration 173 days) participants based on a cut-off of 7 days of smartphone recordings. Of this

subset, 351 completed the quality of life SF-36 questionnaire.

Forty-one stroke survivors were successfully recruited based on a cut-off of 7 days of smartphone record-

ings. The population was aged between 22 and 83 (26 males, median age 60 years, median recording dura-

tion of 90 days). Fifty-two people with epilepsy were included based on a cut-off of 7 days of smartphone

recordings. The population was aged between 20 and 70 (25 males, median age 38 years, median

recording duration 160 days.
METHOD DETAILS

Smartphone behavioral recordings

Day-to-day smartphone behavior was recorded using a background app (on Android operating smart-

phones), TapCounter (QuantActions, Lausanne)(Balerna and Ghosh, 2018). The app recorded the time-

stamps of all touchscreen interactions with � millisecond resolution. The data was routinely transferred

from the device to a cloud-based server and downloaded via the taps.ai (QuantActions, Lausanne) data

collection manager. The data were next parsed using custom-written scripts using Matlab (MathWorks,

Natick). The parsed data was used to estimate the joint-interval distribution of interactions (Duckrow

et al., 2021). In brief, we first accumulated inter-touch intervals (ITI) over a period. We then created a 2D

space by relating each ITI (at time k) against its subsequent interval (at time k + 1). We then operated

2D kernel density estimation (Gaussian kernel with a bandwidth of 0.1) over the log10-transformed 2D space

generated by ITIs at time k and their subsequent ITIs at time k + 1. This step allows us to estimate the joint

probability distribution of two subsequent ITIs (thus of three subsequent smartphone interactions). We

then discretised the output of the kernel density estimation using 50 bins per dimension from 100.5 ms

to 105 ms thus obtaining a 50 x 50 feature matrix for each individual.
The machine learning model of healthy aging

To estimate chronological age (dependent variable), we used the following independent variables: the

self-reported gender (0 males, 1 female), the 2500 bins of the smartphone behavioral JID, the correspond-

ing entropy, the number of smartphone interactions (log10 of the median across days) and the screen size

(derived from the manufacturer’s record based on the smartphone model name).
10 iScience 25, 104792, August 19, 2022
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We used XGBoost (Extreme Gradient Boosting) – a scalable machine learning system – for gradient tree

boosting (Chen and Guestrin, 2016; Friedman, 2001; Pedregosa et al., 2011). The general objective of

XGBoost used for regression problems is to build a tree ensemble model based on K additive functions

that are weak decision trees. The algorithm works as follows, a first decision tree is fitted, subsequent de-

cision trees are fitted by following second order steepest gradient descent on a differentiable cost function

(e.g., mean squared error) and are trained to fit the residuals (prediction errors) obtained after applying the

previously fitted trees. A learning rate is used to scale the residuals to fit, in particular, lower learning rates

help reduce overfitting. After a fitting step, the predictions are scaled o their original range to obtain a final

prediction which is improved w.r.t the previous step. The algorithm continues to improve the final predic-

tion by adding the prediction of newly fitted trees until it reaches a pre-determined number of trees. The

ideal number of trees is reached when more trees do not improve significantly the result and before the

model starts overfitting. XGBoost uses several regularization techniques such as L1-norm, L2-norm and col-

umn-subsampling (Breiman, 2001). Moreover, XGBoost uses pruning of trees by clustering residuals into

leaves (when determining branch splits) based on a scoring mechanism similar to impurity-based scoring.

If the score gain in the group of leaves does not exceed a pre-defined minimum gain w. r. t. the parent

leaves, the group is pruned. This helps avoid overfitting. Using 10-fold cross-validation and grid search

we determined the following best parameters. A maximum tree depth of 9, 567 trees, the learning rate

of 1e-2, minimum child weight of 8, L1-norm alpha parameter of 1e-3, column sub-sampling of 1.0, and

row sub-sampling of 1.0. All the other parameters are kept at the default value (for detailed values see

https://xgboost.readthedocs.io/en/stable/parameter.html).

Feature importance was estimated using Shapley values (derived from SHAP), which is based on a game

theoretic approach to explaining the output of any machine learning model. It combines the methods of

credit allocation and local explanations (Lundberg and Lee, 2017; Lundberg et al., 2020). For regression

problems, given an input and a trained model, SHAP produced an explanation that consists of a positive

or negative value for each feature of the input representing the contribution of that feature to the output.
QUANTIFICATION AND STATISTICAL ANALYSIS

Contrasting model performance in health vs. neurological diseases

We trained 2 batches of 10models with 10-fold cross-validation using the data from the healthy population.

The first batch was trained with input data coming from the healthy population and corresponding to JIDs

obtained from smartphone usage accumulated over a maximum of 90 days. This batch was used for the

comparison between the healthy population and the stroke survivors’ population, the maximum of

90 days was chosen to match the monitoring duration period of stroke survivors. The second batch was

trained with input data coming from the healthy population and corresponding to JIDs obtained from

smartphone usage accumulated over a maximum of 180 days. This second batch was used for the compar-

ison between the healthy population and the epilepsy population.

We used bootstraps to compare the distribution of errors across age-matched populations of diseased vs.

healthy populations. Each batch had a total of 10 trained models, obtained from the 10-fold cross-valida-

tion operation. With the first batch, we obtained ten different age predictions for people with stroke or ep-

ilepsy. We estimated the typical (median) error made by each model resulting in 10 values per batch. To

contrast these errors to the healthy population, we iteratively selected the same number of participants

from the healthy population such that they were age-matched to the stroke or epilepsy population. The

median error was gathered for each of the 10,000 iterations. The distributions were compared using

two-sample t-tests.
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