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Evolutionary adaptation is generally thought to occur through incremental mutational steps, but large mutational leaps can occur

during its early stages. These are challenging to study in nature due to the difficulty of observing new genetic variants as they arise

and spread, but characterizing their genomic dynamics is important for understanding factors favoring rapid adaptation. Here,

we report genomic consequences of recent, adaptive song loss in a Hawaiian population of field crickets (Teleogryllus oceanicus).

A discrete genetic variant, flatwing, appeared and spread approximately 15 years ago. Flatwing erases sound-producing veins

on male wings. These silent flatwing males are protected from a lethal, eavesdropping parasitoid fly. We sequenced, assembled

and annotated the cricket genome, produced a linkage map, and identified a flatwing quantitative trait locus covering a large

region of the X chromosome. Gene expression profiling showed that flatwing is associated with extensive genome-wide effects on

embryonic gene expression. We found that flatwing male crickets express feminized chemical pheromones. This male feminizing

effect, on a different sexual signaling modality, is genetically associated with the flatwing genotype. Our findings suggest that the

early stages of evolutionary adaptation to extreme pressures can be accompanied by greater genomic and phenotypic disruption

than previously appreciated, and highlight how abrupt adaptation might involve suites of traits that arise through pleiotropy or

genomic hitchhiking.

KEY WORDS: Adaptation, feminization, genomics, rapid evolution, sexual signaling, trait loss.

∗These authors contributed equally to this work.

1 9
C© 2019 The Authors. Evolution Letters published by Wiley Periodicals, Inc. on behalf of Society for the Study of Evolution (SSE)
and European Society for Evolutionary Biology (ESEB).
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
Evolution Letters 4-1: 19–33

https://orcid.org/0000-0001-9259-9046


S. PASCOAL ET AL.

Impact Summary
What are the genomic consequences of extremely rapid evolu-

tion in the wild? The adaptive evolutionary loss of male song in

Hawaiian field crickets (Teleogryllus oceanicus) protects silent

“flatwing” males from a lethal eavesdropping parasitoid fly,

and invasion and spread of genetic variants causing silence was

observed to occur over approximately 20 generations in a pop-

ulation on the island of Kauai and now appears to be fixed. To

investigate the genomic and phenotypic consequences of this

abrupt bout of adaptation, we first sequenced, assembled, and

annotated the cricket genome – the first annotated reference

genome for a field cricket. To provide a genomic resource for

future work in crickets and allied taxa, we created a new, open-

access genome browser and database for crickets and katydids

(www.chirpbase.org) and curated our data and scripts in it. Us-

ing RAD-seq, we then constructed a high-density linkage map

for the species and found that the variant or variants causing

flatwing are localized to a large region of the X chromosome,

consistent with widespread genomic hitchiking. We performed

gene expression analysis of embryonic crickets and found that

flatwing is genetically associated with genome-wide regula-

tory disruption during development. We quantified variation in

another sexual signal, chemical pheromones, and discovered

that flatwing is also strongly genetically associated with male

pheromone feminization. Our findings illustrate how strong,

widespread genetic and phenotypic effects can accompany the

rapid emergence and spread of adaptive variants during the

very earliest stages of rapid adaptation, and demonstrate how

suites of traits that characterize alternative sexual polymor-

phisms might arise through pleiotropy or genomic hitchhiking

following such genomic alteration.

Empirical studies have struggled to characterize genomic dy-

namics of the earliest stages of evolutionary adaptation in natural

system, because it is difficult to detect new genetic variants at

the moment they first appear and then spread in wild popula-

tions. However, understanding genomic causes and consequences

of new adaptive mutations can help to identify and test factors that

facilitate or inhibit rapid adaptation. For example, R. A. Fisher

developed a “geometric” model that predicts adaptation should

occur via mutations of small effect size, with impacts narrowly

limited to a small number of phenotypic traits (Fisher 1930; Orr

2005; Bank et al. 2014). Later refinements to models of adaptation

became more permissive of larger effect mutations, particularly

during the earliest stages of adaptation under extreme selection

(Kimura 1983; Orr 1998). However, questions remain about the

extent to which novel adaptive variants of large effect are ge-

netically associated with changes to other traits, altered gene ex-

pression, and potential loss of homeostasis, for example through

pleiotropy or genomic hitchhiking (Nadeau et al. 2003). Here, we

identified and characterized the genomic signature of very recent

sexual signal loss in Hawaiian field crickets, Teleogryllus ocean-

icus, and tested the associated genetic consequences of this rapid

adaptation for a different sexual signal, chemical pheromones.

Male crickets sing to attract and court females and to fight

with rivals, but approximately 16 years ago, silent T. oceanicus

males were detected in populations on the Hawaiian archipelago

(Zuk et al. 2006, 2018) (Fig. 1A). They spread rapidly. First

observed in 2003 in a population on Kauai, where they were

previously not observed, silent male crickets rapidly spread in

fewer than 20 generations (with three to four generations per

year) to near-fixation under selection imposed by a lethal para-

sitoid fly, Ormia ochracea (Fig. 1B) (Zuk et al. 2006). Female

flies acoustically locate male crickets by eavesdropping on their

songs, but silent flatwing males have feminized wings lacking

typical male structures used to produce sound and are thus pro-

tected (Fig. 1C). The genetic mutation(s) underlying the flatwing

phenotype have been shown previously using standard genetic

crosses to follow discrete segregation patterns. Sex determination

is XX/XO (female/male), and flatwing’s sex-linked, male limited

expression indicates it is a variant, or cluster of closely linked

variants, that segregate in the manner of a single-locus located

on the X chromosome (Tinghitella 2008; Pascoal et al. 2014).

The morph has been observed emerging in parasitized popula-

tions on other Hawaiian islands, and in at least one case appears

to be caused by distinct genetic mechanisms (Pascoal et al. 2014;

Zuk et al. 2018). The genetic loss of male song in the Kauai

population is a canonical example of rapid evolution in the wild

(Dugatkin 2008), and all males in this population now appear to

be flatwing (Rayner et al. 2019a). Nevertheless, the continued

existence of the population indicates that silent males still find

mates and must compensate for their inability to sing. The selec-

tive environment promoting the rapid spread of flatwing crickets

is understood, but the genomic causes and consequences of this

rapid evolutionary event remain open questions. Flatwing males

have distinctly feminized wings and cannot produce sexual sig-

nals critical for reproductive fitness: how did such a spectacularly

disruptive phenotypic change invade the genome of crickets so

quickly?

Materials and Methods
CRICKET REARING AND MAINTENANCE

Laboratory stocks of T. oceanicus were originally derived from

the population in which the flatwing phenotype was first ob-

served on Kauai (Zuk et al. 2006), and a population near Dain-

tree, Australia (Pascoal et al. 2016b), which contains no flatwing

crickets. Stocks were maintained in 16-L plastic containers con-

taining cardboard egg cartons for shelter. All crickets were reared
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Figure 1. Evolutionary loss of song in Hawaiian crickets. (A) The field cricket T. oceanicus is thought to have migrated to the Hawaiian

archipelago from other islands in Oceania, and is attacked by the fatal, acoustically-orienting parasitoid fly Ormia ochracea on Kauai,

Oahu, and Hawaii. We studied crickets from a population in Kauai, highlighted in dark blue, where parasitoid infestation rates have

historically been highest. (B) Adult female parasitoid fly and mature fly larva. Gravid female flies locate hosts by eavesdropping on

singing male crickets, then they eject larvae that burrow into the host and consume its viscera before emerging to pupate. Infestation is

fatal, and the flies exert significant natural selection against male song. (C) Normal-wing males (left) of this field cricket species produce

advertisement, courtship, and aggressive songs by elevating and rubbing together forewings that bear specialized sound-producing

venation. A toothed file on the right wing engages with a thickened ridge of tissue on the opposite, causing resonators to vibrate and

produce sound. Two principal resonators are highlighted on this male’s right forewing: the harp in purple and the mirror in turquoise.

Flatwing males (right) have wings that are feminized and lack, or have severely reduced, resonators. They still make wing motions

characteristic of singing despite the structural inability to produce sound (Schneider et al. 2018), but their silence protects them from the

fly (Zuk et al. 2006). Currently, 100% of males from the population studied on Kauai exhibit flatwing morphology. (Photo credits: N.W.

Bailey)

in a single, temperature-controlled chamber at 25°C, on a 12:12

light:dark cycle. They were maintained regularly and fed ad li-

bitum with Excel Junior and Dwarf rabbit pellets (Burgess) and

provided water in a moist cotton pad that also served as ovipositor

substrate.

GENOME SEQUENCING

Three Illumina sequencing libraries (paired-end TruSeq libraries

with insert sizes of 180, 300, and 600 bp) were prepared at Ed-

inburgh Genomics. Genomic DNA (gDNA) was extracted from

the head capsule and muscle tissue of a single T. oceanicus fe-

male sourced from the Kauai stock population using a DNeasy

Blood & Tissue kit (Qiagen). DNA was quality-checked using

Nanodrop and Qubit. We supplemented reads from the above

libraries with additional sequences from two TruSeq Nano Pip-

pin selected libraries with insert sizes of 350 bp and 550 bp,

one 8 kb Nextera gel-plus mate-pair library, and 1 PacBio li-

brary. For these four libraries, gDNA from a separate, single

female cricket from the same laboratory population was extracted

using a high molecular weight Genera Puregene Cell Kit (Qiagen).

The TruSeq libraries were sequenced on five lanes of an Illumina

HiSeq 2000 v3 to yield 100 bp paired-end reads. NanoPippin

libraries and the Nextera mate-pair library were sequenced on

2 Illumina HiSeq 2500 lanes to yield 250 bp paired-end reads.

The PacBio library was constructed by purifying the extraction

with 1x AMPure beads (Agencourt). DNA quality was checked

using Nanodrop and Qubit. Average DNA size and degradation

was assessed using a high sensitivity genomic kit on a fragment

analyzer. Size-selected and non-size-selected libraries were made

by shearing gDNA using g-TUBEs (Covaris). Size selection was

performed using the BluePippin DNA Size Selection System with

0.75% cassettes and cutoffs between 7 and 20 kb. Preparation of

both libraries then proceeded using the same protocol. We treated

DNA for 15 minutes at 37°C with Exonuclease V11. DNA ends

were repaired by incubating for 20 minutes at 37°C with Pacific

Biosciences damage repair mix. Samples were then incubated

with end repair mix for 5 minutes at 25°C followed by washing

with 0.5x AMPure and 70% ethanol. DNA adapters were ligated

EVOLUTION LETTERS FEBRUARY 2020 2 1



S. PASCOAL ET AL.

overnight at 25°C. Incubation at 65°C for 10 minutes was used to

terminate ligation reactions, and then samples were treated with

exonuclease for 1 hour at 37°C. We purified the SMRTbell library

using 0.5x AMPure beads and checked quality and quantity using

Qubit. Average fragment size was quantified using a fragment an-

alyzer. For sequencing, primers were annealed to the SMRTbell

library at values determined using PacBio’s Binding Calculator. A

complex was formed using DNA polymerase (P6/C4 chemistry),

bound to MagBeads, and then used to set up 43 SMRT cells for

sequencing to achieve 10X coverage. Sequencing was performed

using 240-minute movie times.

GENOME ASSEMBLY

Raw reads from all Illumina libraries were trimmed using cutadapt

version 1.8.3 (Martin 2011) to remove adapters, primers and poor

quality bases, and then error-corrected using BLESS version 1p02

(Heo et al. 2014). PacBio reads <1000 bp were discarded. The

original fragment length of the 350 bp library was shorter than the

sequenced paired read length of 500 bp, so reads from this library

were merged using Vsearch version 1.10.1 (Rognes et al. 2016).

Platanus version 1.2.4 (Kajitani et al. 2014) was used to assemble

error-corrected reads from all Illumina libraries except the mate-

pair library; reads from the latter were added at the scaffolding

stage. Next, we selected the contigs >1000 bp and combined these

with the PacBio data to generate a hybrid assembly using PBJelly

version 15.2.20 (English et al. 2012). Pilon version 2.1 (Walker

et al. 2014) was used to improve local base accuracy, and BUSCO

version 2.1 (Simao et al. 2015) was used to assess genome quality

through gene completeness.

REPEAT ANNOTATION

We used de novo and homology-based approaches to identify

repetitive regions. We first built a de novo repeat library using

RepeatModeler version 1.0.10 (Tarailo-Graovac and Chen 2009),

with dependencies RECON version 1.08 and RepeatScout ver-

sion 1.0.5 (Price et al. 2005). To scan and classify interspersed

repeats and low complexity DNA sequences at the DNA level, we

searched the cricket genome sequence against the Dfam consensus

database (20170127) (Hubley et al. 2016), RepBase (20170127)

(Bao et al. 2015), and the de novo repeat library using RMBlast

version 2.6.0+ (Boratyn et al. 2012) and RepeatMasker version

4.0.7 (Smit et al. 2013–2015). Protein-level repeats were identi-

fied by searching against the TE Protein Database using Repeat-

ProteinMask version 4.0.7 (Smit et al. 2013–2015). Unclassified

repetitive elements were further classified by TEclass version

2.1.3 (Abrusan et al. 2009), a programme using a support vector

machine learning algorithm. Tandem repeats were also identified

in the cricket genome using Tandem Repeat Finder version 4.09

(Benson 1999).

GENE PREDICTION

Before running gene prediction pipelines, repetitive regions iden-

tified above were masked using an in-house Perl script. We built

a pipeline including ab initio, homology and transcriptome-based

methods to predict protein-coding genes in the cricket genome

(Fig. S1). For ab initio prediction, SNAP 2013-11-29 (Korf 2004),

Glimmer-HMM version 3.0.4 (Majoros et al. 2004), GENEID ver-

sion 1.3 (Blanco et al. 2007), and BRAKER version 2.0.4 (Hoff

et al. 2016) were used to generate preliminary gene sets from

the repeat-masked genome. Specifically, reads obtained from the

T. oceanicus transcriptome were aligned against the repeat masked

genome with TopHat2 version 2.0.10 (Kim et al. 2013). SAM-

TOOLS version 0.1.19 (Li et al. 2009) was used to sort and index

the resulting Binary Alignment Map (BAM) format file. This

BAM file was processed in BRAKER version 2.0.4 (Hoff et al.

2016), which used transcriptome data to train GENEMARK-ET

version 4.33 (Lomsadze et al. 2014), generate initial gene struc-

tures, and then subsequently train AUGUSTUS version 3.2.2

(Stanke et al. 2008) and finally integrate RNA-seq information

into final gene predictions. For other ab initio gene prediction

programmes, gene sets from Locusta migratoria (Wang et al.

2014), Acyrthosipon pisum (International Aphid Genomics Con-

sortium 2010), and Drosophila melanogaster (Gramates et al.

2017) were used for model training. For homology-based pre-

diction, we aligned protein sequences of five insect species

(L. migratoria, Wang et al. 2014; Drosophila melanogaster and

Anoplophora glabripennis, McKenna et al. 2016; Nilaparvata lu-

gens, Xue et al. 2014; and Cimex lectularius, Benoit et al. 2016)

to the repeat-masked cricket genome using TBLASTN version

2.2.26 (E < 10−5). The boundaries of potential genes were further

identified using BLAST2GENE version 17 (Suyama et al. 2004).

We then ran GENEWISE2 2-4-1 (Birney et al. 2004) to obtain

accurate spliced alignments and generate a final, homology-based

gene set. For prediction based on transcriptome data, a de novo

T. oceanicus transcriptome assembly generated for a separate

study (Rayner et al. 2019b) using Trinity version 2.2.0 (Grab-

herr et al. 2011) was filtered based on gene expression level,

and then passed to Program to Assemble Spliced Alignments

(PASA version 2.2.0) (Xu et al. 2006). PASA performed tran-

script alignments to the cricket genome, generated a new tran-

script assembly, and predicted gene structures. All ab initio, ho-

mology, and transcriptome-based gene sets were then combined

into a weighted consensus set using EVidenceModeler (EVM

r2012-06-25) (Haas et al. 2008). We removed genes likely to be

spurious, those with low EVM support, partial genes with cod-

ing lengths shorter than 150 bp, and genes only supported by a

minority (�2) of ab initio methods (Yang et al. 2017). PASA

was used to further update the filtered consensus gene set to

produce a finalized official gene set. The completeness of this

final gene set was assessed by both BUSCO version 2.1 (using
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the arthropoda dataset) (Simao et al. 2015) and transcriptome

data.

FUNCTIONAL ASSIGNMENT

Putative gene functions were assigned using InterPro (Inter-

ProScan 5) (Finn et al. 2017), SwissProt (February 2018)

(Bairoch and Apweiler 2000), TrEMBL (February 2018) (Bairoch

and Apweiler 2000), and RefSeq nonredundant (NR) protein

(106,376,657 sequences) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) gene (family eukaryotes) databases. Briefly,

we first obtained protein sequences from the final gene set us-

ing EVM r2012-06-25 (Haas et al. 2008). Functional annotation

and gene ontology (GO) terms were assigned to genes based on

protein sequence using InterProScan 5 (Jones et al. 2014). These

proteins were also blasted against SwissProt, TrEMBL and NR

databases (BLASTP, E < 10−5), and assigned their best hits as

functional annotations. GO terms were assigned using GO an-

notations downloaded (March 26, 2018) from the GO Consor-

tium (Adams et al. 2000; The Gene Ontology Consortium 2017).

BLAST2GO (unix 4 1 x54) (Gotz et al. 2008) was implemented

to further assign unassigned genes using NCBI databases, and

KEGG Orthology (KO) terms were assigned using BlastKOALA

version 2.1 (Kanehisa et al. 2016b).

GENOME ANCHORING

ALLMAPS version 0.7.7 (Tang et al. 2015) was used to detect

chimeric scaffolds, anchor the cricket genome to the linkage map

(see below), and construct pseudo-molecules (reconstructed por-

tions of chromosomal sequence). We first built a consensus ge-

netic map based on male and female genetic distances obtained

from linkage maps, in which equal weighting was applied for

both sexes. Then, scaffolds for which more than four markers

mapped to multiple linkage groups were designated as chimeric

scaffolds and split. After this correction was applied, scaffolds

anchored to the linkage maps were oriented and ordered based

on the consensus genetic map. We used a custom Perl script to

order unanchored scaffolds according to their length, and liftOver

(March 2018) (Kent et al. 2002) to convert genome coordinates

based on anchoring results.

ChirpBase—A GENOME BROWSER AND DATABASE

We created ChirpBase, an open-access community genomics re-

source for singing insects such as field crickets and katydids. It

can be accessed at www.chirpbase.org where users may view and

download genomic data and scripts presented in this study in ad-

dition to uploading data. An index page links to an Ensembl page,

where assembly statistics can be visualized using a Challis plot

or compared in tabular format. A plot illustrating codon usage is

presented, and BUSCO scores can be visualized. Additional link-

ing pages include a basic local alignment search tool (BLAST)

page and a download page for accessing raw data. We used the

GenomeHubs framework (Challis et al. 2017) to set up Chirp-

Base. The database is hosted using a Linux container (LXC) on

a remote computer, linked to a cluster via an intermediate import

computer. A MySQL docker container was started in the LXC,

where a database ini file resided to guide additions to the database.

An Ensembl-easy mirror Docker container was run to import the

database into the MySQL container, uploading data designated in

the ini file from the LXC to the database. The MySQL container

links to an Ensembl EasyMirror container, BLAST container, and

a download container.

LINKAGE AND QUANTITATIVE TRAIT LOCUS

MAPPING CROSSES

We constructed a linkage map for T. oceanicus crosses designed

to maximize recombination on the X chromosome by retaining

only families where flatwing-carrying and normal-wing-carrying

X chromosomes were present together in dams, as the X is only

diploid in females (Fig. S2), combined with restriction-site asso-

ciated DNA sequencing (RAD-seq) to identify markers. Flatwing

segregates on the X chromosome (Tinghitella 2008; Pascoal et al.

2014), so mapping was performed with F3 offspring to increase

recombination on the X. We set up two parental mapping families

by crossing a flatwing sire from the Kauai stock line with a vir-

gin dam from the Daintree, Australia stock line. Daintree females

were used to maximize our opportunity to genetically map seg-

regating variation in other phenotypes. Female F1 offspring from

parental crosses were heterozygous for flatwing, enabling recom-

bination on the X. Full-sib matings were then performed with F1

males, all of which were normal-wing. The resulting F2 female

offspring were a mix of homozygous normal-wing genotypes on

the X, or heterozygous with respect to wing morph. Recombina-

tion between flatwing and normal-wing genotypes was similarly

possible in the heterozygous F2 females, but their phenotype is

not externally detectable. We then mated F2 females with full-sib

flatwing males from the same generation. Screening male morph

types in the resulting F3 offspring enabled us to identify F2 crosses

involving heterozygous females, as all male offspring of homozy-

gous normal-wing females expressed normal-wing morphology.

The crossing procedure resulted in 10 F3 mapping families from

the original two parental families, from which a total of 192 fe-

males, 113 normal-wing males, and 86 flatwing males were used

for RAD-seq analysis (below).

MARKER IDENTIFICATION USING RAD-SEQ

RAD-seq was used to identify single nucleotide polymorphisms

(SNPs) in F3 offspring (n = 391), P0 dams and sires (n = 4),

and the F2 sires and dams (n = 19) that were used to produce

mapping individuals in the F3 generation. For each individual,

gDNA extraction and quality control was performed as described
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above prior to library preparation. gDNA was digested using SbfI

(New England BioLabs). We barcoded individuals by ligating

P1 adapters (8 nM), then sheared and size selected 300–700 bp

fragments. After ligating P2 adapters to sheared ends, parents

were sequenced to an average coverage of 120× and offspring to

30× on an Illumina HiSeq 2000.

LINKAGE MAP CONSTRUCTION

Reads from all paired end RAD libraries were demultiplexed by

sample using process radtags from Stacks version 1.46 (Catchen

et al. 2013), mapped against the reference genome assembly

using BWA-MEM version 0.7.15-r1140 (Li and Durbin 2009)

and duplicates marked using PicardTools MarkDuplicates version

2.9.2 (http://broadinstitute.github.io/picard). Variants were called

using samtools mpileup (version 1.3, parameters -d 2000 -t

DP,DPR,DV,DP4,SP -Aef -gu) and bcftools call (version 1.3, pa-

rameters -vmO z -f GQ). The resulting variants were filtered using

vcfutils.pl (included with bcftools) with minimum quality 50 and

a minimum read depth of 150 (-Q 50 -d 150) to only retain high-

quality variants. The vcf format was converted to the required

Lep-MAP2 input format using a custom script of the RADmapper

pipeline (RAD vcf to lepmap with sexmarker conversion.py,

https://github.com/EdinburghGenomics/RADmapper). During

this conversion samples that did not fit initial relatedness

expectations (n = 8, using vcftools relatedness2 and visual

inspection of a heatmap) and samples from family I (which

lacked a genotyped father, n = 59) and P0 parents (n = 4) were

excluded from linkage map creation. Putative X-linked markers

(male het � 1, female het > 20, het sire � 1) were converted to

biallelic markers in the relevant male offspring and sires using

a dummy allele (Table S1). The linkage map was then created

using the following steps and parameters in Lep-MAP2 version

0.2 (Rastas et al. 2015) (Filtering: dataTolerance 0.05 keepAlleles

= 1; SeparateChromosomes: losLimit = 10 sizeLimit = 10

informativeMask = 3; JoinSingles: lodLimit = 5; OrderMark-

ers: filterWindow = 10 polishWindow = 100; OrderMarkers

evaluateOrder: filterWindow = 10 polishWindow = 100). The

resulting linkage map files were merged with the marker and

sample information using a custom script from the RADmapper

pipeline (LG to marker.py).

QUANTITATIVE TRAIT LOCUS MAPPING

To identify the flatwing locus on the putative X chromosome

(LG1), we performed analysis of variance (ANOVA) for each

marker using the lm package in R (version 3.1) and 178 male

samples (105 normal-wing + 73 flatwing; as above excluding all

grandparental, parental and female samples together with samples

that clustered with the wrong family, had insufficient coverage to

calculate relatedness or did not have cuticular hydrocarbon [CHC]

data, see below). Individual P-values were corrected to account

for multiple testing using Bonferroni correction and markers sup-

ported by a log-of-odds (LOD)10 cutoff were plotted. Quantitative

trait locus (QTL) for all 26 CHC peaks as well as the principle

components from the CHC analysis were mapped to the linkage

groups using mixed linear models in ASReml version 4. Mapping

used a GWAS-type approach, taking into account genetic related-

ness between individuals (Calus 2010). The markers mapped to

the autosomal linkage groups 2–19 were filtered to contain only

biallelic SNP markers with a MAF � 0.01 and <5% missing sam-

ples per marker. Only male samples were selected (the same n =
178 as for mapping flatwing above), as our aim was to map male

CHCs (not sex-related associations) on the putative X (LG1) and

autosomes using principle components from the CHC analysis

as well as individual compounds as traits. The remaining 21,047

markers were used to calculate pairwise genetic relatedness with

the first normalization (VanRaden 2008). The resulting inverse

relatedness matrix was used as random effect in a model: CHC

trait � mu marker r! Giv(animal). P-values for all markers were

extracted from the results and corrected for multiple testing using

Bonferroni correction. The same model was used to assess LG1

separately with the same set of samples, for which 6537 markers

were used after filtering.

PURE-BREEDING LINES AND EMBRYO SAMPLING

FOR RNA-SEQ

Kauai lines homozygous for the flatwing and normal-wing geno-

types were used for examining differential gene expression.

Their establishment has been described previously (Pascoal et al.

2016a). Briefly, one generation of crosses was performed, starting

with the laboratory population derived from Kauai and crossing

males of either wing phenotype to virgin females of unknown

genotype. Because the phenotypic effects of flatwing are sex-

limited, family-level screening of the resulting male offspring

was performed to select homozygous flatwing and homozygous

normal-wing lines, resulting in a final selection of three pure-

breeding lines for each morph genotype. Developing embryos

were sampled from eggs laid by females from each line. Females

were maintained in laboratory culture as above, and their ovipo-

sition substrates were monitored. Eggs were removed from the

substrate and immediately preserved in 500 µL of RNAlater (Qi-

agen) at the stage when eye pigmentation first develops, ca. two

weeks after laying. This time point corresponds approximately

to embryonic stage 13–14 in the related grylline species Gryl-

lus bimaculatus (Donoughe and Extavour 2016). After removing

the outer egg chorion, the thoracic segment of each nymph was

microdissected. Nymphs cannot be sexed based on external mor-

phology until a later stage of juvenile development, and as chro-

mosomal sex determination is XX/XO, screening for sex-specific

markers is not possible. To minimize potential variation in sex

ratio of samples between lines, and ensure a sufficient volume
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of tissue to extract RNA, thoracic tissue from n = 8 nymphs

was pooled for each replicate, and six biological replicates were

produced for each morph type (two per line).

RNA-SEQ AND GENE EXPRESSION PROFILING

Total RNA was extracted using the TRIzol plus RNA purification

kit (Life Technologies) and DNAse treated using PureLink (In-

vitrogen). RNA was quantified and quality checked using Qubit

assessment (Invitrogen) and Bioanalyser RNA Nano Chips (Ag-

ilent), respectively. To isolate mRNA we depleted samples with

RiboZero. After verifying depletion, cDNA libraries were con-

structed using the ScriptSeq protocol (Epicentre) with AMPure

XP beads for purification. Following barcoding and multiplexing,

final quality was checked and qPCR performed using Illumina’s

Library Quantification Kit (Kapa). Sequencing was performed on

an Illumina HiSeq 2000 version 3, with 1% PhiX DNA spike-in

controls to produce 100 base paired-end reads. CASAVA version

1.8.2 was used to demultiplex reads and produce raw fastq files,

which were then processed with Cutadapt version 1.2.1 (Martin

2011) and Sickle version 1.200 (Joshi and Fass 2011) to remove

adaptor sequences and trim low-quality bases. Further quality as-

sessment was performed in FastQC. Expression analysis of RNA-

seq data was performed broadly following the protocol published

by Pertea et al. (2016). Reads were aligned to the genome us-

ing HISAT2 version 2.1.0 with strand-specific settings, and tran-

scripts compiled for each sample in StringTie version 1.3.4, using

the gene annotation file as a reference, which were then merged

across all samples to produce a single annotated reference tran-

scriptome. Sample transcript abundances were estimated with the

parameter -e specified to restrict abundance estimation to anno-

tated transcripts. Differential expression analysis was performed

at the gene level following normalization of counts by trimmed

mean of M-values, using a generalized linear model with negative

binomial distribution and a single predictor variable of “morph”

in the edgeR version 3.20.9 package (Robinson et al. 2010) in R

version 3.4.1. Only genes with an expression level greater than

1 count per million in at least three samples were included in

the analysis. Significance-testing was performed using likelihood

ratio tests, and genes were considered significantly differentially

expressed (DE) between morph genotypes if false-discovery rate

(FDR)-adjusted P-values were below a threshold of 0.05.

SCREENING FOR TOP CANDIDATE GENES

ASSOCIATED WITH FLATWING

We adjusted P-values for significant marker associations in the

flatwing QTL mapping procedure using Bonferroni correction

with a cut-off of P < 0.001. Three sources of information were

used to comprehensively and robustly detect a set of top candi-

date genes associated with the flatwing phenotype. We detected

genes (i.e. any overlapping portion of a predicted gene sequence)

located in 1 kb flanking regions of all significant QTL mark-

ers after FDR correction as above, and defined these as QTL-

associated candidates. We then subsetted these genes to retain

only those located in the 1 kb flanking regions of the most signif-

icant (top 1%) of all QTL markers, and defined these as Top 1%-

associated candidates. We also obtained the flatwing-associated

sequences from a previously published bulk segregant analysis

(BSA) of Kauai flatwings (Pascoal et al. 2014), and defined the

BSA reference sequences containing flatwing-associated SNPs as

flatwing-associated BSA sequences. We mapped these BSA se-

quences to the T. oceanicus reference genome using BWA-MEM

with default parameters (Li and Durbin 2009). Coordinates of

mapped sequences were extracted from the resulting BAM files

using SAMTOOLS (Li et al. 2009) and custom Perl scripts, and

we only retained those sequences that were anchored to LG1.

Genes within 1 kb of these retained sequences were defined as

BSA-associated candidates. Finally, we extracted DE genes from

the embryonic thoracic transcriptome analysis above, and defined

these as DEG-associated candidates. To ensure a reliable final

candidate gene set for flatwing, we only retained genes supported

by at least two of these four gene sets. We used KEGG path-

way mapping (color pathway) to reconstruct pathways and obtain

reference pathway IDs (Kanehisa et al. 2016a). To characterize

significantly enriched GO terms and KEGG pathways in DEGs,

we implemented the hypergeometric test in enrichment analyses.

P values for each GO and KEGG map term were calculated and

FDR-adjusted in R.

CHC EXTRACTION AND GAS

CHROMATOGRAPHY–MASS SPECTROMETRY

We extracted CHCs from 394 individuals from the F3 mapping

generation prior to extracting gDNA for RAD-seq. Extraction

and analysis of CHCs followed previous methodology (Pascoal

et al. 2016b), which is briefly described here. Subjects were flash-

frozen for several minutes at −20°C and then thawed. They were

individually placed into 4 mL borosilicate glass vials (QMX Lab-

oratories) and immersed for 5 minutes in 4 mL of HPLC-grade

hexane (Fisher Scientific), then removed from the vials and stored

for later processing. We evaporated a 100 µL aliquot of each sam-

ple overnight in a 300 µL autosampler vial (Fisher Scientific).

CHC extracts were transported to the University of Exeter for gas

chromatography mass spectrometry (GC/MS) using an Agilent

7890 GC linked to an Agilent 5975B MS. Extracts were recon-

stituted in 100 µL of hexane with a 10 ppm pentadecane internal

standard, and 2 µL of this was injected into the GC/MS using a

CTC PAL autosampler at 5°C. The carrier gas was helium and we

used DB-WAX columns with a 30 m × 0.25 mm internal diameter

and 0.25 µm film. Injection was performed in split-less mode. The

column profile was optimized for separation of the CHC extract

(Pascoal et al. 2016b) to start at 50°C for 1 minute, followed by
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a temperature ramp of 20°C per minute until finally holding at

250°C for a total run time of 90 minutes. The inlet temperature

was 250°C and the MS transfer line was 230°C. We recorded

electron-impact mass spectra using a 70 eV ionization voltage at

230°C, and a C7-C40 alkane standard was run as a standard to

enable the later calculation of peak retention indices.

QUANTIFICATION AND ANALYSIS OF CHC PROFILES

For each individual, we used MSD CHEMSTATION software

(version E.02.00.493) to integrate the area under each of 26 CHC

peaks (Table S2) following (Pascoal et al. 2016b). Peak abun-

dances were standardized using the internal pentadecane standard

and log10 transformed prior to analysis. After accounting for sam-

ples that failed during extraction or during the GC run (n = 10),

labeling error (n = 1), and one normal-wing male CHC profile

that was identified as an outlier and removed during analysis

(Fig. S3), we analyzed a total of n = 86 flatwing males, n = 112

normal-wing males, and n = 185 females of unknown genotype.

To test whether CHC profiles differed between males of either

wing morph, we first performed dimension reduction using prin-

cipal components analysis (PCA) on male data only. JMP Trial

version 14.1.0 (SAS Institute Inc.) was used to draw a 3D scat-

terplot of the first three PCs. To assess statistical significance, we

performed a multivariate analysis of variance using all principal

components (PC) with eigenvalue > 1.00 (n = 6). This indicated a

highly significant difference among male morphs that formed the

basis of QTL mapping described above. To visualize the differ-

ence between flatwing and normal-wing male CHC profiles with

respect to female CHC profiles, we performed a discriminant

function analysis (DFA) for all samples and all 26 peaks. DFA

highlights the maximal difference between predefined groups,

with maximum group differences indicated by the first DF axis.

Statistical analyses of CHC data were done in SPSS (version 23).

Results and Discussion
SEQUENCING THE CRICKET GENOME AND MAPPING

FLATWING

We studied the genomic signature of song loss in the Kauai

population where flatwing crickets were first discovered, and

in which rapid spread has been most thoroughly documented

(Zuk et al. 2006). Using females from laboratory stock, we se-

quenced the T. oceanicus genome and generated an assembly of

2.045 Gb consistent with flow cytometry size estimates (Pascoal

et al. 2014), with a scaffold N50 of 62.6 kb (Table S3). We es-

tablished an F3 mapping population using crosses designed to

maximize recombination on the X chromosome (Fig. S2). Map-

ping offspring and parents were sequenced using RADseq, and a

map was assembled containing 19 linkage groups. We identified

linkage group 1 (LG1) as the X chromosome by applying cov-

erage and heterozygosity filters and dummy coding putative X-

markers prior to constructing the map. LG1 was the largest linkage

group, with a female recombination length of 379 cM and a male

length of 195 cM (Fig. S4). After resolving chimeric scaffolds

(Table S4), 35.6% of the genome was anchored to a linkage

map using a LOD5 cutoff (Fig. 2A and Table S5). Teleogryl-

lus oceanicus has a haploid chromosome number of (13 + X), so

the additional five linkage groups likely correspond to unjoined

chromosomal segments.

We performed gene prediction and annotation using custom

pipelines incorporating ab initio, homology, and transcriptome-

based approaches (Fig. S1). Evidence from different gene pre-

diction and annotation methods was weighted and filtered to pre-

dict a final, conservative set of 19,157 genes, 75% of which had

functional annotation (Table S6 and Fig. S5). Gene density was

assessed (Fig. 2A, track i), and we tested whether the putative

X linkage group showed a different distribution of repeat con-

tent relative to the other linkage groups, across eight common

categories of repeats. It did not (Fig. 2A, track iii; Table S7;

Fig. S6). Teleogryllus oceanicus gene features were compared to

10 other insect species (Table S8), and we contrasted transposable

element classifications with three other recently published insect

genomes (Table S9). The T. oceanicus genome and metadata as-

sociated with it are curated in ChirpBase (www.chirpbase.org), a

GenomeHubs Ensembl genome browser (Challis et al. 2017) that

we created as an openly available, community-based genomics

resource for researchers working on singing insects.

Flatwing was definitively mapped to the putative X chromo-

some using markers supported by a LOD10 cutoff and a mixed

model ANOVA-based approach designed to control for uneven

genomic relatedness caused by family structure in the mapping

crosses (Fig. 2B; no other linkage group had markers showing as-

sociations exceeding the genome-wide significance threshold of

P < 0.001). To cope with the particularly high marker association

on the putative X chromosome caused by the discrete mode of in-

heritance of flatwing and the different effective population size of

the X compared to autosomes, we identified the QTL using only

the top 1% of markers after FDR correction, yielding a prominent

peak occupying approximately one-third of the X chromosome

(Fig. 2C).

REGULATORY CONSEQUENCES ASSOCIATED WITH

FLATWING

Flatwing morphology is observable in males during mid- to late-

instar stages of juvenile development, so we examined early em-

bryonic gene expression differences associated with flatwing. Fe-

males carrying the genotype cannot be visually distinguished and

embryos cannot be readily sexed, so we used replicate labora-

tory lines homozygous for flatwing or normal-wing genotypes
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Figure 2. Teleogryllus oceanicus genome and regions associated with the flatwing phenotype. (A) Circos plot providing an overview of

the genome. Linkage groups (LGs) upon which genome scaffolds were anchored are shown in different colors, with unplaced scaffolds

in gray. LG1 was identified as the X chromosome based on heterozygosity and coverage filters (see main text). Tracks: (i) gene density,

(ii) linkage group pseudomolecules, (iii) transposable element density, (iv) genes differentially expressed (DE) in the thoracic tissues of

embryos homozygous for flatwing versus normal-wing genotypes. Longer bars are DE genes for which log2 fold-change >1 between

genotypes, and short gray bars are all other DE genes. Colors indicate the magnitude of upregulation (red) versus downregulation (blue)

in flatwing compared to normal-wing embryos. (B) Genome-wide Manhattan plot of the flatwing QTL. Alternating shades of gray and

blue indicate different LGs. The horizontal dashed line indicates an FDR-corrected significance threshold of (P < 0.001), and the top 1%

most significant QTL markers are plotted in red. (C) Enlarged plot for LG1 (X chromosome) showing the flatwing-associated peak.

EVOLUTION LETTERS FEBRUARY 2020 2 7



S. PASCOAL ET AL.

to detect widespread differential gene expression in the devel-

oping thoraces of embryonic crickets. We found 830 genes DE,

204 of which had a log2 fold-change >1, and a predominant pat-

tern of downregulation in flatwing crickets (Fig. 2A, track iv;

Table S10; Fig. S7). DE genes associated with flatwing were

widely distributed across linkage groups and unmapped scaffolds

(Fig. 2A, track iv).

These physically dispersed expression effects are consistent

with a scenario in which flatwing acts as a master regulatory

switch during early development, with a broad cascade of down-

stream effects. Pathways reconstructed using differential expres-

sion data are consistent with a master regulatory switch. For ex-

ample, adherens junction activity was enriched, which affects

epithelial patterning during early development (Tables S11 and

S12). Using a stringent and redundant approach combining in-

formation from gene sets identified in the QTL study, RNA-seq

experiment and a previously published bulked segregant analysis

(Pascoal et al. 2014), we identified 51 annotated protein-coding

genes located within LG1 as top flatwing-associated candidates

(Table S13). GO enrichment analysis indicated that positive regu-

lation of developmental process was overrepresented in this can-

didate gene set, with three genes in particular (NBL1, GOGA4,

UNC89) known to play a fundamental role in the regulation

of cell differentiation (Table S14). However, it is plausible that

loci hitchhiking with the causal genetic variant(s) underlying the

flatwing phenotype also have regulatory effects. Such joint effects

could compound gene regulatory consequences of novel adaptive

variants.

CANDIDATE GENE DISCOVERY

In most pterygote insects, wings are derived from imaginal discs

formed during development by the invagination of embryonic

ectoderm (Snodgrass 1993). Previous work mainly in Drosophila

melanogaster has established that the developmental elaboration

of wing venation patterns requires the involvement of numerous

transcription factors and complex coordination across numerous

signaling pathways (De Celis 2003). Here, we found that seven of

51 flatwing associated candidate genes have reported involvement

in wing development in D. melanogaster. For example, Collier

encodes a transcription factor required for wing disc patterning

(Vervoort et al. 1999), and Myoglianin expression is required

for normal wing disc development (Hevia and de Celis 2013).

ROR1 encodes a transmembrane tyrosine-protein kinase receptor

involved in phosphorylating MAP kinases (Bicocca et al. 2012),

and reduction of MAPK activity through ROR1 silencing can

lead to a loss of wing venation phenotype (De Celis 2003). The

protein krasavietz is encoded by PKRA, and establishes planar cell

polarity in the wing (Carvajal-Gonzalez et al. 2016), disruption

of which can lead to wing distortion (Adler 2012). Knockouts

and mutants in Pelle, Gcn5, and Plexin-A4 show wing shape and

venation alterations with features similar to flatwing (Carre et al.

2005; Wu et al. 2015; Okada et al. 2016).

GENETICALLY ASSOCIATED FEMINISATION OF MALE

PHEROMONES

We tested the consequences of the rapid invasion of flatwing into

the T. oceanicus genome for other relevant phenotypes by focusing

on a distinct, close-range sexual signaling modality that operates

alongside acoustic signaling in field crickets. CHCs are long-

chain, waxy molecules expressed on insect cuticles. CHCs are

thought to have evolved for dessication resistance, and they tend

to be expressed as a bouquet of numerous individual hydrocarbon

compounds. Teleogryllus oceanicus CHCs are sexually dimorphic

and function as sexual signals during male and female mate choice

(Tregenza and Wedell 1997; Thomas and Simmons 2009, 2010),

and they have been found to vary between flatwing and normal-

wing male crickets (Simmons et al. 2014). We characterized the

CHC profiles of F3 mapping individuals, all of which were raised

in a common garden environment, by extracting their CHCs and

using gas chromatography–mass spectrometry (GC–MS) to mea-

sure the abundance of 26 individual compounds (Figure 3A and

Table S2). By performing dimension reduction using PCA of the

CHC profiles, we first established that, in our mapping popula-

tion, males carrying flatwing showed noticeably different CHC

profiles from normal-wing males (Fig. 3B) (multivariate analysis

of variance on six PC with eigenvalues >1 describing male CHC

blends: F6,191 = 29.769, P < 0.001) (Table S15).

QTL analysis was performed on the first six CHC PCs using

the same set of male mapping individuals, to determine whether

flatwing-associated variation in male CHC profiles mapped to

identifiable genomic regions. The putative X chromosome, LG1,

was of particular interest, because we hypothesized that the strik-

ing variation between CHC profiles of flatwing and normal-wing

males could be due to pleiotropy or hitchhiking associated with

flatwing. Genetic mapping of CHCs was performed blind to male

morphotype. PC1, which explained over one-third of the variance

in male CHC profiles, mapped to a ca. 2.5 cM region strongly

co-localized with flatwing (Fig. 3C). PCs 4 and 6 also had co-

localizing peaks (Fig. S8). As dimension reduction for CHCs can

obscure phenotypic patterns in the original individual chemical

compounds, we mapped each of the 26 compounds separately. Of

these, nine showed significant peaks co-localizing with flatwing

(Fig. 3D). We recovered no autosomal QTL peaks for PCs 1–

6, and only one QTL peak for one compound on one autosome

(compound 11, 7-C31ene, on LG8). However, the latter peak was

weakly supported, with only a single marker showing an associ-

ation at FDR-corrected P < 0.001.

We interrogated genes on scaffolds under the CHC QTL

peaks following a similar procedure used to produce the flatwing

candidate gene set (Table S16). Of 55 protein-coding genes, a
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subset of six was implicated for every CHC trait with a significant

QTL peak, and these six genes were also present in the flatwing

candidate gene set. These are strong candidates for testing for

any pleiotropic or linked effects of evolved acoustic sexual

signal loss on chemical sexual signals. Our final step was to

explore the nature of the phenotypic shift in flatwing male CHC

profiles. It is unknown how flatwing males’ profiles compare to

those of females (Simmons et al. 2014), but given the generally

feminizing effect of flatwing on male wing morphology, we

predicted that flatwing males’ CHC profiles would also be

feminized. We compared them to the profiles of normal-wing

males and females using DFA on profiles from all three groups.

Discriminant function 1 (eigenvalue = 2.526) explained 78.8%

of the variance, and indicated that flatwing male crickets’ CHC

profiles are strongly feminized (Fig. 3E). Their CHCs appear to

be correspondingly less attractive to females (Gray et al. 2014).

CONCLUSIONS

Factors constraining rapid adaptation will be increasingly impor-

tant to evaluate as natural populations are placed under pressure

from climate change, anthropogenic disturbances, and the appli-

cation of biological control agents (Tomasetto et al. 2017). The

rapid emergence and spread of flatwing crickets on Kauai is a text-

book example of rapid adaptation in the wild (Dugatkin 2008).

Previous work on this population of crickets has found differences

in the level of phenotypic plasticity, gene expression, and other

reproductive characteristics such as male testis size between male

normal-wing and flatwing genotypes (Bailey et al. 2010; Pascoal

et al. 2016a; Pascoal et al. 2018), and our present findings re-

veal the genomic footprint of strong, associated effects on sexual

signaling in an entirely different sensory channel. These conse-

quences of rapid adaptive trait loss are early-acting, genome-wide,

and impact a range of important fitness traits. The suite of char-

acters affected in flatwing crickets is reminiscent of feminized

alternative male morphs in ruff (Calidris pugnax) in which an ex-

tensive supergene in a large inversion controls size, ornament and

behavioral traits simultaneously (Kupper et al. 2016), and in fem-

inized bulb mites (Joag et al. 2016). It is surprising that an evolved

loss of function variant could lead to such similarly wide-ranging

phenotypic impacts so quickly, and yet still be adaptive.

Examples of rapid adaptive evolution are well known, from

industrial melanism in Kettlewell’s peppered moths (Biston be-

tuliaria) (van’t Hof et al. 2011) to insecticide resistance in

mosquitoes (Ranson et al. 2002), but in general, adaptation has

been thought to be mutation-limited with negative pleiotropic

consequences ascribed a prominent impeding role (Barrett and

Schluter 2008). Strikingly, at least three additional independent

male song-loss variants in the Hawaiian cricket system have been

recently described: a less-feminized version of flatwing on the is-

land of Oahu (Pascoal et al. 2014), plus “curly-wing” and “short-

wing” crickets on Oahu and the Big Island, respectively (Rayner

et al. 2019a). All of these adaptations involve morphological dis-

ruption to forewings, and their proliferation under fly selection

hints that episodes of rapid adaptive evolution might be more

likely when adaptation can proceed via secondary trait loss rather

than gain. Future work would benefit from investigating whether

the indirect genomic consequences of adaptive trait-loss muta-

tions are less detrimental than those of mutations underlying trait

gain. The genomic signature of recent, abrupt song loss in Hawai-

ian crickets uniquely illustrates how genetic variants exerting large

effects and accompanying widespread, associated consequences

on gene expression and other phenotypes can invade genomes

in the wild. Our results raise the possibility that disruptive ge-

nomic consequences of new genetic variants might place fewer

constraints on rapid adaptation than previously appreciated.
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