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Abstract: The genomic fabric paradigm (GFP) characterizes the transcriptome topology by the
transcripts’ abundances, the variability of the expression profile, and the inter-coordination of gene
expressions in each pathophysiological condition. The expression variability analysis provides an
indirect estimate of the cell capability to limit the stochastic fluctuations of the expression levels of
key genes, while the expression coordination analysis determines the gene networks in functional
pathways. This report illustrates the theoretical bases and the mathematical framework of the GFP
with applications to our microarray data from mouse models of post ischemic, and constant and
intermittent hypoxia-induced heart failures. GFP analyses revealed the myocardium priorities in
keeping the expression of key genes within narrow intervals, determined the statistically significant
gene interlinkages, and identified the gene master regulators in the mouse heart left ventricle under
normal and ischemic conditions. We quantified the expression regulation, alteration of the expression
control, and remodeling of the gene networks caused by the oxygen deprivation and determined the
efficacy of the bone marrow mono-nuclear stem cell injections to restore the normal transcriptome.
Through the comprehensive assessment of the transcriptome, GFP would pave the way towards the
development of personalized gene therapy of cardiac diseases.

Keywords: Adra1b; Ank2; bone marrow stem cell therapy; Cox6b1; crem; gene expression control;
gene expression coordination; lias; transcriptomic distance; transcriptomic stoichiometry

1. Introduction

Personalized (or precision medicine) has become a focal area of interest and develop-
ment in medicine of the 21st century. This is because the individual variances of biological
response to environmental factors and drug therapies may substantially alter the outcomes
of disease progression and therapeutic success. Understanding the genetic and epigenetic
mechanisms regulating these variabilities due to the factors, such as race, sex, age, medical
history, diet, stress, exposure to toxins, and individual habits, etc., could be critical for de-
signing a clinical strategy tailored for each patient. For example, 70 microRNAs identified
in whole blood samples via next generation sequencing were linked to the risk of recurrent
myocardial infarction and future stent thrombosis, ascompared to coronary artery disease
(CAD) patients without the subsequent events [1]. A recent review elegantly summarized
advances that unravel the genetic architecture of CAD with approximately 60 genetic loci to
CAD risk [2]. These authors suggested that genetic testing could enable precision medicine
approaches by identifying subgroups of patients at an increased risk of CAD or with a
specific driving pathophysiology that can be targeted precisely [2].

Gene expression profiling is a very important tool to individualize the molecular mech-
anisms responsible for the pathophysiological characteristics and tailor the appropriate
therapy for each individual (e.g., [3–5]), but do we utilize the expression data at their full
potential? As we will prove in this report, traditional quantification of the transcriptomic
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alteration, limited to identify the up/down-regulated and turned on/off genes, neglects
over 99% of the information provided by any high-throughput gene expression platform.
Therefore, we use the genomic fabric paradigm (GFP) [6] that, in addition to the average
expression level (AVE), characterizes each individual gene by the relative expression vari-
ability (REV) across biological replicas and the expression correlation (COR) with each and
other genes in the same condition.

REV is an indirect measure of the strength of the homeostatic mechanisms that en-
sure the right expression of key genes by limiting their random fluctuations caused by
the stochasticity of the chemical reactions and environment unsteadiness within narrow
intervals. On the other hand, COR, accounting for the “Principle of Transcriptomic Sto-
ichiometry” (PTS) [7], determines whether and how strongly the genes are networked
in functional pathways. PTS, a generalization of the Proust’s law of constant proportion
(definite composition) [8] from chemistry, requires the coordinated expression of genes net-
worked in functional pathways. GFP considers the transcriptome as a multi-dimensional
mathematical object subjected to dynamic sets of homeostatic controlling mechanisms and
expression correlations among the individual genes.

We have shown previously that the transcriptome topology is strongly dependent on
race/strain [9], sex [10], age [11], and region of the profiled tissue [6]. In addition to these
general factors, the transcriptomic organization is also very sensitive to the individual’s
chronic or/and acute diseases [12], diet [13], medical treatments [14], external stimuli [15],
and a wide diversity of habits (smocking, alcohol, and drugs), exposure to stress [16],
and infections [17,18]. As subjected to unrepeatable combinations of influential factors,
some of them changing in time, each human is dynamically unique and therefore the
medical treatment should be tailored to his/her actual characteristics. This report presents
the theoretical bases of the (cardio) genomic fabric approach, an important step towards
development of the personalized cardiology. In order to fluidize the reading, previously
published mathematical formulae were included in Appendix A.

2. Materials and Methods
2.1. Experimental Data

The (cardio)genomic fabric approach is illustrated here by using publicly available
microarray data from a mouse model of post-ischemic heart failure (PIHF) [19,20] and
from mice subjected to chronic constant (CCH) or intermittent (CIH) hypoxia during their
first 1, 2, or 4 weeks of life [21]. In these studies, the gene expressions were profiled in
the left ventricle of each of the four mice in every experimental group using 32k mouse
oligonucleotide microarrays printed by the Microarray Facility of the Albert Einstein
College of Medicine, Bronx, NY, USA [22].

As described in Ref. [12], the myocardial infarction was induced into anesthetized
adult C57BL/6 mice by ligating the descending branch of the left coronary artery. Mice with
developed PIHF were then injected into 3 regions at the borders of the cardiac scar with
10 µL Matrigel (BD Biosciences) with or without 1.5 × 106 bone marrow mononuclear stem
cells. The transcriptomes were profiled 59 days after induction of myocardial infarction and
49 days after cell therapy. Total 12 mice (n = 4 per group) were used in this experiment and
divided into: normal untreated (“NN”), infarcted untreated (“IN”), and infarcted treated
(“IT”). As mentioned in Refs. [12,14], the experiments respected the Guide for the Care and
Use of Laboratory Animals and were approved by the Animal Committee of Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

In the hypoxia study, neonatal CD1 mice were placed in Biospherix hypoxia chambers
in the second day of their life and kept there for 1, 2, or 4 weeks. Three groups of 4 mice
each, denoted by “N1”, “N2”, “N4”, were kept under normal atmospheric conditions
(FiO2 = 21%). For three groups of 4 mice each, denoted by “I1”, “I2”, “I4”, FiO2 was
alternated between 21% and 11% every 4 min, 24 h/day 1, 2 or 4 weeks. Finally, for other
three groups of 4 mice each, denoted by “C1”, “C2”, “C4”, FiO2 was kept constant at 11%
for the entire period [13] of 1, 2, or 4 weeks. CIH experiment modeled the sleep apnea,



J. Pers. Med. 2022, 12, 1246 3 of 21

while CCH experiment modeled the living at high altitude. As mentioned in Ref. [16],
the experimental investigations were approved by the Institutional Animal Care and Use
(IACUC) of the Albert Einstein College of Medicine, Bronx, NY, USA.

In all experiments, every group of mice was composed of two males and two females,
preferably from the same litter. Nonetheless, with only two males and two females per
group, the sex differences were not statistically significant. Although the datasets from
these experiments were presented in previous publications [12,14,16,23–25], the (cardio)
genomic fabric approach was never used at its full potential. As shown in this report, this
approach is able to reveal novel features for which the traditional analysis is not equipped
to delineate.

2.2. Characteristics of the (Cardio) Genomic Fabric

We define the (cardio) genomic fabric of a functional pathway in a particular region
of myocardium as the transcriptome associated to the most interconnected and stably
expressed gene network responsible for that pathway in that heart region.

In each condition, the independent characteristics AVE, REV, and COR of every gene
were averaged over the valid spots probing that gene ([26], Appendix A, Equations (A1)–
(A3). Our normalization procedure returns the AVE values in terms of the median gene
expression level in each condition. For instance, AVE = 4.31 for prolactin receptor, (Prlr) in
N1 means that the average expression of this gene is 4.31 × larger than that of the median
gene in N1 (like Slc44a2-Solute carrier family 44, member 2 whose AVE = 1.0005).

REV was computed as the mid-interval of the chi-square estimate of the expression
level coefficient of variation among biological replicas. It was further used to determine the
relative expression control (REC) of individual genes and the pathway relative expression
control (PREC) of the (cardio) genomic fabrics:

REC(condition)
i =

〈
REV(condition)

i

〉∣∣∣
all genes

REV(condition)
i

− 1 , where :〈
REV(condition)

i

〉∣∣∣
all genes

= median REV over the entire transcriptome

(1)

PREC(condition)
Γ =

〈
REV(condition)

i

〉∣∣∣
all genes〈

REV(condition)
i

〉∣∣∣
i∈Γ

− 1

where :
〈

REV(condition)
i

〉∣∣∣
Γ
= median REV over the pathway Γ

(2)

Higher positive REC values indicate genes whose random fluctuations of the expres-
sion level are strongly limited by the cellular homeostatic mechanisms within narrow
intervals as their right expressions are critical for the cardiac physiology. By contrast,
large negative RECs are associated with less controlled genes useful for cell adaptation
to environmental changes. Thus, REC indicates the priorities of the cell in regulating the
transcription machinery. Similarly, high positive PRECs are associated with critically impor-
tant pathways for the preservation of the phenotypic expression fluctuations and negative
PRECs with adapting pathways. One may observe that REC = 0 set the baseline for genes
and PREC = 0 the baseline for the pathways. As presented in the Results section below, REC
and PREC are sensitive to the external factors such as ischemia and oxygen deprivation.

COR is the Pearson product-moment correlation coefficient between the (log2) expres-
sions of two genes across biological replicas ([26], Appendix A). COR analysis identifies the
(p-value < 0.05) significantly synergistically, antagonistically, and independently expressed
gene pairs, albeit it cannot determine which of the paired genes is the master. Thus, COR
determines the statistically significant gene networks in each condition, refining the gene
“wiring” in functional pathways constructed by dedicated software such as: QIAGEN
Ingenuity Pathway Analysis [27], DAVID [28], KEGG [29], etc. Without COR analysis, the
traditional pathways do not account for individual factors known to influence the incidence
of the disease and the response to a treatment.
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Moreover, GFP establishes the gene hierarchy in each condition using the gene com-
manding height (GCH) scoring that combines the expression control and expression coor-
dination with each and other genes [26]. The top of the hierarchy (highest GCH, termed
gene master regulator, GMR) is the gene whose strongly protected expression level is the
most influential on the expression and networking of other genes.

GCH(condition)
i =

(
REC(condition)

i + 1
)
× exp

4 COR2
ig

∣∣∣(condition)

∀g 6=i︸ ︷︷ ︸
average of squares

− 1

 (3)

By stably transfecting two human thyroid cancer cell lines with four genes, we proved
that expression manipulation of a gene has transcriptomic consequences proportional to
the GCH of that gene [30]. Because each cell phenotype has distinct gene hierarchy, smart
manipulation of the GMR expression can be used to selectively kill, or by contrary, stimulate
the proliferation of the desired cell type from a tissue [31].

2.3. Comparing Conditions of the (Cardio) Genomic Fabric
2.3.1. Cut-Off Criteria

When comparing two conditions (for instance “IN” with “NN” in the infarct experi-
ment), traditional transcriptomic analysis uses uniform, arbitrarily introduced cut-off for
the absolute fold-change (1.5× or 2.0×) of the expression ratio “x” (negative for down-
regulation). Some analyses require also a less than 0.05 p-value of the heteroscedastic
t-test of the two means equality. However, such absolute fold-change cut-off might be too
stringent for very stably expressed genes across biological replicas and low local technical
noise, while for other genes it might be too relaxed. Therefore, while maintaining the
p-value < 0.05 condition, we determine the absolute fold-change cut-off for the expression
ratio “x” separately for each quantified gene to account for both biological variability and
the technical noise of the probing spot(s) ([26], Appendix A, Equation (A4)).

2.3.2. Uniform, Weighted, and All-Inclusive Contributions of Individual Genes to the
Transcriptome Alteration

Traditional analysis measures the overall transcriptomic alteration by the percentages
of the genes that were significantly up-/down-regulated or turned on/off. For this measure,
the significantly regulated genes are considered as uniform +1 or −1 contributors to the
transcriptome alteration.

A more informative measure is the Weighted Individual (gene) Regulation (WIR) [32]
that takes into account the absolute departure from the normal expression level and the
statistical confidence in the expression regulation. Like the expression ratio “x”, WIR takes
also positive values for up-regulated genes and negative values for the down-regulated
ones ([26], Appendix A, Equation (A5)).

However, the best all-inclusive characterization of one gene contribution to the over-
all transcriptomic alteration is the “Individual (gene) Transcriptomic Distance” (ITD).
ITD is the magnitude of the 3D vector whose orthogonal components reflect the relative
changes in the average expression level, expression variability (among biological replicas),
and expression correlations (averaged over all other expressed genes) ([33], Appendix A,
Equation (A6)).

Both WIR and ITD can be further averaged for a given functional pathway “Γ” as the
weighted pathway regulation (WPR) and Pathway Transcriptomic (trajectory) Distance
(PTD), much more accurate in ranking the pathways according to their alteration than the
percentage of regulated genes.



J. Pers. Med. 2022, 12, 1246 5 of 21

WPR(A→B)
Γ =

100
{Γ}

√
∑

i∈Γ

(
WIR(A→B)

i

)2
, {Γ} = number of genes in Γ

PTD(A→B)
Γ =

100
{Γ}

√
∑

i∈Γ

(
ITD(A→B)

i

)2
(4)

2.4. Transcriptomic Effect of a Treatment

One can determine the transcriptomic effect of a treatment by comparing the alterations
before and after that treatment. The comparison may encompass all genes or may be
restricted to a particular functional pathway “Γ”. Traditionally, such comparison is done by
comparing the numbers of regulated genes with and without the treatment (when each
gene is considered as a uniform contributor).

In previous papers [14,34,35], we used the Gene Expression Recovery (GER, Appendix A,
Equation (A7)). GER takes into account not only the numbers of up-(U) and down-(D)
regulated genes in “IN” whose normal expression was fully recovered (X) in IT (i.e., {DX}
and {UX}), but also the genes whose regulation status was not changed (i.e., {DD} and {UU})
and those whose regulation type was switched in IT (i.e., {DU} and (UD}).

A better measure of the transcriptomic restoration compares the WPR scores, as the
Pathway Restoration Efficiency (PRE) ([35], Appendix A, Equation (A8)).

Now, we add the Comprehensive Pathway Restoration (CPR) representing the percent
reduction of the transcriptomic distance in response to the treatment.

CPR(IN→IT;NN)
Γ =

(
1−

PTD(NN→IT)
Γ

PTD(NN→IN)
Γ

)
× 100%

Possible outcomes :

(a) PTD(NN→IT)
Γ = 0⇒ CPR(IN→IT;NN)

Γ = 100% , ideal

(b) 0 < PTD(NN→IT)
Γ < PTD(NN→IN)

Γ ⇒ 0 < CPR(IN→IT;NN)
Γ < 100% , positive

(c) PTD(NN→IT)
Γ = PTD(NN→IN)

Γ ⇒ CPR(IN→IT;NN)
Γ = 0% , null

(d) PTD(NN→IT)
Γ > PTD(NN→IN)

Γ ⇒ CPR(IN→IT;NN)
Γ < 0% , negative

(5)

3. Results
3.1. Overview of the Microarray Data

The PIHF experiment quantified the expression levels of 10,408 unigenes in all 12 sam-
ples from the groups “NN”, “IN”, “IT”, n = 4/group), from which the GFP was extracted in
each condition 10,408 AVEs + 10,408 REVs + 54,158,028 CORs = 54,178,844 values. Thus, the
GFP increased the size of the workable data in each condition by 5206 times. With respect
to “NN”, 579 genes (i.e., 5.56%) were significantly (according to our composite criterion)
up-regulated and 1222 (11.74%) were down-regulated in “IN”. The treatment with bone
marrow mononuclear stem cells partially recovered the normal expression levels of the
genes, leaving 256 (2.46%) up-regulated and 667 (6.41%) down-regulated in the “IT” group
as compared with the “NN” controls. Interestingly, the treatment went even further by
flipping the significant down-regulation of 19 genes and the significant up-regulation of
15 genes to their opposites.

In the hypoxia experiment, 9716 unigenes were adequately quantified in all 36 samples
from the groups “N1”, “I1”, “C1”, “N2”, “I2”, “C2”, “N4”, “I4”, “C4” (n = 4/group), from
which GFP extracted in each condition 47,214,902 values. This is an increase by 4860 times
of the information used in the traditional analysis limited to the AVEs. According to our
criterion, with respect to the control group “N1”, 9.43% of the genes were up- and 11.72%
were down-regulated in the group “I1”, and 6.13% were up- and 4.30% down-regulated in
“C1”. With respect to “N2”, 10.48% of the genes were up- and 18.94% were down-regulated
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in “I2”, and 22.02% up- and 18.92% down-regulated in “C2”. Finally, with respect to “N4”,
4.08% were up- and 2.14% down-regulated in “I4”, while in “C4”, 6.01% were up- and
6.71% down-regulated.

The genes with the largest expression level were: Hspb6 (heat shock protein, alpha-
crystallin-related, B6; AVE = 14.19 in “N1”, 16.51 in “I2”, and 14.12 in “C2”; and Nr1i3
(nuclear receptor subfamily 1, group I, member 3; with AVE = 15.05 in “I1”, 24.96 in “N4”,
18.97 in “I4”, and 21.06 in “C4”. Hspb6, encoding a small heat shock protein related to
oxidative stress, is an important modulator of muscle contraction [36]. Nr1i3, also known
as constitutive androstane receptor (Cas), is an important modulator of energy pathways
and xenobiotic metabolism [37].

3.2. AVE, REV, and COR Are Independent Features

Figure 1 illustrates the independence of AVE, REV, and COR (with Ank2-ankyrin 2)
for 34 inflammatory response genes in the heart left ventricle of mice subjected for the first
week of their life to normal atmospheric conditions (“N1”), intermittent hypoxia (“I1”),
or constant hypoxia (“C1”). Supplementary Tables S1–S3 present the AVEs, REVs, and
CORs with Ank2 of the same genes for the 2 and 4 weeks of hypoxia exposures. The value
1 for the expression correlation of Ank2 with itself is the validation of the correctness of the
COR analysis. Although Figure 1 is restricted to this subset of genes, any other subset of
genes in any other condition would prove the independence, including the ion channels
and transporters in each of the four heart chambers of the adult mouse [6].

Figure 1 and Tables S1–S3 also show that chronic hypoxia not only changed the average
expression level, but also the homeostatic control of the expression fluctuations and, hence
the expression variability across biological replicas. On top of this, hypoxia changed the
expression coordination with other genes, illustrated here with Ank2, encoding Ankyrin-B,
one major player in cardiac physiology [38]). Coordination changes indicate remodeling of
the gene networks. Through the analyses of expression variability and expression coordina-
tion, the GFP brings a treasure of (previously neglected) information about how much the
cardiac transcriptome is controlled and organized in partially overlapping networks. Our
data indicate that changes in expression variability and expression coordination are not
negligible and should be considered when quantifying the overall transcriptomic alteration
in a disease and recovery following a treatment.

3.3. Control of Gene Expression

Table 1 lists the five genes with the strongest expression control (i.e., the lowest REV)
in each group of animals from the hypoxia experiments. Of note is the diversity of the
most controlled genes, with no overlap among sets until the 15th most controlled genes. It
is very interesting that the left ventricle prioritized the control of different genes at each
of the three developmental stages that chronic hypoxia altered these priorities, and that
constant and intermittent oxygen deprivation had discrepant effects. We observed also
(and presented in the last two rows of the table) that both the average and the median REVs
for all quantified genes are larger at normal atmospheric conditions than in CIH and CCH
at all three ages.
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Figure 1. Illustration of the independence of the three types of characteristics of individual genes in the
left ventricle of mice subjected in the first week of their life to normal atmospheric conditions (“N1”),
chronic intermittent hypoxia (“I1”), or chronic constant hypoxia (“C1”). (a) Average expression
level (AVE) in levels of the median gene in that condition. (b) Percentage of the relative expression
variability (REV); (c) Expression correlation with Ank2.
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Table 1. The 5 most controlled genes after 1, 2, and 4 weeks of life in normal (“N1”, “N2”, “N4”)
atmospheric conditions, chronic intermittent (“I1”, “I2”, “I4”) and chronic constant (“C1”, “C2”, “C4”)
hypoxia. Grey background of REV values indicates the most controlled 5 genes in each condition.
For comparison, the average and the median REVs for all 9716 quantified genes are presented in
each condition.

GENE DESCRIPTION N1 I1 C1 N2 I2 C2 N4 I4 C4
Lias Lipoic acid synthetase 1.4 19.1 34.1 74.8 26.0 13.7 88.2 4.8 45.1
Psip1 PC4 and SFRS1 interacting protein 1 2.0 12.7 14.0 21.8 12.6 13.2 14.3 16.5 30.4

Ctdsp1 carboxy-terminal domain, RNA polymerase II,
polypeptide A small phosphatase 1 2.1 45.5 61.0 72.1 24.1 13.4 24.2 16.2 16.9

Arhgef3 Rho guanine nucleotide exchange factor (GEF) 3 2.2 18.0 40.8 9.4 32.1 30.7 17.2 57.0 39.9
Rps6kb1 Ribosomal protein S6 kinase, polypeptide 1 2.4 30.9 16.2 105.9 44.6 12.0 65.2 37.0 43.5
Cadm4 cell adhesion molecule 4 57.5 0.1 4.8 59.7 39.5 27.4 76.8 13.0 40.8
Chfr Checkpoint with forkhead and ring finger domains 39.5 1.1 20.0 21.7 6.3 5.2 15.4 22.1 22.2

Imp4 IMP4, U3 small nucleolar ribonucleoprotein,
homolog (yeast) 23.5 1.2 19.0 99.1 47.9 26.9 23.9 14.9 30.9

Wdr63 WD repeat domain 63 29.2 1.4 3.8 46.5 10.9 10.8 59.6 10.3 7.8
Tpp1 Tripeptidyl peptidase I 45.9 1.7 23.0 30.5 52.8 27.4 22.2 35.0 25.7
Numa1 Nuclear mitotic apparatus protein 1 15.4 20.4 1.3 33.6 21.4 22.1 22.6 36.1 56.0
Sh3bp5 SH3-domain binding protein 5 (BTK-associated) 40.4 17.0 2.0 21.0 12.8 7.9 64.9 12.9 19.9
Rhbdf1 Rhomboid family 1 (Drosophila) 58.0 33.5 2.2 85.3 15.7 8.7 20.9 39.8 26.8
Pygb Brain glycogen phosphorylase 34.4 20.4 2.2 23.8 61.6 34.7 50.1 47.4 34.1

Map3k7ip2 Mitogen-activated protein kinase kinase kinase 7
interacting protein 2 8.2 16.4 2.4 11.7 50.4 5.6 20.2 8.0 25.5

Ankrd15 Ankyrin repeat domain 15 33.5 19.6 11.1 1.0 53.3 18.9 47.0 6.2 16.0
Mrps5 Mitochondrial ribosomal protein S5 32.3 10.8 16.5 1.8 30.3 15.1 30.6 19.1 13.5
Gsdmdc1 Gasdermin domain containing 1 25.3 39.4 35.6 2.5 26.3 34.6 26.9 55.1 5.9
Pcdh7 Protocadherin 7 27.5 11.0 14.2 2.6 40.2 18.9 8.7 12.1 37.6
Gart Phosphoribosylglycinamide formyltransferase 13.1 18.9 55.6 2.8 84.3 6.5 80.2 12.7 8.9
Tubg1 Tubulin, gamma 1 8.6 25.8 21.1 10.1 0.4 10.7 19.4 62.5 19.1
Zfp191 Zinc finger protein 191 12.1 8.9 6.9 24.7 1.2 9.4 11.9 25.5 31.7
Arhgef1 Rho guanine nucleotide exchange factor (GEF) 1 59.5 9.7 29.9 87.3 1.6 11.8 80.1 8.5 23.5

Bub3 Budding uninhibited by benzimidazoles 3 homolog
(S. cerevisiae) 49.9 37.0 47.5 14.1 1.7 26.4 24.7 41.7 10.2

Gas2l1 Growth arrest-specific 2 like 1 57.0 37.0 41.8 22.4 1.7 43.2 23.9 14.8 14.9
Dmkn Dermokine 25.9 18.9 58.2 34.9 11.6 1.1 11.9 14.3 57.3

Med6 Mediator of RNA polymerase II transcription, subunit 6
homolog (yeast) 31.5 11.1 7.8 68.1 23.1 1.2 21.4 10.8 37.1

Nt5dc1 5′-nucleotidase domain containing 1 22.3 29.0 18.3 36.8 11.2 1.5 47.3 9.3 32.2
Lima1 LIM domain and actin binding 1 10.9 24.2 45.5 6.8 24.3 1.5 71.5 16.8 16.9
Rpl27 Ribosomal protein L27 15.7 14.8 29.7 50.1 41.0 1.5 59.2 7.0 11.3
Mrpl15 Mitochondrial ribosomal protein L15 21.9 15.7 11.7 25.7 11.8 14.5 1.3 15.3 16.8

Agt Angiotensinogen (serpin peptidase inhibitor, clade A,
member 8) 36.7 32.3 21.8 7.9 53.7 23.2 2.7 25.3 34.3

Mxd1 MAX dimerization protein 1 26.4 28.2 24.1 43.5 20.6 40.8 3.0 60.8 14.2
Lama2 Laminin, alpha 2 15.5 20.7 23.5 5.9 37.7 9.3 3.1 29.5 8.4
Il31ra Interleukin 31 receptor A 33.6 8.9 55.8 71.4 62.3 22.1 3.2 22.7 34.1
Qtrtd1 Queuine tRNA-ribosyltransferase domain containing 1 16.7 11.0 22.0 25.5 14.2 9.7 25.2 1.3 32.1
Gpbp1 GC-rich promoter binding protein 1 12.6 11.4 5.3 24.9 22.6 7.8 12.0 2.0 10.0
Hspb6 Heat shock protein, alpha-crystallin-related, B6 28.5 10.7 28.0 9.3 15.0 34.5 54.7 2.2 36.6
Rps13 Ribosomal protein S13 15.0 18.7 17.7 96.5 32.1 9.0 50.5 2.3 32.5
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Table 1. Cont.

GENE DESCRIPTION N1 I1 C1 N2 I2 C2 N4 I4 C4
Sft2d3 SFT2 domain containing 3 27.8 15.5 18.1 21.8 30.6 25.5 21.9 2.3 24.6
Arid2 AT rich interactive domain 2 (Arid-rfx like) 17.6 7.1 18.6 44.2 37.4 8.9 37.9 12.0 0.6
Fos FBJ osteosarcoma oncogene 8.8 34.6 21.1 17.1 25.4 13.1 41.1 16.3 1.6
Mlx MAX-like protein X 38.0 8.2 23.5 40.3 56.5 14.8 22.0 25.9 2.1

Mrm1 Mitochondrial rRNA methyltransferase 1 homolog
(S. cerevisiae) 49.2 18.5 13.3 30.0 24.0 24.3 31.5 50.7 2.4

Dynlrb1 Dynein light chain roadblock-type 1 24.8 44.2 12.8 40.8 29.9 17.2 19.1 17.2 2.4

Average REV for the 9716 quantified genes 30.5 22.6 27.9 47.2 31.5 20.5 37.5 25.0 33.0
Median REV for the 9716 quantified genes 27.0 19.8 24.8 40.5 28.3 18.7 33.6 23.3 30.9

3.4. Gene Hierarchy

GCH analysis was used to establish the hierarchies of the genes in the conditions
“NN”, “IN”, and “IT”. Figure 2 presents the top 20 genes in each condition of the post-
ischemic cardiac failure experiment. Of note is the lack of overlap among the three sets
of the top 20 genes, indicating distinct transcriptomic topologies. Remarkably, the top
genes in one condition have low GCH scores in the other two. This finding can be used
to selectively target the cells commanded by the GMRs in a heterocellular tissue (like in a
prostate cancer tumor harboring both cancer and normal cells, [26]).
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Figure 2. Top 20 genes in the conditions: normal untreated (“NN”), infarcted untreated (“IN”),
infarcted treated (“IT”), normal untreated (“NN”), infarcted untreated (“IN”), and infarcted treated
(“IT”). Note there is no overlap of the three gene sets and that the top genes in one condition have
substantially lower GCH scores in the other two conditions.

For the conditions analyzed here, the gene master regulators (GMRs–top GCH scorers)
are: transmembrane protein 186 (Tmem186, with GCH = 53.21 in “NN”, 1.03 in “IN”, and
2.57 in “IT”), CD164 antigen (Cd164, with GCH = 1.54 in “NN”, 46.37 in “IN”, and 2.08 in
“IT”), and ATPase type 13A2 (Atp13a2, with GCH = 1.88 in “NN”, 0.99 in “IN”, and 32.43
in “IT”).

Tmem186 top position in the heart of adult healthy mice may be related to its role in the
mitochondrial complex I [39], while the 5th position of Tmem208 by its regulatory function
in autophagy [40]. Existing literature justifies why some of the top hits in the above GCH
analysis might be considered as potential new gene targets to protect the heart against
ischemic injury. For example, under the “IN” condition, top genes include regulators of
the cellular metabolism, suggesting adaptive responses to myocardial infarction. Most
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notably, the No. 2 gene hit- Cox6b1 (cytochrome c oxidase, subunit 6B1) was shown to
protect cardiomyocytes from hypoxia/reoxygenation injury by reducing the production of
reactive oxygen species and cell apoptosis [41]. The 4th gene hit in “IN”-Pcsk7 (proprotein
convertase subtilisin/kexin type 7) was also associated with cardiovascular disease phe-
notypes [42]. On the other hand, under IT condition, the 6th top hit gene- Tuba1c (tubulin,
alpha 1C) was previously identified to predict the outcome of a linear combination of
circadian rhythm pathway genes [43]. The abundance of the encoded protein by the 8th top
gene, Fam171a2 (family with sequence similarity 171, member A2) in the heart was recently
correlated with the PR interval of an electrocardiogram, suggesting a role for the cardiac
conduction system [44]. Thus, the GCH analysis can be an important tool to identify novel
therapeutic avenues for cardiac diseases.

3.5. Measures of Expression Regulation

Figure 3 illustrates, for 40 genes involved in the adrenergic signaling in cardiomy-
ocytes [45], the four ways to report their transcriptomic alteration in infarcted untreated
(“IN”) and treated (“IT”) hearts with respect to the normal condition.
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Figure 3. Four ways to report the altered expression of 40 individual genes involved in the adrenergic
signaling in cardiomyocytes in untreated (“IN”) and treated (“IT”) post-ischemic infarcted mouse hearts
with respect to healthy counterparts. (a) Uniform +1/−1 contribution of significantly up-/down-
regulated genes. (b) Expression ratios of all genes. (c) Weighted individual (gene) regulation (WIR).
(d) Individual (gene) transcriptomic distance (ITD).

In the traditional analysis of the percentages of significantly up-/down-regulated
genes, each affected gene is considered as a uniform +1 or −1 contributor to the overall
transcriptomic regulation. Moreover, this measure is limited to the significantly regulated
genes according to the criterion established by the investigator, frequently an arbitrary
absolute fold-change cut-off. In our study, the absolute fold-change cut-off is determined
separately for each expressed gene pending on its expression variability across biological
replicas and the technical noise of the probing spot(s) in the microarray [26].
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A better way to quantify the contributions of the individual genes to the overall
transcriptomic alteration is to use the WIR score. Although still limited to the change in the
expression level, WIR not only considers all genes but weights their contribution according
to the total absolute change of their expression level and the statistical confidence in their
regulation. This measure was previously used to quantify the transcriptomic alterations
in the left ventricle of a mouse model of Chagasic cardiomyopathy [32], in the cortical
oligodendrocytes and microglia of a rabbit model of intra-ventricular hemorrhage [46], and
in the hypothalamic arcuate node of a rat model of infantile spasms [35].

Nevertheless, the most comprehensive measure is the ITD that takes into account the
alterations of all independent characteristics of the individual genes. The new measures
reveal that genes neglected because their expression ratios did not pass the threshold to
be considered as significantly regulated may still have contributions to the transcriptome
alteration through affected expression control mechanisms and remodeling of the gene
networks. For instance, although the expression ratio of the significantly up-regulated
Tpm1 (Tropomyosin 1, alpha) in “IN” (2.18×) is larger than that of the not significantly
regulated Tpm4 (Tropomyosin 4, 1.31×), both WIR and ITD scores are larger for Tpm4
(WIR = 0.68, ITD = 1.89) than for Tpm1 (WIR = 0.55, ITD = 0.30) in “IN”. Such findings
impose a reconsideration of what really matters in the transcriptome changes. Interestingly,
while Tpm1 is one of the main hypertrophic cardiomyopathy genes [47], Tpm4 is known
for its inhibitory effect on actin polymerization [48].

Both “WIR” and “ITD” analyses revealed that for this pathway, the regulation of
the Gnas gene, encoding the stimulatory alpha subunit of the protein complex guanine
nucleotide-binding protein (G protein), had the largest contribution to the transcriptomic
alteration in “IN” (WIR = −27.98, ITD = 4.47). Although, no longer significantly regulated
in “IT” (x = −1.12), Gnas still contributes to the transcriptomic differences with respect
to the control “NN” (WIR = −1.67, ITD = 2.86). It was recently reported that a somatic
mutation of Gnas is associated with focal, idiopathic right ventricular outflow tract (RVOT)
tachycardia [49].

3.6. Regulation of the Adrenergic Signaling in the Left Ventricle of Mice with Post-Ischemic
Heart Failure

Figure 4 presents the significant regulation of the genes involved in the adrenergic
signaling in cardiomyocytes [45] as indicated by the microarray data in the left ventricle of
mice with post-ischemic heart failure (condition “IN” with respect to “NN”). The pathway
was designed by the Kanehisa Laboratories who developed the Kyoto Encyclopedia of
Genes and Genomes (KEGG, [50]).

Thirteen genes of this pathway were significantly regulated by the infarct: Adra1b
(adrenergic receptor, alpha 1b), Atf2 (activating transcription factor 2), Atp1b2 (ATPase,
Na+/K+ transporting, beta 2 polypeptide), Bcl2 (B-cell leukemia/lymphoma 2), Cacnb2
(calcium channel, voltage-dependent, beta 2 subunit), Calm2 (calmodulin 2), Fxyd2 (FXYD
domain-containing ion transport regulator 2), Gnas (guanine nucleotide binding protein,
alpha stimulating) complex locus), Kcne1 (potassium voltage-gated channel, Isk-related
subfamily, member 1), Ppp1cc (protein phosphatase 1, catalytic subunit, gamma isoform),
Ppp2r2d (protein phosphatase 2, regulatory subunit B, delta isoform), Rapgef4 (rap guanine
nucleotide exchange factor (GEF) 4), Scn7a (sodium channel, voltage-gated, type VII, alpha),
and Tpm1 (tropomyosin 1, alpha).

One may note that Adra1b, involved in the positive regulation of the blood pres-
sure [51], was significantly down-regulated (x = −1.81, WIR = −1.72, ITD = 1.50) in the
infarcted heart. Although the other two subtypes of the alpha-adrenergic receptors [52]
were also down-regulated (Adra1a: x = −1.19, CUT = 1.65; Adra1d: x = −1.44, CUT = 1.73),
their regulations were not statistically significant. However, because of larger differences in
REVs and CORs, both genes had higher contributions to the overall alteration of the tran-
scriptome than Adra1b, with ITD = 1.62 (Adra1a) and ITD = 1.67 (Adra1d). It was reported
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that the stimulation of these alpha-adrenergic receptors can protect cardiomyocytes against
ischemia by regulating the influx of glucose [53].
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in the left ventricle cardiomyocytes of untreated mice with post-ischemic heart failure. INaK and
PP2A are blocks of quantified genes, while NCX and PI3K are blocks of not quantified genes.

3.7. Recovery of the Adrenergic Signaling in the Left Ventricle of Mice with Post-Ischemic Heart
Failure following Treatment with Bone Marrow Mononuclear Stem Cells

Figure 5 presents the regulation of the adrenergic signaling in cardiomyocyte pathways
after the stem cell treatment (condition “IT” with respect to “NN”). Of note is the recovery
of the normal expression for: Adra1b, Atp1b2, Bcl2, Cacnb2, Calm2, Fxyd2, Gnas, Ppp1cc,
Ppp2r2d, Rapgef4, Scn7a, and Tpm1. Kcne1 remained down-regulated, while the normally
expressed Cacna2d1 (calcium channel, voltage-dependent, alpha2/delta subunit 1) and
Ppp2r5e (protein phosphatase 2, regulatory subunit B (B56), epsilon isoform) in “IN” condi-
tion were down-regulated by the treatment. Therefore, for this pathway, {DX} = 7, {UX} = 5,
{XD} = 2, {XU} = 0, {DD} =1, {UU} = 0, {UD} = 0, {DU} = 0, so that GER(IN→IT;NN) = 66.67%.
WPR(NN→IN) = 36.10 and WPR(NN→IT) = 13.63, making WPR(IN→IT;NN) = 62.24%. The tran-
scriptomic distance analysis returned: PTD(NN→IN) = 37.11, PTD(NN→IT) = 11.29, resulting
CPR(IN→IT;NN) = 69.59%.
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in the left ventricle cardiomyocytes of stem cell treated mice with post-ischemic heart failure. INaK
and PP2A are blocks of quantified genes, while NCX and PI3K are blocks of not quantified genes.

3.8. Reconfiguration of the Gene Networks by the Post-Ischemic Heart Failure and Recovery
following Treatment with Bone Marrow Mononuclear Stem Cells

Figure 6 illustrates the reconfiguration of the gene networks by the disease and fol-
lowing a treatment by showing the changes in the expression correlations of Adra1b with
the other genes from the adrenergic signaling in cardiomyocytes. Adra1b, one of the six
subtypes of the adrenergic receptors that control the heart contractility (inotropism) and
rate (chronotropism), mediates its action by association with G proteins that activate a
phosphatidylinositol–calcium second messenger system. In mouse, the alpha1-adrenergic
receptors play adaptive roles in the heart and protect against the development of heart
failure [54]. Figure 6a–c present only the genes of the pathway that are statistically (p < 0.05)
significant synergistically or antagonistically expressed with Adra1b in at least one of the
three conditions. However, the percentages of the synergistically, antagonistically, and
independently expressed partners were computed for the entire pathway. Figure 6d lists
the genes that are independently expressed with Adra1b in each condition.

Interestingly, as shown in panel (b), the infarct increased the synergistic partnership
of Adra1b in this pathway from 13.9% to 24.1% and that of the antagonistic partnership
from 1.3% to 8.9%. This very substantial strengthening of the Adra1b inter-coordination
with many other genes of the pathway makes Adra1b a very important target to recover the
altered heart functions. The treatment (panel (c)), reduced back the expression coordination
to 11.4% synergism and 1.3% antagonism, and further decoupled numerous other genes
from their correlation with Adra1b (panel (d): Akt1 (thymoma viral proto-oncogene 1),
Atf2, Atf4 (activating transcription factor 4), Atp1a3 (ATPase, Na+/K+ transporting, alpha
3 polypeptide), Cacnb2, Camk2a, Ppp2r2d, and Ppp2r5d (protein phosphatase 2, regulatory
subunit B (B56), delta isoform). However, the treatment antagonistically coupled the
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independently expressed Atf6b (activating transcription factor 6 beta) and Adra1b under
ischemic conditions.

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 15 of 22 
 

 

 

Figure 6. Remodeling of the Adra1b networking with genes from the KEGG-designed functional 

pathway “Adrenergic signaling in cardiomyocytes” caused by the post ischemic heart failure with 

and without stem cell treatment. (a) Significantly synergistically and antagonistically expressed 

partners of Adra1b in “NN” hearts. (b) Significantly synergistically and antagonistically expressed 

partners of Adra1b in “IN” hearts. (c) Significantly synergistically and antagonistically expressed 

partners of Adra1b in “IT” hearts. (d) Independently expressed genes with Adra1b. 

Interestingly, as shown in panel (b), the infarct increased the synergistic partnership 

of Adra1b in this pathway from 13.9% to 24.1% and that of the antagonistic partnership 

from 1.3% to 8.9%. This very substantial strengthening of the Adra1b inter-coordination 

with many other genes of the pathway makes Adra1b a very important target to recover 

the altered heart functions. The treatment (panel (c)), reduced back the expression 

coordination to 11.4% synergism and 1.3% antagonism, and further decoupled numerous 

other genes from their correlation with Adra1b (panel (d): Akt1 (thymoma viral proto-

oncogene 1), Atf2, Atf4 (activating transcription factor 4), Atp1a3 (ATPase, Na+/K+ 

transporting, alpha 3 polypeptide), Cacnb2, Camk2a, Ppp2r2d, and Ppp2r5d (protein 

phosphatase 2, regulatory subunit B (B56), delta isoform). However, the treatment 

antagonistically coupled the independently expressed Atf6b (activating transcription 

factor 6 beta) and Adra1b under ischemic conditions. 

4. Discussion 

The present study provides the theoretical bases of the (cardio)genomic fabric 

approach in identifying key gene regulatory factors. The theory is applied to expression 

Figure 6. Remodeling of the Adra1b networking with genes from the KEGG-designed functional
pathway “Adrenergic signaling in cardiomyocytes” caused by the post ischemic heart failure with
and without stem cell treatment. (a) Significantly synergistically and antagonistically expressed
partners of Adra1b in “NN” hearts. (b) Significantly synergistically and antagonistically expressed
partners of Adra1b in “IN” hearts. (c) Significantly synergistically and antagonistically expressed
partners of Adra1b in “IT” hearts. (d) Independently expressed genes with Adra1b.

4. Discussion

The present study provides the theoretical bases of the (cardio)genomic fabric ap-
proach in identifying key gene regulatory factors. The theory is applied to expression data
from the hearts of mouse models of common myocardial pathologies such as hypoxia and
myocardial infarction with or without treatment with bone marrow mononuclear stem cells.
Nevertheless, in a really personalized application, the biological replicas of diseased and
normal cells should come from the same individual. Such a procedure has been already
used to compare samples collected from each cancer nodule and surrounding normal tissue
from surgically removed tumors of the thyroid [30,31], kidney [33], and prostate [26,55].
For cardiac diseases, one can collect samples from localized heart myocardium using percu-
taneous endomyocardial biopsy [56]. Although the experimental results were intended to
illustrate how the genomic fabric paradigm can be applied to cardiovascular diseases, their
significance is limited because of the heterocellular composition of the profiled left ventricle.
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Through considering three independent groups of characteristics for each individual
gene in each condition (illustrated in Figure 1), the GFP runs through the full potential
of profiling tens of thousands of transcripts at a time on several biological replicas. The
independence and complementarity of the three types of characteristics were proven pre-
viously for genes within the mTOR signaling pathway and evading apoptosis in human
prostate [26,55], apoptosis in human thyroid [31], and chemokine signaling in human kid-
ney [33]. They were also proven for chemokine signaling in mouse cortex [57], PI3K–AKT
signaling in mouse hippocampus [58], and ion channels and transporters in mouse heart
myocardia of each of the four chambers [6]. Regardless of the used high-throughput tran-
scriptomic platform (RNA-sequencing, microarray, Affymetrix etc.), this strategy increased
by 4–5 orders of magnitude the workable information furnished by a high-throughput
transcriptomic study.

As one may note in Figure 1, the hypoxia not only changed the expression levels
of the individual genes, but also their expression control and expression coordination
in functional pathways. Substantial changes in the genes’ expression control and inter-
coordination were constant findings in all previous GFP studies on diseases on samples
collected from both humans [26,30,31,33,55] and animal models (e.g., [57–60]). We believe
that such rich additional information could be instrumental in developing a personalized
genomic medicine.

The GFP provides essential clues on the priorities of the cellular homeostatic mech-
anisms in controlling the expression of critical genes and especially how the genes are
networked to optimize the functional pathways. That Lias is the most protected gene in the
heart of 1-week normoxic mice did not come as surprise given the strong antioxidant po-
tency of the α-lipoidic acid synthesized by the encoded enzyme [61]. Lias was significantly
up-regulated (x = 1.52) in an ischemic heart but its expression was restored to normal by the
cell treatment. Cadm4, the most protected gene in the heart of mice subjected during their
first week of life to chronic intermittent hypoxia, is essential for restricting the production of
cardiac outflow tract progenitor cells in zebrafish [62]. Whether it performs a similar func-
tion for the development of the mouse heart remains to be tested by further experiments.
Finally, Numa1, the most protected gene after 1-week chronic constant hypoxia is a marker
of the myotonic dystrophy type 1 [63]. As reported here and on previous genomic studies,
disease [30,64–66], stress [11,23,67], and genetic manipulation [68,69] force the tissues to
increase the control of the gene expression, presumably to limit the damages.

Importantly, GFP can hierarchize the genes according to their gene commanding
height (GCH, Figure 2) that accounts for both the strength of the homeostatic controlling
mechanisms of the expression accuracy and power to regulate the expression of other genes.
With GCH, one can identify the gene master regulator of that condition (GMR) whose
“smart” manipulation would have the desired effect on the cells it commands but little
to no consequences on the other cells of the tissue. The monotonic relationship between
the GCH and the transcriptomic consequences of altering the expression of that gene was
proven by stable transfection of four genes into two standard human thyroid cancer cell
lines [31,70].

Nonetheless, our approach improves quantification of the transcriptome alteration
with a more accurate absolute fold-change cut-off to decide about the statistical significance
of the expression regulation and especially with more comprehensive measures of individ-
ual gene contributions. Figure 3 makes a powerful case of the importance of adopting WIR
and ITD for a better understanding of the transcriptomic consequences of a disease.

One of our primary focuses was on the key genes regulating myocardial adrenergic
signaling, such as Adra1b, (Figures 4–6), by means of the KEGG-built platform. The
cardioprotective role of Adra1b has long been established by Woodcock’s group who first
showed the reduction of reperfusion-induced Ins(1,4,5)P3 generation and arrhythmias in
mouse hearts expressing constitutively active alpha1B-adrenergic receptors [71]. However,
under pathologic conditions, e.g., pressure overload, overexpressing of alpha1B-adrenergic
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receptors leads to depressed contractile responses to beta-adrenergic receptor activation,
and predisposes hearts to hypertrophy and worsen heart failure [72].

Our present study further revealed the remodeling of the Adra1b networking following
myocardial infarction (group IN) and normalization by the post-myocardial infarction stem
cell treatment (group IT) (Figure 6). The coordination analysis provided additional insights
that would not be available through a simple comparison of expression levels of individual
genes. For instance, Crem (CAMP-responsive element modulator) coordination with Adra1b
was switched from synergistic in “NN” to antagonistic in “IN”, and practically independent
in “IT”, indicating a major change in the interaction of the two genes. While the critical
role of Crem in β-adrenoreceptor-mediated cardiac dysfunction is documented [73], there
is not yet any report concerning the interaction between Crem and Adra1b and how such
an interaction might impact the heart physiology. Since Crem is a transcription factor
that mediates high-glucose response in cardiomyocytes [74], its relationship with Adra1b
deserves further investigation.

5. Conclusions

So far, the GFP power to characterize the organization of the transcriptome was
successfully tested in several other studies on neurological diseases (e.g., [35,57–59]), pul-
monary hypertension [60], and cancers [26,30,31,33,55,70]. GFP proved also its ability to
characterize the transcriptomic networks linking ionic channels and transporters across
the heart chambers [6] as well as different cell types in insert systems [75]. The present
report provides evidence of the advantages of using GFP analyses to decode the remod-
eling of the gene networks in the myocardial tissue following myocardial infraction or
systemic hypoxia.
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Appendix A Mathematical Formulae

1. Average expression level (AVE):

AVE(condition)
i = 1

Ri

Ri

∑
k=1

µ
(condition)
i,k = 1

Ri

Ri

∑
k=1

(
1
4

4
∑

j=1
a(condition)

i,k,j

)
, where :

condition = “NN”, “IN”, “NT”, “IT”, “N1”, “N2”, “N4”, “I1”, “I2”, “I4”, “C1”, “C2”, “C4”
Ri = number of spots probing redundantly gene “i”,

a(condition)
i,k,j = normalized expression level of gene “i” probed by spot “k” on biological replica “j” in “condition”

(A1)

2. Relative Expression Variability (REV):

REV(condition)
i =

1
2

(√
ri

χ2(ri; 0.975)
+

√
ri

χ2(ri; 0.025)

)
︸ ︷︷ ︸

chi-square mid-interval estimate of the coefficient of variation

√√√√√√√√
1
Ri

Ri

∑
k=1

 s(condition)
ik

µ
(condition)
ik

2

︸ ︷︷ ︸
pooled CV for all spots probing gene i

× 100%

χ2(ri; α) = chi-square for ri(= 4Ri − 1 = number of degrees of freedom) and probability α

µik = average expression of gene i probed by spot k (= 1, . . . , Ri) in the 4 biological replicas
sik = standard deviation of the expression level of gene i probed by spot k

(A2)

3. Expression correlation with other gene (COR):

COR(condition)
ig =

Ri
∑

ki=1

Rg
∑

kg=1

(
4
∑

j=1

(
a(condition)

i,k,j − AVE(condition)
i

)(
a(condition)

g,k,j − AVE(condition)
g

))
√√√√ Ri

∑
ki=1

(
4
∑

j=1

(
a(condition)

i,k,j − AVE(condition)
i

)2
)

Rg

∑
kg=1

(
4
∑

j=1

(
a(condition)

g,k,j − AVE(condition)
g

)2
) (A3)

4. Cut-off criteria for significant regulation:

∀A = NN ∨ N1∨ N2∨ N4; ∀B = IN, IT ∨ I1, C1∨ I2, C2∨ I4, C4∣∣∣x(A→B)
i

∣∣∣ > CUT(A→B)
i = 1 + 1

100

√
2
((

REV(A)
i

)2
+
(

REV(B)
i

)2
)

, where :

x(A→B)
i =

{
AVE(B)

i /AVE(A)
i i f AVE(B)

i ≥ AVE(A)
i

−AVE(A)
i /AVE(B)

i i f AVE(B)
i < AVE(A)

i

(A4)

5. Weighted Individual (gene) Regulation (WIR):

WIR(A→B)
i = AVE(A)

i

(∣∣∣x(A→B)
i

∣∣∣− 1
)

︸ ︷︷ ︸
departure from the normal level

x(A→B)
i∣∣∣x(A→B)
i

∣∣∣
(

1− p(A→B)
i

)
︸ ︷︷ ︸

confidence of regulation

where : p(A→B)
i = p-val of the heteroscedastic t-test of AVE(B)

i = AVE(A)
i

(A5)

6. Individual (gene) Transcriptomic Distance (ITD):

ITD(A→B)
i ≡

√√√√√√
(

AVE(B)
i −AVE(A)

i〈
AVE(A)

i

〉
all i

)2

+

(
REV(B)

i −REV(A)
i〈

REV(A)
i

〉
all i

)2

+

〈(
COR(B)

i,j −COR(A)
i,j

)2
〉

all j〈(
COR(A)

i,j

)2
〉

all j

where :
〈

Y(A)
i

〉
gene subset

= average characteristic “Y” over a gene subset in condition “A”

(A6)

7. Gene Expression Recovery (GER):



J. Pers. Med. 2022, 12, 1246 18 of 21

GER(IN→IT;NN)
Γ =

({DX}+ {UX})︸ ︷︷ ︸
beneffic

−({XD}+ {XU})︸ ︷︷ ︸
side effects

({DX}+ {UX})︸ ︷︷ ︸
beneffic

+({XD}+ {UD})︸ ︷︷ ︸
side effects

+({DD}+ {UU})︸ ︷︷ ︸
residual alteration

+({DU}+ {UD})︸ ︷︷ ︸
overtreatment

× 100%

where : D = “down”, U = “up”, X = “not”
{PQ} = # of Γ-genes P = D/U/X regulated in IN and Q = D/U/X regulated in IT

Possible outcomes :

(1) GER(IN→IT;NN)
Γ = 100% (ideal)⇐ {XD}+ {XU}= 0 ∧ {DD}+ {UU}= 0 ∧ {UD}+ {DU} = 0

(2) 0 < GER(IN→IT;NN)
Γ < 100% (positive) ⇐ 0 < {XD}+ {XU} < {DX}+ {UX}

(3) GER(IN→IT;NN)
Γ = 0% (null) ⇐ {DX}+ {UX}−{XD} − {UD} = 0

(4) GER(IN→IT;NN)
Γ < 0 (negative) ⇐ {XD}+ {XU} > {DX}+ {UX}

(A7)

8. Pathway Restoration Efficiency (PRE):

PRE(IN→IT;NN)
Γ =

(
1− WPR(NN→IT)

Γ

WPR(NN→IN)
Γ

)
× 100%

Possible outcomes :
(a) WPR(NN→IT)

Γ = 0⇒ PRE(IN→IT;NN)
Γ = 100% , ideal

(b) 0 < WPR(NN→IT)
Γ < WPR(NN→IN)

Γ ⇒ 0 < PRE(IN→IT;NN)
Γ < 100% , positive

(c) WPR(NN→IT)
Γ = WPR(NN→IN)

Γ ⇒ PRE(IN→IT;NN)
Γ = 0% , null

(d) WPR(NN→IT)
Γ > WPR(NN→IN)

Γ ⇒ PRE(IN→IT;NN)
Γ < 0% , negative

(A8)
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