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ABSTRACT
MicroRNAs are key components of cellular regulatory networks, and breakdown
in miRNA function causes cascading effects leading to pathophenotypes. A better
understanding of the role of miRNAs in diseases is essential for human health. Here,
we have devised a method for comprehensively mapping the associations between
miRNAs and diseases by merging on a common key between two curated omics
databases. The resulting bidirectional resource, miR2Trait, is more detailed than earlier
catalogs, uncovers new relationships, and includes analytical utilities to interrogate and
extract knowledge from these datasets. miR2Trait provides resources to compute the
disease enrichment of a user-given set of miRNAs and analyze the miRNA profile
of a specified diseasome. Reproducible examples demonstrating use-cases for each
of these resource components are illustrated. Furthermore we used these tools to
construct pairwise miRNA-miRNA and disease-disease enrichment networks, and
identified 23 central miRNAs that could underlie major regulatory functions in the
human genome. miR2Trait is available as an open-source command-line interface in
Python3 (URL: https://github.com/miR2Trait) with a companion wiki documenting
the scripts and data resources developed, under MIT license for commercial and non-
commercial use. A minimal web-based implementation has been made available at
https://sas.sastra.edu/pymir18. Supplementary information is available at: https://doi.
org/10.6084/m9.figshare.8288825.v3.

Subjects Bioinformatics, Biotechnology, Computational Biology, Genomics, Molecular Biology
Keywords miRNA , Enrichment analysis, Network analysis, Diseasome, Webserver, Gene
regulation, Disease genes, miRNA-disease associations, Knowledge base

INTRODUCTION
MicroRNAs (miRNAs) are key elements of post-transcriptional regulation in the genomic
architecture of both prokaryotes and eukaryotes. They are short non-coding RNAs of about
18–25 nucleotides, first observed in C. elegans (Lee, Feinbaum & Ambros, 1993). In their
canonical role in RNA silencing, the miRNA binds to the cognate mRNA and destabilizes
it, thereby priming the transcript for degradation. A single miRNA is capable of silencing
the expression of several genes by relaxing the specificity of hybridisation. MiRNA-
based regulation plays crucial roles in health, and miRNA dysregulation is a common
mechanism in the etiology of complex diseases, viz. cardio-vascular, auto-immune and
neuro-degenerative diseases, and cancers (Min et al., 2009; Calin et al., 2004; Tai, 2011).
About half of all miRNA genes are present in cancer-related genetic loci (Calin et al., 2004),
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Figure 1 miRNA nomenclature mirrors the pathway of its biogenesis. (A) identical miRNAs encoded
by different genetic loci (1,2, . . . ); (B) source arm of the miRNA duplex (5p or 3p); and (C) nearly identi-
cal miRNAs that differ in one or two positions (a,b, . . . ).

Full-size DOI: 10.7717/peerj.14146/fig-1

and they are known to play key roles in tumorigenesis and cancer progression (Liu et al.,
2018; Hayes, Peruzzi & Lawler, 2014;MacFarlane & Murphy, 2010).

The naming of human miRNAs in the miRBase registry (https://www.mirbase.org)
is related to the miRNA maturation pathway (Fig. 1). In brief, miRNA subtyping with
numbers (−1, 2, . . . ) indicates identical miRNAs that derive from different genomic
regions; miRNA subtyping with letters (a, b, . . . ) indicates nearly identical miRNAs
that differ in only one or two positions; and miRNA designations -5p and -3p refer to the
source arm of themiRNA duplex fromwhich thematuremiRNA is derived. It is themature
miRNA that binds to the mRNA and inhibits/regulates protein translation (MacFarlane
& Murphy, 2010). It is noteworthy that the sequence responsible for miRNA-specificity of
the mRNA is not translated, thus separating the protein-coding region of a gene from the
miRNA-binding site in sequence space.

Existing databases of miRNA–disease associations involve tedious manual curation
or are limited in scope and evolution. miR2Disease was one of the earliest catalogues
of miRNA-disease associations, providing relationships between 349 miRNAs and 163
diseases (Jiang et al., 2009). HMDD was developed by Li et al. (2014) to provide a more
comprehensive database of miRNA-disease associations. It used text mining followed by
manual annotation for identifying miRNA-disease connections. The current version of
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HMDD, version 3.2, contained associations between 1206 miRNAs and 893 diseases, and
included miRNA subtype information (Huang et al, 2019). Only one arm of the mature
miRNA, indicating the -5p or -3p source, is predominant in vivo, a vital annotation that is
missing in theHMDDdatabases. In this work, we have addressed the limitations of previous
efforts, and designed an algorithm to uncover the spectrum ofmiRNA–disease associations.
Our approach is based on integrating two expert-curated databases on a common
key. The resulting resource, miR2Trait, is comprehensive and representative, uncovers
novel relations, and provides assorted tools for investigating miRNA-disease associations.
miR2Trait can be queried by both miRNA and disease, and is available as both a web server
(https://sas.sastra.edu/pymir18) and command-line resource (https://github.com/miR2Trait/
or http://doi.org/10.5281/zenodo.7002878).

MATERIALS & METHODS
miRNA: disease mapping
Two expert curated databaseswere used as the source databases in the creation ofmiR2Trait:
(1) miRTarbase, a database of experimentally validatedmiRNA–target interactions (MTIs),
with >13,400 entries (Chou et al., 2018); and (2) DisGeNET, a widely used and standardized
knowledge management platform with >1,000,000 gene–disease associations (Piñero et al.,
2015). Both databases involved themapping of genetic information, in one case tomiRNAs,
and in the other, to diseases. This provided a clue to relating miRNAs and disease via the
bridge of genetic information (Fig. 2). In-house Python scripts were used to extract the
gene:miRNA and the gene:disease mappings from the respective databases as dictionary
data structures. The two dictionaries were merged on ‘gene’ to establish a dictionary of
miRNA:disease mappings. Similarly, an inverse dictionary of disease:miRNA mappings
was created.

Database creation
The dictionaries obtained above were used to populate relational tables in the construction
of two databases: (i) miRNAs and their associated diseases, and (ii) diseases and their
associated miRNAs. MySQL was used for encoding the databases.

Spectrum width calculation
The number of diseases with which an miRNA is associated is indicative of the breadth
of its regulatory impact, which could flag master regulator miRNAs (or regulatory hubs).
The disease spectrum width (DSW) of the ith miRNA is calculated after Qiu, Chen & Cui
(2012):

DSW(i)= di/DN (1)

where di isthe number of diseases associated with miRNA i and DN is the total number of
diseases in the database. Conversely the number of miRNAs associated with a given disease
could be indicative of a complex multifactorial pathology, and the miRNA spectrum width
(MSW) of the jth disease is given by:

MSW(j)=mj/mN (2)
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Figure 2 Design of miR2Trait. A back-to-back double bipartite network could be reduced to a single
bipartite graph by reductive mapping on the common key. Here, the target nodes of one database serve
as the source nodes of the second database. By bridging on these ‘genes’, a mapping between the source
nodes of the first database (miRNAs) and the target nodes of the second database (diseases) could be ob-
tained. Created with BioRender.com.

Full-size DOI: 10.7717/peerj.14146/fig-2

where mj is the number of miRNAs associated with the jth disease and MN isthe total
number of miRNAs in the database.

miRNA list enrichment analysis
Given a list of miRNAs that are collectively dys-regulated, it would be of interest to identify
which diseases would be enriched (or more likely to occur). Statistical techniques to
quantify such enrichment for genes as well as miRNAs exist (Li et al., 2018; Backes et al.,
2016; Çorapçıoğlu & Oğul, 2015; Rivals et al., 2007). Here we implement an open-source
tool to identify diseases in the miR2Trait database that are enriched for an input set of
miRNAs. Themethod uses a hypergeometric test to quantify the enrichment of each disease
in miR2Trait for the given set of miRNAs (in this case identical to the Fisher’s exact test)
(Fisher, 1922). The test follows the construction of the Fisher contingency table for each
disease, as illustrated in Table 1.

The statistical significance (p-value) of enrichment is computed using Python scipy
routines (http://www.scipy.org/), and diseases that pass a user-specified adjusted p-value
threshold (with an option to choose among three methods for multiple hypothesis
correction) are returned sorted by significance. In addition to significance, both the
web server and standalone tool calculate the effect size (log-fold) of each enrichment.

Diseasome analysis
Given an input set of diseases related in some way (called a diseasome), it would be
of interest to find shared dysregulated miRNAs. We approached this problem with an
abundance analysis of miRNAs in the diseasome, and identifying miRNAs that passed
a user-specified count. Such a set of miRNAs could constitute master regulators acting
on common pathways in the specified set of diseases. If we are interested in the miRNA
spectra of umbrella disease terms such as ’carcinoma’, instead of a specific set of diseases,
this is also allowed. In this case, diseases containing the general keyword are first identified,
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Table 1 Fisher’s contingency table for miRNA list enrichment analysis for one disease in the database.
Each cell value represents the count for the intersecting row and column.

miR2Trait miRNAs
associated
with disease

miRNAs
not associated
with disease

(Sum)

miRNAs in input a b a+b
miRNAs not in input c d c+d
(Sum) a+c b+d n

and then the miRNA abundance for this diseasome is computed in a manner similar to
above. A CLI script to compute the miRNA profile of a specified diseasome is provided
with miR2Trait (https://github.com/miR2Trait).

miR2Trait web server and standalone tools
A web interface using PHP to connect the user HTML front-end with the MySQL backend
was created to offer access to all the services developed, including the two databases and
the assorted tools. MiRNA list enrichment analysis (miLEA) was implemented using the
python DBI module, and receives the user’s miRNA list from the HTML form via PHP
intermediate. The command-line version of the enrichment analysis provides adjusted
p-value calculation using Bonferroni, Holm-Bonferroni or Benjamini–Hochberg (default)
correction. Other CLI scripts developed include:
(i) Query standalone miR2Trait by miRNA or disease
(ii) Retrieve miRNA-specific information from miRBase by user-given miRNA name(s) or
sequence(s).
(iii) Network creation: creating an miRNA-miRNA/disease-disease adjacency network
from miR2Trait dictionaries
(iv) Postprocessing constructed networks for consensus central nodes (miRNAs or diseases)

The user is referred to the wiki (https://github.com/miR2Trait/miR2Trait/wiki) for
reproducible examples and use-cases of all the scripts developed.

RESULTS
The mapping sizes extracted from the respective databases is given in Table 2. In summary,
2,599 miRNAs were mapped to 15,062 genes using miRTarbase, and 8,819 genes were
mapped to 13,075 diseases using DisGeNET. Merging the two relations yielded a mapping
between 2,595 miRNAs and 11,689 diseases (Table 2). This mapping laid the foundation
for the miRNA:disease and disease:miRNA databases, which could be freely downloaded
as csv files from aforementioned URLs. The density function of the mappings is shown in
Fig. 3.

Using the miRNA:disease db, miRNAs with the top ten DSWs were identified (Table 3).
Such miRNAs are potential master (or hub) regulators at the intersection of multiple
pathways, indicatively contributing to one-fifth of all diseases. Using the disease:miRNA
db, diseases with the top ten MSWs were identified (Table 4). Complex neurological
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Table 2 Establishing the miR2Trait mappings.Only four miRNAs from miRTarBase did not map to
any disease in the final analysis.

Database/resource Mapping relation Mapping size

miRTarBase miRNAs→Target genes 2,599→ 15,062
DisGeNET Genes→ Diseases 8,819→ 13,075
miR2Trait miRNAs→ Diseases 2,595→ 11,689

Figure 3 Density function plots of (A) miRNA-disease; and (B) disease-miRNAmappings. The mode
of the number of diseases/miRNA is about 389 and the mode of the number of miRNAs/disease is about 9.

Full-size DOI: 10.7717/peerj.14146/fig-3

Table 3 DSW of miRNAs.miRNA corresponding to the top ten DSWs are shown.

S.No miRNA DSW No. of
associated
diseases

1 hsa-miR-335-5p 0.22 2,530
2 hsa-miR-26b-5p 0.20 2,321
3 hsa-miR-124-3p 0.19 2,175
4 hsa-miR-16-5p 0.18 2,110
5 hsa-miR-92a-3p 0.17 1,974
6 hsa-miR-1-3p 0.16 1,913
7 hsa-miR-17-5p 0.16 1,912
8 hsa-let-7b-5p 0.16 1,864
9 hsa-miR-155-5p 0.16 1,856
10 hsa-miR-93-5p 0.16 1,766

conditions sweep >90% of all miRNAs, reflecting multifactorial, far from understood
aetiologies.

The miRNA Enrichment Analyzer computes both the odds-ratio size and significance
p-value for a given set of miRNAs. The input could be variable in the number of miRNAs
provided. We used ‘‘hsa-miR-346 hsa-miR-26a-5p hsa-miR-7-5p hsa-miR-34a-5p’’ as
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Table 4 MSW of diseases.Diseases corresponding to the top ten MSWs are shown.

S.No Disease MSW No. of
associated
miRNAs

1 Autosomal recessive predisposition 0.97 2,491
2 Schizophrenia 0.96 2,466
3 Intellectual disability 0.95 2,452
4 Low intelligence 0.94 2,421
5 Dull intelligence 0.94 2,421
6 Poor school performance 0.94 2,421
7 Mental deficiency 0.94 2,421
8 Mental retardation 0.94 2,421
9 Mental and motor retardation 0.92 2,381
10 Global developmental delay 0.92 2,381

Table 5 miRNA list enrichment analysis. Results for the query: ‘‘hsa-miR-2355-3p hsa-miR-214-3p hsa-
miR-4801’’, and containing the word ‘neoplasm’ are shown, sorted by adjusted significance (q-value). An
odds ratio (effect size) of ‘Inf’ indicates that the entire set of miRNAs is contained in the disease definition.

Disease q-value Odds-ratio

Colorectal Neoplasms 0.014 Inf
Neoplasm of the anterior pituitary 0.020 74.50
Stomach Neoplasms 0.022 Inf
Prostatic Neoplasms 0.027 Inf
Malignant neoplasm of ovary 0.034 43.32
Biliary Tract Neoplasm 0.035 42.83

a query with an adj. p-value (i.e., q-value) cutoff of 0.05. This returned a set of 4,121
significantly enriched diseases. As another example, we used a set of three random
miRNAs: ‘‘hsa-miR-2355-3p hsa-miR-214-3p hsa-miR-4801’’ as a query. This returned 830
significantly enriched diseases (Table 5). Dysregulation of key cancer-associated miRNAs
(Chan, Prado & Weidhaas, 2011) could contribute to the emergence of cancer hallmarks
(Hanahan &Weinberg, 2011) and could be tested likewise.

Analysis of diseasomes for over-represented miRNAs could yield valuable hypotheses
for further research, in terms of both pathophysiology and therapeutic options. In this
line, we pursued the investigation of diseasomes related to cancer. Since the evidence
for miRNA involvement in all stages of cancer including tumorigenesis, progression and
metastasis is well-established, we probedmiR2Trait for the keyword ‘Neoplasm’ diseasome,
and performed an miRNA occurrence analysis. We also performed occurrence analysis
for diseasomes identified using the keywords ‘Carcinoma’, ‘Sarcoma’, ‘Lymphoma’, and
‘Leukemia’. Table 6 shows the results of these analyses for 25 miRNAs ranked by the
‘Neoplasm’ occurrence analysis. MiRNAs documented in the literature as playing key roles
in various cancers appeared in the top miRNAs for each keyword (Sandoval-Bórquez et
al., 2017; Miyamoto et al., 2016; Zhang et al., 2015; Wang et al., 2018; Cloonan et al., 2008;
Xu et al., 2014; Robertson et al., 2014; Fabbri et al., 2016; Garzon et al., 2008;Marcucci et al.,
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Table 6 Diseasome analysis of miRNA over-abundance. Statistics for only the top 25 miRNAs from
‘Neoplasm’ occurrence analysis are shown with respect to cancer-related keyword searches.

‘Neoplasm’
rank

miRNA Carcinoma Leukemia Lymphoma Sarcoma

1 hsa-miR-34a-5p 43 21 17 16
2 hsa-miR-16-5p 47 24 15 18
3 hsa-miR-124-3p 42 16 18 21
4 hsa-miR-335-5p 41 25 17 20
5 hsa-miR-21-5p 45 12 17 15
6 hsa-miR-155-5p 48 17 17 18
7 hsa-miR-19a-3p 38 16 15 13
8 hsa-miR-17-5p 47 24 16 16
9 hsa-miR-125b-5p 36 16 15 21
10 hsa-let-7b-5p 35 15 13 20
11 hsa-miR-221-3p 35 15 – 17
12 hsa-miR-15a-5p 40 16 13 16
13 hsa-miR-130b-3p 33 11 11 11
14 hsa-miR-26b-5p 39 15 14 18
15 hsa-miR-181a-5p 37 17 14 16
16 hsa-miR-19b-3p 36 13 14 13
17 hsa-miR-106a-5p 42 13 17 15
18 hsa-miR-192-5p 41 20 11 14
19 hsa-miR-106b-5p 43 15 16 11
20 hsa-miR-218-5p 37 26 15 16
21 hsa-miR-24-3p 36 14 14 12
22 hsa-miR-27a-3p 41 21 12 10
23 hsa-miR-20a-5p 43 20 16 16
24 hsa-miR-454-3p 32 10 10 10
25 hsa-miR-30a-5p 47 16 13 14

2008; Calin et al., 2005; Stefano et al., 2010; Jima et al., 2010). Databases devoted to miRNA
associations in cancer have been developed (Yang et al., 2017; Sarver et al., 2018; Ahmed
et al., 2018), and our work here would augment efforts in this direction. Expression of
specific microRNAs has been recognized as a vital diagnostic/prognostic biomarker and
therapeutic target in a variety of cancers (Blenkiron et al., 2007; Sempere et al., 2007;Michael
et al., 2006; Iorio et al., 2005; Lowery et al., 2009; Lebanony et al., 2009;Ueda, 2010; Fridman
et al., 2010; Gutiérrez et al., 2010).

DISCUSSION
Benchmarking
Dedicated miRNA omics databases have been developed to aid researchers unravel
the role of miRNAs in biological processes (for e.g., see Ruepp et al., 2010; Keller et al.,
2011). Computational methods have also been advanced for inferring miRNA-disease
connections (Chen, Liu & Yan, 2012; Xuan et al., 2013; Qu et al., 2018). HMDDv3.2 is a
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334

875

884

.miR2Trait HMDDv3.2

Figure 4 Benchmarking against HMDDv3.2. The miRNA content in both miR2Trait and HMDDv3.2
have been compared here, and a Venn diagram shown with the unique complements and the overlap
between the two databases. A substantial number of miRNAs, 875 in total, are common to both the
databases. In such cases, miR2Trait could provide complementary information and analysis of the
miRNAs of interest. miRNAs unique to miR2Trait outnumber the miRNAs unique to HMDDv3.2 by a
factor of 2.5.

Full-size DOI: 10.7717/peerj.14146/fig-4

manually curated database of miRNA-disease associations based on text-mining. While
miR2Trait contains the full mature miRNA information, HMDD does not provide subtype
information such as -5p or -3p; 1a or 1b. The miRNA arm designation (5p or 3p) is a
major ingredient of disease etiology, and key to naming miRNAs (for e.g., the ones with the
top DSWs in Table 3). To compare the databases, it is therefore necessary to ’normalize’
the miRNA nomenclature between the databases (by suppressing the subtype information
in miR2Trait). This contracted the unique miRNAs in miR2Trait to 1,759 in number.
Following this, the databases were compared, and the results are shown in Fig. 4. Even
after contraction, miR2Trait appears more comprehensive in the catalog of miRNA-disease
associations. miR2Trait-unique miRNAs are 2.5-fold more in number than HMDDv3.2
- unique miRNAs (884 vs 334). The unique miRNA complements suggest directions for
research. Some of the diseases missed by miR2Trait could be those that involve deleterious
mutations in the miRNA-binding region of the gene itself. Finally, the significant size of
the overlap between the two databases increases confidence in the methods advanced here,
which are also easily extensible with updates to the underlying primary databases. These
observations further suggest the use of miR2Trait to complement HMDD.

Network analysis
The availability of two-way mappings between miRNAs and diseases with various analysis
tools paves the way to varied investigations. One direction would be to identify pairs of
miRNAs that lead to clusters of similar disease phenotypes. We addressed this question by
using the miRNA enrichment analyzer discussed herein to compute the disease enrichment
scores (2-tuples of BH-adjusted p-value and odds-ratio) of each miRNA-miRNA pair
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using Fisher’s exact test. This process is iterated over the entire set of miRNA-miRNA
pairs (2595*2595) to obtain an adjacency matrix of ∼3 million interactions. This matrix
was used to construct the corresponding network made of significant edges weighted
by the odds-ratio. The interactions were sorted by -log10 p-value and the top 10,000
interactions were used to construct the miRNA-miRNA adjacency network, yielding
2,442 nodes (and 10,000 edges). The network was read into Cytoscape (Shannon et al.,
2003), and centrality analysis was performed using CytoNCA (Tang et al., 2015). The
weighted versions of the following seven centrality measures were used: betweenness,
closeness, eigenvector, degree, network, information, and local average centralities. The
top 100 miRNAs from each centrality measure were used to obtain the consensus (five
or more measures) top miRNAs (Table 7; algorithm details and Python script given here:
https://github.com/miR2Trait/miR2Trait/wiki/Top-Nodes-from-Adjacency-Networks).
Edge-percolation centrality of the network was also computed using cytoHubba to rank
the miRNAs (Chin et al., 2014). The top 23 miRNAs contained 14 consensus miRNAs and
the top 75 contained all but one of the consensus miRNAs. Such a consensus list could
identify the critical regulatorymiRNAs in human for further investigation. A disease-disease
adjacency network was similarly constructed, and both the above adjacency networks and
the scripts to perform the network construction and analysis are available from miR2Trait
(https://github.com/miR2Trait).

Deployment
The miR2Trait web server and standalone CLI could be queried by either disease or
miRNA. The standard use-case would be to identify miRNAs associated with some disease.
For instance, a search by disease for ‘Myocardial infarction’ returned 1,445 associated
miRNAs. The top hits included hsa-miR-302a-3p, hsa-miR-302b-3p, hsa-miR-302c-3p,
hsa-miR-302d-3p, hsa-miR-367-3p and hsa-miR-367-5p, all of which are well-documented
in the literature (Sun et al., 2017). The top hits for a search by disease of ‘Alzheimer’s
disease’ included hsa-miR-9, hsa-miR-29a, hsa-miR34a, hsa-miR-106b, hsa-miR-125b,
hsa-miR-146a, and hsa-miR-155, again all of which are well-documented in the literature
(Leidinger et al., 2013). As a last example, the top hits for a search by disease of ‘Diabetes
mellitus’ included hsa-miR-577, hsa-miR-37a, hsa-miR-375, hsa-miR-181a, hsa-miR-17,
and hsa-miR-24, all of which are reported in the literature (Kim & Zhang, 2019;Guay et al.,
2011). The search term is case-insensitive, matches anywhere, and interpreted according to
regex grammar (https://dev.mysql.com/doc/refman/8.0/en/regexp.html#operator_regexp).
Such searches might yield miRNAs lacking documented disease connections, and offer
hypotheses for future investigations. In this regard, miR2Trait provides a script to retrieve
known information aboutmiRNAs frommiRBase upon querying with themiRNA name or
sequence (https://github.com/miR2Trait/miR2Trait/wiki/Querying-miRNA-information-
from-miRBase).

In summary, we have developed miR2Trait, a comprehensive resource for investigating
miRNA-disease associations, based on a simple yet surprisingly effective technique for
fusing two curated primary databases. One outcome of the approach has been the enhanced
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Table 7 Consensus identification of key miRNAs in disease development. Seven centrality measures
were used to identify the top 100 nodes in the miRNA-miRNA adjacency network and their consensus is
determined based on the number of measures that agree upon an miRNA (agreement ≥ 5). The consensus
miRNAs appear central even by the Edge-percolation centrality (EPC) measure.

SNo miRNA Agreement EPC rank,
score

1 hsa-miR-1253 7 36, 208
2 hsa-miR-6755-5p 7 13, 247
3 hsa-miR-3911 6 62, 188
4 hsa-miR-6804-5p 6 16, 232
5 hsa-miR-4689 6 12, 247
6 hsa-miR-873-5p 6 11, 247
7 hsa-miR-548aq-3p 5 8, 254
8 hsa-miR-548x-3p 5 6, 257
9 hsa-miR-548ah-3p 5 3, 260
10 hsa-miR-6885-3p 5 28, 222
11 hsa-miR-548aj-3p 5 7, 255
12 hsa-miR-548j-3p 5 5, 258
13 hsa-miR-548ae-3p 5 2, 261
14 hsa-miR-543 5 41, 203
15 hsa-miR-194-5p 5 20, 229
16 hsa-miR-3140-3p 5 73, 181
17 hsa-miR-3156-3p 5 43, 202
18 hsa-miR-548am-3p 5 4, 260
19 hsa-miR-892b 5 10, 253
20 hsa-miR-4280 5 n/a
21 hsa-miR-802 5 25, 224
22 hsa-miR-877-5p 5 1, 266
23 hsa-miR-425-3p 5 26, 223

interpretability and transparency of the resource constituents, aspects that are lost in more
complex methods to arrive at reliable miRNA-disease associations.

CONCLUSIONS
MicroRNAs play key roles in health and the development of disease by virtue of their crucial
regulatory activities. To document miRNA-disease associations, we used a novel method
integrating two curated and validated sources of miRNA-gene and gene-disease relations,
and created vastly expanded databases of miRNA-disease and disease-miRNA associations.
A set of tools to interrogate these databases and uncover novel findings has been developed.
Taken together,miR2Trait provides a starting point for the investigation of themiRNA-ome
in the context of disease. A web-server interface to all the functionalities has been developed
and is available at https://sas.sastra.edu/pymir18/. The service allows for flexible querying
using regular expression-based pattern matching. It includes a tool for miRNA-enrichment
analysis that would enable the identification of statistically over-represented diseases in
a user-given list of miRNAs. This would help formulate hypotheses of miRNA-mediated

Babu and Palaniappan (2022), PeerJ, DOI 10.7717/peerj.14146 11/17

https://peerj.com
https://sas.sastra.edu/pymir18/
http://dx.doi.org/10.7717/peerj.14146


common mechanisms underlying multiple disease dysregulation pathologies. A number of
examples have been discussed to illustrate the use-cases for the resource. The resource has
also been benchmarked with the best alternative miRNA-disease database (HMDDv3.2).
Further, the source code for the entire project is made freely available, and includes a
plethora of tools for working with the resource, along with an extensive wiki. All the data
developed in the project are freely available as supplementary information, including the
miRNA-miRNA and disease-disease adjacency networks.
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