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Abstract

Background: While invasive social distancing measures have proven efficient to control the spread of pandemics
failing wide-scale deployment of vaccines, they carry vast societal costs. The development of a diagnostic
methodology for identifying COVID-19 infection through simple testing was a reality only a few weeks after the novel
virus was officially announced. Thus, we were interested in exploring the ability of regular testing of non-symptomatic
people to reduce cases and thereby offer a non-pharmaceutical tool for controlling the spread of a pandemic.

Methods: We developed a data-driven individual-based epidemiological network model in order to investigate
epidemic countermeasures. This models is based on high-resolution demographic data for each municipality in
Norway, and each person in the model is subject to Susceptible-Exposed-Infectious-Recovered (SEIR) dynamics. The
model was calibrated against hospitalization data in Oslo, Norway, a city with a population of 700k which we have
used as the simulations focus.

Results: Finding that large households function as hubs for the propagation of COVID-19, we assess the intervention
efficiency of targeted pooled household testing (TPHT) repeatedly. For an outbreak with reproductive number
R = 1.4, we find that weekly TPHT of the 25% largest households brings R below unity. For the case of R = 1.2, our
results suggest that TPHT with the largest 25% of households every three days in an urban area is as effective as a
lockdown in curbing the outbreak. Our investigations of different disease parameters suggest that these results are
markedly improved for disease variants that more easily infect young people, and when compliance with self-isolation
rules is less than perfect among suspected symptomatic cases. These results are quite robust to changes in the testing
frequency, city size, and the household-size distribution. Our results are robust even with only 50% of households
willing to participate in TPHT, provided the total number of tests stay unchanged.

Conclusions: Pooled and targeted household testing appears to be a powerful non-pharmaceutical alternative to
more invasive social-distancing and lock-down measures as a localized early response to contain epidemic outbreaks.
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Background
Protocols for testing the presence of COVID-19 (Coron-
avirus disease of 2019) were available [1] well before it was
declared a pandemic by the World Health Organization
on March 11, 2020 [2]. In contrast, despite an unprece-
dented international effort to develop vaccines against
SARS-Cov-2 (Sudden Acute Respiratory Syndrome Coro-
navirus 2), the large-scale distribution of a successful
vaccine has still not fully materialized world-wide. Due to
time-consuming clinical trials that any vaccine candidate
has to pass, this asymmetry is likely to characterize the
majority of new virus pandemics that may emerge in the
future. Thus, exposure to a new virus pandemic is char-
acterized by at least a 12 month window when accounting
for the time lag between production launch and appear-
ance of a substantial intervention effect from a vaccine [3].
During this time, we are forced to curb spread through
exploiting interventions provided by population testing
and other non-pharmaceutical measures, such as invasive
social distancing, and community, city and region-wide
lock-downs [4–9]. However, these interventions carry vast
societal costs [10].
The ability of a given test regime to inhibit spread has

a substantial impact on the need for other measures: the
greater the effect of testing, the fewer social restrictions
need to be invoked, some of which carry huge societal
costs compared to the expenses attached to testing. Thus,
the identification of optimal test regimes in terms of effi-
cacy, logistical feasibility and economic cost as a function
of infection dynamics, deserves close attention. Here we
show that, for any pandemic-causing virus behaving sim-
ilar to SARS-CoV-2 [11], localized targeted testing of
large households and subsequent quarantining of positive
cases, is a highly efficient strategy for getting the infection
dynamics under control.
Most countries have implemented a COVID-19 test

regime targeting symptomatic cases combined with con-
tact tracing. In addition to the substantial economic costs
related to contact tracing, there are several inherent prob-
lems associated with this approach. First, the time from
exposure to onset of symptoms is estimated to be 2-12
days, with a mean of 5.5 [12]; Second, there is typically
a multi-day lag after the first onset of symptoms until a
test is performed; Third, voluntary opt-in symptomatic
testing will leave many people with weaker symptoms
untested for a multitude of socioeconomic reasons [13];
Finally, the obvious inability to systematically identify the
considerable fraction of asymptomatic spreaders [14–16]
implies that an important infection source is not targeted.
Even with an exemplary implementation of symptomatic
testing and contact tracing, a large number of the uncov-
ered positive cases will have spent a significant portion
of their infectious period unmitigated, and only a limited
number of the potential disease-transmission chains in a

society will be severed. This warrants the search for alter-
native feasible test regimes lacking the shortcomings of
symptomatic testing.
One of the primary obstacles to widespread regular test-

ing of large populations is limited laboratory capacity for
analyzing samples. One possible strategy to mitigate this
obstacle is based on pooling samples: rather than ana-
lyzing each sample individually, parts of samples from
different individuals (forming a pool) are combined and
analyzed together. The return of a positive result will be
for the group as a whole without specifying which indi-
vidual(s) in the pool are infected [17]. If appropriate, a
positive pooled test can then be followed up by individual
analysis of the remaining sample from each person in the
pool in order to identify which of the pool participants are
infected. An important concern when conducting pooled
testing is the dilution of samples, leading to a possible loss
in sensitivity and an increased number of false negatives.
For PCR (polymerase chain reaction) testing for COVID-
19, it has been found that pools of up to 64 individuals can
be done with minimal loss of sensitivity [18].

Methods
Identification of demographic and epidemic correlates
In order to get a general idea of population-wide demo-
graphic parameters relevant to spread of COVID-19 that
could serve as the basis for mitigation strategies, we pulled
detailed demographic data from France’s National Insti-
tute of Statistics and Economic Studies (INSEE) [19] com-
bined with epidemiological data from the French Agency
for Public Health (Santé publique) [20] for the 96 Euro-
pean departments of France (Fig. 1). France was chosen
as a target for this type of analysis for three main reasons:
First, while both hospitalization and demographic data
were available for many developed countries, the French
data are readily accessible in bulk machine-readable for-
mats and in high level of detail; Second, both hospital-
ization and demographic data were aggregated for the
same administrative subdivisions (departments), allowing
exact matching; Third, France saw extensive spread of
COVID-19 relatively early by European standards.
The INSEE data set provides information for geographic

coordinates, total population, surface area, density, house-
hold size and age distribution for each department of
France. In order to get a general idea of how each of these
demographic measures relate to epidemic spread, we used
the Spearman rank correlation coefficient with hospital-
ization numbers across all French departments located in
Europe as a guiding metric.

Building a municipality IBM network
We generate a high-fidelity individual-based model (IBM)
for a single municipality by creating a set of individuals
corresponding to the population Nm of that municipality.
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To each individual, we assign a list of personal attributes,
some of which are immutable (such as age) while others
(such as disease state) change with time.
These individuals are organized into a multi-layer net-

work model, consisting of nine layers. Further, an individ-
ual can only be present in a single of the layers b)-h). The
layers are: a) Household, b) Day-care, c) Primary school, d)
Secondary school, e) High school, f ) Workplace, g) Nurs-
ing home, h) Hospital, and i) Generic contact network.
Layers a)-g) each consist of many groups, and each indi-
vidual is only member of at most one group in each layer.
A group is designed as a k-clique, i.e. where all members
of a group are in contact. With the exception of nursing
home residents, all individuals are present in layer a), and
in one of layers b)-h). Layer i) is different from the rest:
It consists of a single group of which all nodes are mem-
bers. Instead of functioning as a clique where each node
has an equal chance of coming into contact with each
other node, each node is assigned a personal activity level
which indicates the possible number of interactions it can
enter into each day, in order to represent how highly social
individuals can act as potential super-spreaders.
Statistics Norway (SSB) [21] collects detailed data on

the composition of households (both by number of resi-
dents and family type), on the number and size of schools,
and number of employers by amount of employees, as
well as age pyramids for the whole population. Using
the API (application programming interface) provided by
SSB, we were able to obtain relevant demographic param-
eters for any arbitrary Norwegian municipality. Where
municipal-level data is unavailable, such as number of
staff at educational and care institutions, we default to
national averages.

SEIR-type epidemiological dynamics
Each individual in the IBMmodel is either healthy, in var-
ious states of infection, or recovered from the disease:
Susceptible (S); Exposed (E); Infected, asymptomatic (Ia);
Infected pre-symptomatic (Ip); Infected, symptomatic (Is);
Hospitalized (H); Intensive care (ICU); Recovered (R); or
Dead (D). The different states and their possible tran-
sitions are captured by the state-transition schematic of
Supp. Figure 2.
The default state is susceptible, in which an individual

will remain indefinitely unless exposed by contact with an
infected direct contact in any layer. For each infected indi-
vidual in a susceptible individual’s daily contact network,
there is a probability (depending on the type of layer, see
Supp. Table 1) that the susceptible individual enters the
exposed state. Once exposed, an individual’s progression
through the states of infection is no longer dependent on
network dynamics, but rather on state transition proba-
bilities determined by that person’s age [22], as well as the
distribution of each disease state duration (Supp. Table 1).

At each time point, an individual will store four points
of information about their progression through the SEIR
states: current state, date of last change of state, next state,
and date of next change of state. Each day, the model
updates the states as needed. Upon entering a new state,
the model selects the following state according to proba-
bilities and waiting times specified in Supp. Figure 2 and
Supp. Table 1. Once the next state is determined, the dura-
tion for which the individual will remain in the recently
entered state is generated according to a formula of one
day plus a Poisson distributed variable determined by that
state’s specific typical duration λ. The date of next change
is set accordingly. Note that our SEIR-model uses age-
stratified transition rates, where the age of an individual
decides which of the age groups that individual is part of.
Supp. Table 1 shows the rates used for the different SEIR
transitions of Supp. Figure 2.
Each individual’s SEIR state determines to what extent

they spread the disease in two different ways. The first
is in determining the behavior of a given individual, with
symptomatic individuals removed from non-household
layers, and hospitalized individuals similarly removed
from their households. In addition, the infectiousness of
a given type of contact depends on whether an individ-
ual is symptomatic, pre-symptomatic (more infectious) or
asymptomatic (less infectious).

Model calibration
While transition probabilities and state durations could be
set on the basis of clinical data, no direct data for the prob-
ability of infection by type of interaction was available.
Therefore, infection probabilities for each layer needed
to be determined indirectly by fitting epidemic curves
to hospitalization data. While available, we rejected con-
firmed case counts as an accurate descriptor of epidemic
spread during the initial months of the pandemic, as the
gradual expansion from a limited testing capacity had as
a consequence that the ratio of confirmed to actual cases
would change with time. Using hospitalization data for
Oslo [23] during the 2.5-month period from March 1st
to May 15th, 2020 as a target (Fig. 2A, red line), we cali-
brated the infectivity of each layer by subjecting the model
to the same course of shutdowns and re-openings as those
mandated by Norwegian authorities in the same period.
We implemented a manual-fitting procedure for the sim-
ulated hospitalization curve versus the actual data by only
adjusting the infection probabilities until an acceptable fit
was reached according to the following criteria: (1) slope-
matching with both increasing and decreasing slope of the
empirical data (Fig. 2A, red curve), (2) the location (date)
and duration of the peak of the empirical hospitaliza-
tion data , (3) actual hospitalization levels-fitting between
confidence intervals for the duration of the calibration
simulation. Additionally, we checked that (4) the fraction
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Fig. 1 Simulation results and effectiveness of targeted pooled household testing (TPHT) on COVID-19. (A) Fitting the model to Oslo hospitalization
data. We plot the mean predicted number of hospitalizations (black) and confidence interval (2σ , dashed). Actual Oslo hospitalizations (red) were
used as calibration (until May 15th). Hospitalization data May 15th- August 30th (green) were not used to determine model parameters. (B) Effect of
TPHT in response to a sudden rise in cases (reaching 1,000 symptomatic individuals), assuming general infectivity parameters similar to those of Oslo
in late May 2020 but with 75% increased infectivity of random contacts giving R = 1.2. (C) Predicted number of deaths and infections for different
TPHT testing fractions corresponding to panel (B), relative to no testing. Panels (D)-(F) use same parameters as panel (B), except with a 113%
increased infectivity of random contacts giving R = 1.4. (D) Effect of test frequency and fraction on R, for TPHT (left) and random pooled household
testing (right). Dashed and solid lines indicate isoclines for R = 1 and constant test density, respectively. Optimal point is marked with red circle. (E)
Response of weekly TPHT to varying city size. We scale the population of the baseline Oslo model (γ = 1) to generate larger (γ > 1) or smaller
networks with household, school, daycare, workplace and nursing home size-distributions unchanged. (F) Response of weekly TPHT to changes in
distribution of household size, relative to the baseline Oslo model (α = 0). For α > 0, a portion of households are each split into a new pair, yielding
a smaller average household size than the baseline. For α < 0, a portion of the households are pairwise merged, yielding a larger average
household size than the baseline. Household, school, daycare, workplace and nursing home size-distributions are kept unchanged. (G) COVID-19
stopping time (number of days until symptomatic cases are reduced by 75%) in response to changing days between tests (left) and fraction of
weekly TPHT tests (right). Stopping times longer than 100 days are truncated

of computed household infections was within the 35-45%
band seen in officially reported weekly values.

Implementation of intervention measures

A high-fidelity IBM allows for the implementation of
detailed interventions, where contact patterns of a selec-
tion, or all, of the individuals may be modified. It is
thus straightforward to conduct computational experi-
ments where some or all schools are closed or partially
closed, various levels of social distancing are included, or
testing and vaccination is administered. The most basic
intervention strategy consists in locking down various

IBM layers. How this is implemented in detail depends on
the layer:

• For day care facilities as well as schools we specify an
age-dependent cut-off, such that children above the
specified age are temporarily removed from the layer.
This allows us to simulate a partial shutdown of
schools with a gradual re-opening as implemented by
Norwegian authorities in the spring of 2020.

• In the work layer, we implement a partial shutdown
by specifying that a fraction of cliques, intended to
represent workplaces where work-from-home is
feasible, are disabled.
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• In the random contact layer, lockdown and general
social distancing measures are implemented by
reducing the daily number of contacts by a specified
fraction.

• The household and nursing home layers are never
disabled.

In addition to restrictions on the general population, the
quarantining of an individual is represented by disabling
workplace, school, and random layer spread for that indi-
vidual. By default, symptomatic individuals will automati-
cally go into quarantine when symptoms begin tomanifest
(i.e, when transitioning to the symptomatic state). When
simulating testing protocols (for details see Supp. text),
asymptomatic and pre-symptomatic individuals are simi-
larly entered into quarantine upon testing positive, as are
members of their households. In the absence of testing,
asymptomatic and pre-symptomatic individuals remain
infectious in all layers in which they are ordinarily present.
In this article, we propose and evaluate a testing and

quarantine protocol that we call Targeted Pooled House-
hold Testing (TPHT), defined by regular and scheduled
pooled testing [24] of the largest households in a region
followed by quarantining of the entire household upon
a positive pooled test. We begin by both setting a test
capacity (in number of households/pools) and an inter-
val i between tests. The next step is to identify the largest
households in the population and randomly assign a fixed
date of first test between zero and i to each household.
For example, setting i = 7 would correspond to giving
each household a specific day of the week on which it
would then be subjected to a pooled test, which returns
a positive result if any of the members in the household
are in the Ia, Ip or Is states. From then on, all members
of the household remain in quarantine until the house-
hold as a whole returns a negative test (assuming recovery
entails immunity, confirmed recovered individuals could
be exempt earlier, as whether or not an immune individual
is quarantined has no impact on spread).
Households are a promising target for pooled testing for

several reasons. First, we find a close association between
the percentage of large households and prevalence in an
area (see “Results” section). As a risk factor, household
size also forms a clear criterion which is objectively quan-
tifiable and difficult to address by other means. Due to
the high probability of within-household transmission and
the difficulty of avoiding contact in close familial rela-
tionships, in particular when involving children, robust
disease control would likely entail whole-household quar-
antine even if only one member is initially identified as
sick. The need for a household-wide quarantine reduces
the need to perform follow-up analysis of individual sam-
ples if this becomes prohibitive due to high prevalence.
Even very large households are well within the limits of

reasonable pool sizes in order to avoid loss of sensitivity,
with 16 samples in a pool still maintaining a sensitivity of
96% [18].

Sensitivity to demographic parameters

To assess the generality of our results to other popula-
tion regions, we investigated the effect of independently
varying the population size (Fig. 2F) and the household
size-distribution (Fig. 2G) while conducting weekly TPHT
(for details on how we adjusted these characteristics, see
Supp. Text). Using a population multiplier (γ ), we scaled
the size of our base-line model (γ = 1) while keeping all
other demographic distributions unchanged.
To investigate how changes to the household-size dis-

tribution impact the ability of TPHT to curb spread, we
introduced a household-split factor α that determines if a
pair of households should be joined (α < 0) or a single
household should be split into two (α > 0), while keeping
the population size unchanged (see Supp. Text for details).

Results
Epidemiological observations

In order to reduce the reproductive number R of a spread-
ing process, network theory has shown that it is effective
to immunize high-connectivity nodes (hubs) in heteroge-
neous systems [25, 26]. Thus, the detection and isolation
of hubs in social interaction networks can be considered
the cousin of vaccination: while it does not prevent the
primary infection, it does prevent secondary infections.
Anticipating that private households are major hubs for
the spread of COVID-19, we analyzed in-depth contact-
tracing data available for 5,531 of the laboratory con-
firmed cases occurring in Norway for a 30-week period
after the outbreak. The data confirm the most likely loca-
tion for exposure to be private households (37.4%) [27]. A
recent report from the UK Scientific Advisory Group for
Emergencies (SAGE) also emphasizes the clear connec-
tion between increasing size of a household and increasing
risk of infection and mortality [28].
Calculating the correlation between available demo-

graphic variables and the extent of COVID-19 hospital-
ization in France, we find that the strongest correlates are
dominated by household and household-related variables
(Fig. 1A). In particular, the strongest correlated variable
is the fraction of households with more than 4 persons
(Fig. 1B), in contrast to households with more than 1 per-
son (Fig. 1C). Similarly, the population shares of young
adults (ages 20 − 39 years) and preschool children are
amongst the four strongest positive correlates, indicat-
ing a link between families with children and COVID-
19 spreading. In contrast, the population share of older
people (ages 60+ years) is strongly negatively correlated
with the spread of the disease.
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Fig. 2 Demographic parameters associated with COVID-19 spread in France. (A) Correlation histogram (positive, green; negative, red) shows larger
household sizes significantly correlated with levels of COVID-19 hospitalizations. Single (double) star indicates Bonferroni-corrected significance
P < 0.01 (P < 0.001). Panels (B) and (C) show scatter plots of confirmed cases (as percentage of population) for the 96 departments of European
France as function of the percentage of households larger than four persons and one, respectively. Size of markers is proportional to the population
of each department

Simulation results
The model is able to obtain a close fit with the hospital-
ization data used for calibration (Fig. 2A, red line). Addi-
tionally, the parameters identified also prove predictive
within confidence intervals for the period from mid-May
to at least late August (Fig. 2A, green line),resulting in a
predicted household infection fraction of 45%. In particu-
lar, the identified parameters (Supp. Table 1) correspond
to an expected reproductive number of R ≈ 0.9 for the
period from May 15th until the end of June. Assured by
the above validation results, we investigated the ability
of weekly TPHT to contain an outbreak of 1,000 symp-
tomatic cases in Oslo, a city with ∼ 700, 000 inhabitants
(see Supp. Text for details). We tested the infection spread
situation with R = 1.2 (Fig. 2B), obtained by increasing the

chance of infection in the random contact layer by 75%.
This is a little more than the estimated R = 1.1 value for
Oslo in September, 2020 [29].We find that a TPHT involv-
ing a mere 2.5% of the households is able to noticeably
reduce the number of cases (see Supp. text for details on
TPHT selection). A weekly 10% TPHT-level reduces the
number of infected by ∼ 55% and dead by 45% relative to
no testing (Fig. 2C). It should be noted that the number
of PCR-based tests associated with a 10% pooled TPHT-
level is the same as what is necessary to individually test
5% of the Oslo population weekly.

Impact of testing quantity
Assuming a situation with an R = 1.4, similar to the
experience of many European countries during fall 2020
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[30], we explored the ability of TPHT to reduce R by
varying the frequency and fraction of households to be
tested (Fig. 2D). We determined the optimal balance
between frequency of testing and number of tests needed
to achieve the critical point R = 1 by finding the den-
sity of daily TPHT that intersects the R = 1 isocline to
be ρ = x/y = 0.03, with x being the fraction of TPHT
performed per y-day interval. The model predicts that the
optimal allocation to contain the epidemic with R = 1.4
is to implement a testing regime where the 18% largest
households are tested every six days (see Supp. Text,
“Description of the TPHT process”, for details), corre-
sponding to a number of tests equalling 3% of households
every day. In comparison, we find that regular pooled
testing of randomly selected households would require
an infeasible number of tests to obtain an appreciable
reduction in R (Fig. 2D), with a weekly schedule requir-
ing well over 50% of households being tested each week.
This illustrates that the prioritization of larger households
in TPHT leads to a dramatic impact on R, allowing for an
effective suppression of infection spikes with a moderately
ambitious weekly test capacity (Fig. 2B).
When faced with an outbreak, its estimated duration is

an important parameter for health authorities when plan-
ning mitigation. We define the outbreak stopping time as
the duration until the outbreak is at a 25% level relative to
when interventions were implemented. First we computed
the stopping time associated with the Norwegian national
lockdown regime in effect from March 13th (Fig. 2A) by
extending the lockdown indefinitely without further re-
openings. We find that this situation corresponds to a
stopping time of 68 ± 3 days.
For the outbreak in Fig. 2B, we measured the stopping

time as function of TPHT fraction for different test fre-
quencies (Fig. 2G, left panel). Reaching a testing fraction
of 20 − 25% of the households dramatically reduces the
stopping time as long as the testing frequency is at least
once a week. However, more frequent tests significantly
improves the calculated stopping time. Our analyses fur-
ther suggest that for viral variants with increased conta-
gion among children and youth, and if infected people do
not isolate immediately upon manifestation of symptoms,
the stopping time is only weakly dependent on the test
frequency (see Supp. Figure 4)

Sensitivity to demographic parameters
As shown in Fig. 2E, we find that larger cities need a
larger TPHT fraction in order to bring R down to the same
amount as in a smaller city, even though contact den-
sities at the individual level remain unchanged. A likely
explanation for this is the presence of scale-free spread-
ing dynamics in our model, the impact of which has
previously been shown to increase with larger network
sizes [31]. The stopping time for weekly TPHT in three

different population sizes (Fig. 2G, right) drops rapidly
with increased TPHT test fraction until reaching a value
of 0.3, for which it has achieved near saturation. For both
measures (R and stopping time), we find that the main
effect of TPHT remains consistent, with a stronger ini-
tial effect on spread (per test) at lower test fractions, but
with diminishing returns as the proportion of households
tested increases.
As anticipated, we find that R increases with the pro-

portion of large households (Fig. 2F). By increasing the
weekly test fraction, one may countermand this effect,
and application of TPHT is still capable of reducing R to
below unity, albeit requiring a substantially larger amount
of testing (Fig. 2F). Thus, even though the demographic
characteristics of a city has a noticeable impact on R,
Fig. 2D-G indicate that TPHT remains capable of sub-
stantially reducing R for modest test fractions across a
variety of city sizes and household compositions.
It is reasonable to assume that not every household

would be willing to participate in the TPHT scheme.
Investigating different scenarios with a varying degree of
compliance (Supp. Figure 6), we find that the effect of
TPHT remains fairly consistent for situations of less than
perfect compliance. Even for participation rates as low as
50%, a testing capacity of 10% weekly (i.e. testing half of
the 20% largest households) performs quite close to the
ideal or near-ideal compliance scenarios (testing all of the
10% largest households), as there still remains a substan-
tial number of households large enough to be at elevated
risk that are still available for testing. However, as the test
fraction increases, the R-curve begins to flatten, an effect
which is more pronounced for lower compliance rates
(as there are fewer large households available to enroll in
testing). It follows that ensuring higher compliance with
a TPHT program becomes more important in scenarios
where a larger testing fraction is necessary.

Discussion
In addition to factors such as testing frequency,
household-size distribution and city size, the effectiveness
of the TPHT strategy also depends on the properties of
the infectious agent. One of the challenges with analyz-
ing COVID-19 is related to the uncertainty in the details
of its manifestation in infected people, such as incuba-
tion time, infectiousness in different age groups, number
of days with infectiousness pre- and post-symptoms, to
mention a few.While the results presented in Fig. 2 reflect
the current best choice of COVID-19 parameters, we
have analyzed the effect of TPHT using several estimates
for these parameters at different times during the pan-
demic. A best-choice parameter set from August 2020
(Supp. Table 1, red) predicts that TPHT will have a much
stronger effect (Supp. Figure 4) compared the results in
Fig. 2.
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Based on our analyses, we observe that in particular the
number of days that a person is pre-symptomatic infec-
tious will impact the ability of TPHT to reduce R: If this
window is narrow, it is necessary with an increased fre-
quency of TPHT to obtain a marked reduction in R. In the
simulations, we have made the quite conservative choice
that infected people will immediately self-isolate when
they become symptomatic. As a consequence, the time
window for TPHT to uncover pre-symptomatic infected
people is relatively short. In reality, perfect compliance
with self-isolation as soon as potential symptoms are
experienced is quite unlikely since few of the COVID-19
symptoms are specific to the disease. If self-isolation is
delayed by only a few days, the ability of TPHT to reduce
R is markedly improved (Supp. Figure 4).
Additionally, we chose to implement reduced infectivity

and infectiousness in children and young adults, as well
as for asymptomatic infections. While these assumptions
seem reasonable given current data, it is possible that viral
strains could appear with increased infectivity and infec-
tiousness for these groups. Since TPHT is a proactive
testing strategy focused on larger households, in which the
presence of children and young adults is quite common,
TPHT would display improved effectiveness against such
strains.
As a baseline, we have assumed a generally ideal imple-

mentation of TPHT with both 100% sensitivity and com-
pliance. While pooled testing with pool sizes comparable
to typical large households maintain a very good sensitiv-
ity (over 95%) for ordinary PCR protocols, there may be
other obstacles to an ideal TPHT implementation. Tra-
ditional deep nose swabs commonly used for COVID-19
and other respiratory infectious disease are unpleasant
and not necessarily appropriate for regular use or for use
on small children. It might therefore be expedient to either
only include household members above a certain age, or
use less invasive but possibly less reliable tests. However,
either of which would risk infection passing by undetected
despite testing at the expense of loss of power of TPHT.
The fundamental principle behind TPHT is leveraging

heterogeneity in the spreading potential of different seg-
ments of the population in order to focus resources on at-
risk groups. Consequently, the marginal effect of adding
testing capacity decreases as the test fraction increases
and efforts move away from more extreme individuals to
more average ones. The gap between TPHT and random
testing (or other hypothetical testing strategies) necessar-
ily narrows as the test fraction increases and the selected
populations begin to overlap. If the critical test fraction
(i.e. the fraction necessary to reach R = 1) increases,
either due to a more infectious baseline or imperfections
in the implementation (such as poor compliance), the
relative benefits of TPHT would be reduced accordingly.

It is therefore important to keep in mind that TPHT has
limited potential as an isolated disease control measure,
but is more suitable to implementation as part of a wider
combination of measures. Due to the likely reduction
in maximum potential benefit from a TPHT protocol in
the event of imperfections in the implementation, ensur-
ing that said implementation comes as close as possible
to the ideal scenario is likely to be key to the success
of a TPHT program. Putting in place sufficient logistics
for the reliable collection and processing of test samples
should be combined with information programs to allow
the public to appreciate the benefits of participating in and
complying with TPHT.

Conclusions
In summary, we have found that the implementation of
a TPHT regime is broadly effective in breaking infection
chains before their spread potential has been realized. As a
TPHT regime can be combined with a wide range of eco-
nomically benign social distancing measures, our results
suggest that it represents an attractive part of the toolkit
for bringing a pandemic outbreak under control with-
out inducing the societal costs of large-scale quarantines,
lock-downs and curfews.
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