
RESEARCH ARTICLE

APOE ε4-TOMM40 ‘523 haplotypes and the risk

of Alzheimer’s disease in older Caucasian and

African Americans

Lei Yu1,2, Michael W. Lutz3, Robert S. Wilson1,2, Daniel K. Burns4, Allen D. Roses3,4, Ann

M. Saunders4, Jingyun Yang1,2, Chris Gaiteri1,2, Philip L. De Jager5,6, Lisa L. Barnes1,2,

David A. Bennett1,2*

1 Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of

America, 2 Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United

States of America, 3 Department of Neurology, Duke University School of Medicine, Durham, North Carolina,

United States of America, 4 Zinfandel Pharmaceuticals, Inc., Research Triangle Park, North Carolina, United

States of America, 5 Center for Translational and Computational Neuroimmunology, Department of

Neurology, Columbia University Medical Center, New York, New York, United States of America, 6 Program

in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America

* David_A_Bennett@rush.edu

Abstract

Patterns of linkage between the ε4 allele of Apolipoprotein E (APOE) and ‘523 poly-T alleles

in the adjacent gene, TOMM40, differ between Caucasian and African Americans. The

extent to which this difference affects the risk of Alzheimer’s disease (AD) is unclear. We

compared the APOE ε4-TOMM40 ‘523 haplotypes between older Caucasian and African

Americans, and examined their relationship with AD dementia. Data came from three com-

munity based cohort studies of diverse participants. APOE genotypes were determined by

polymorphisms of rs429358 and rs7412. TOMM40 ‘523 genotypes were defined by the

poly-T repeat length of rs10524523 (short [‘523-S]: poly-T� 19, long [‘523-L]: 20� poly-T�

29, and very long [‘523-VL]: poly-T� 30). Cox proportional hazards models examined the

effect of haplotype variation on the risk of incident AD dementia. A total of 1,848 Caucasian

and 540 African American individuals were included in the study. In Caucasians, nearly

none (0.8%) of the non-ε4 carriers and almost all (94.2%) of the ε4 carriers had ‘523-L. The

classification was highly concordant. Each ε4 allele doubled the risk for AD dementia and

the dose effect was evident. Almost identical effect size and effect pattern were observed

for TOMM40 ‘523-L. In African Americans, nearly none (1.1%) of the non-ε4 carriers had

‘523-L, but only 47.8% of the ε4 carriers had ‘523-L. The concordance was weaker com-

pared with Caucasians. The effect patterns on incident AD dementia differed distinctively

between ε4 and ‘523-L carriers. Further, both genotypic and allelic data support that among

African Americans the ε4-‘523-L haplotype had stronger effect on risk of AD dementia than

other ε4-‘523 haplotypes.
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Introduction

Apolipoprotein E (APOE) ε4 is by far the most replicated risk allele for late onset Alzheimer’s

disease (AD). Compared with Caucasians, the allele frequency of ε4 is higher among African

Americans but its effect on the disease susceptibility appears weaker[1–3]. This inconsistency

may be attributable to race specific variation of haplotypes across APOE and neighboring

genes. For instance, it has been reported that among Caribbean Hispanic ε4 carriers, subjects

with the HpaI+ variant in the downstream APOC1 gene are more likely to have AD, but the

same association is not observed among African Americans[4]. Recent data suggest that the

haplotypes between APOE and a poly-T variant in another adjacent gene, Translocase of Outer

Mitochondria Membrane (TOMM40) ‘523, together provide better precision in estimating the

age of AD onset[5]. The ‘523 variant is located in the intron of TOMM40. Depending on the

poly-T repeat length, individual ‘523 alleles can be grouped into 3 classes: Short (‘523-S: Poly-

T repeat� 19), Long (‘523-L: 20� poly-T repeat� 29), and Very Long (‘523-VL: poly-T

repeat� 30)[6]. Genetic studies show that varying ‘523 poly-T repeat length differentiates AD

susceptibility among Caucasian ε3/ε3 carriers[7, 8]. Notably, the APOE and TOMM40 ‘523

haplotypes differ between Caucasian and African Americans[9]. In Caucasians, ε4 is almost

perfectly linked with the ‘523-L allele. By contrast, in African Americans, ε4 is commonly

linked to ‘523-S in addition to the ‘523-L allele. The extent to which such difference affects AD

risk in African Americans has not been reported.

In this study, using data from a large sample of prospective longitudinal studies of aging, we

compared the distributions of TOMM40 ‘523 in linkage with APOE ε4 between older Cauca-

sian and African Americans, and examined their relationship with incident AD dementia.

Since APOE ε4 and TOMM40 ‘523-L are in strong linkage disequilibrium (LD) among Cauca-

sians, it is expected that the two alleles will demonstrate a similar effect on AD dementia in this

population. By contrast, the heterogeneity of the ε4-‘523 haplotypes among African Americans

allows us to investigate the role of the ε4-‘523-L haplotype in relation to AD susceptibility.

Materials and methods

Study participants

Participants came from three community-based longitudinal cohort studies of diverse partici-

pants, the Religious Orders Study (ROS)[10], the Rush Memory and Aging Project (MAP)

[11], and the Minority Aging Research Study (MARS)[12]. The studies were approved by the

Institutional Review Board of Rush University Medical Center. Participants were enrolled

without known dementia and each participant signed an informed consent and agreed to

annual clinical evaluations. The ROS and MAP participants were predominantly Caucasian

Americans and the MARS participants were all African Americans. Importantly, all three stud-

ies are conducted by the same team of investigators and share a large common core of testing

batteries and uniform structured clinical evaluations. This makes it possible for a combined

analysis.

At the time of this study, 1,948 Caucasian participants free of AD dementia at baseline had

completed at least 1 follow-up clinical evaluation. Genotyping data were available on 1,886

(96.8%) of the participants. Considering the conflicting effects between the ε2 and ε4 alleles on

AD dementia, ε2/4 carriers (N = 38) were excluded. As the result, statistical analyses were con-

ducted in the remaining 1,848 Caucasian participants. The mean age at baseline was 78.4 years

(standard deviation [SD]: 7.4, range: 54.3–102.1). 71.2% were females and the mean years of

education was 16.3 (SD: 3.5, range: 5–30). The average length of follow-up for the Caucasian

participants was 8 years (SD = 5.1, range: 1–22).
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Separately, genotyping data were available on 568 (98.8%) of the 575 African American par-

ticipants who were dementia free at baseline and had completed at least 1 follow-up evaluation.

We excluded 28 ε2/4 carriers and focused the analyses on the remaining 540 African Ameri-

cans. For the African American participants, the mean baseline age was 73.4 years (SD: 6.6,

range: 58.9–97.6). 77.6% were females and the mean education was 14.8 years (SD: 3.4, range:

0–30). The average length of follow-up was 5.9 years (SD = 3.6, range: 1–16).

APOE ε4 and TOMM40 ‘523 genotyping

DNA was extracted from peripheral blood mononuclear cells (PBMC) or post-mortem brain

tissue. Genotyping was performed by Polymorphic DNA Technologies (Alameda, California),

blinded to all clinical data. The APOE genotypes were determined by the two polymorphisms

of rs429358 (codon 112) and rs7412 (codon 158) at exon 4 of the APOE gene. The TOMM40
‘523 genotypes were determined by the polymorphism rs10524523 at intron 6 of the TOMM40
gene (chr19:44,899,792–44,899,826, human genome reference assembly GRCh38/hg38). Based

on the the poly-T repeat length, each ‘523 allele was categorized into Short (‘523-S), Long

(‘523-L) and Very Long (“523-VL), as previously defined[6]. In this study, we primarily

focused on the effect of ε4 in linkage with TOMM40 ‘523.

Distinct from the exclusive linkage between ε4 and ‘523-L in Caucasian Americans, other

‘523 alleles, ‘523-S in particular, have been reported in linkage with ε4 among African Ameri-

cans. We therefore obtained strand specific (phased) haplotype data in a subset of African

American ε3/4 heterozygotes in an effort to further explore how the strand specific ε4-‘523

haplotype variations differ in relation to AD dementia.

Clinical diagnosis of AD dementia

Participants underwent a detailed cognitive testing and a uniform structured clinical evalua-

tion each year. Cognitive assessment results were reviewed by a neuropsychologist for signs of

impairment in various domains. Participants were examined by a clinician. After reviewing all

available data, an annual diagnosis was made by the clinician. Diagnosis of AD follows the rec-

ommendation of the joint working group of the National Institute of Neurological and Com-

municative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders

Association[13] and the decision rules for implementing these criteria have been described

previously[14]. Briefly, the AD diagnosis requires a history of cognitive decline and evidence

of impairment in multiple cognitive domains including memory.

Statistical analysis

Student t and Chi-square tests described demographic and genetic differences between Cauca-

sian and African Americans. Primary analyses were stratified by race. Cohen’s κ coefficients

[15] evaluated the concordance between APOE ε4 and TOMM40 ‘523-L genotypes. Cox pro-

portional hazards models examined the associations of genetic variants with incident AD

dementia. In these models, the outcome variable was time in years to incident AD dementia

(event time). Time was right-censored at death or last clinical evaluation for participants who

were never diagnosed with AD dementia. We first examined the ε4 effect by fitting a model

including terms for ε3/4 heterozygous and ε4/4 homozygous. The dose effect was assessed by

estimating the difference between the effect of ε4/4 and twice the effect of ε3/4. Next, we

repeated the model for ‘523-L in lieu of ε4. Both models were adjusted for baseline age, sex,

and education. Finally, by leveraging phased haplotype data from 83 African American ε3/4

heterozygotes, we applied Cox proportional hazards model to evaluate the associations of

strand specific ε4-‘523 haplotype variations with incident AD dementia.
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All the analyses were conducted using SAS/STAT programs (SAS Institute, Cary, NC). Sta-

tistical significance was determined a priori at the nominal level of α = 0.05.

Results

Characteristics of study participants

Characteristics of study participants were summarized in Table 1. Compared with African

Americans, Caucasian Americans in this study were older and had more years of education

(both ps<0.001). Percent female participants were higher among African Americans

(p = 0.003). On average, Caucasian Americans were followed 2 years longer than African

Americans (p<0.001). During the follow-ups, 27.8% of Caucasian Americans and 10.4% of

African Americans were diagnosed with AD dementia.

The ε4 allele was present in 22.6% of the Caucasian Americans, of which 21.1% were ε3/4 het-

erozygous and 1.5% were ε4/4 homozygous. The presence of ε4 was higher among the African

Americans (33.0%, p<0.001), of which 27.6% were ε3/4 heterozygous and 5.4% were ε4/4 homo-

zygous. The ‘523-L allele was present in 21.9% of the Caucasian Americans, comparable to the

percentage of ε4. Of the ‘523-L carriers, approximately half (10.2%) were ‘523 S/L, another half

were L/VL (10.1%), and only a small number of ‘523-L carriers were L/L homozygous (1.6%).

The presence of the ‘523 L allele was lower among the African Americans (16.5%, p = 0.006), of

which a majority were of S/L genotype (10.9%), followed by L/VL (4.3%) and L/L (1.3%).

APOE ε4 and TOMM40 ‘523-L with AD dementia in Caucasian

Americans

Consistent with the linkage between ε4 and ‘523-L, nearly none (0.8%) of the Caucasian non-

ε4 carriers had ‘523-L, whereas 94.2% of the Caucasian ε4 carriers had ‘523-L (Table 2). The

Table 1. Characteristics of the study participants.

Caucasian Americans African Americans

N 1,848 540

Baseline age (yr) 78.4 (7.4) 73.4 (6.6)

Females 1,316 (71.2%) 419 (77.6%)

Education (yr) 16.3 (3.5) 14.8 (3.4)

Length of follow-up (yr) 8.0 (5.1) 5.9 (3.6)

Incident AD dementia 513 (27.8%) 56 (10.4%)

APOE

ε2/2 10 (0.5%) 5 (0.9%)

ε2/3 251 (13.6%) 79 (14.6%)

ε3/3 1170 (63.3%) 278 (51.5%)

ε3/4 390 (21.1%) 149 (27.6%)

ε4/4 27 (1.5%) 29 (5.4%)

TOMM40

‘523 S/S 367 (19.9%) 237 (43.9%)

‘523 S/L 188 (10.2%) 59 (10.9%)

‘523 S/VL 691 (37.4%) 164 (30.4%)

‘523 L/L 30 (1.6%) 7 (1.3%)

‘523 L/VL 187 (10.1%) 23 (4.3%)

‘523 VL/VL 385 (20.8%) 50 (9.3%)

Means and standard deviations (SD) or N (%)

https://doi.org/10.1371/journal.pone.0180356.t001
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classification was highly concordant (Cohen’s κ = 0.94, 95% Confidence Interval [CI] = 0.93–

0.96). Compared with Caucasian non-ε4 carriers, the ε3/4 heterozygotes had almost doubled

risk for incident AD dementia (Hazard Ratio [HR] = 1.85, 95% CI = 1.51–2.26, p<0.001) and

the ε4/4 homozygotes had quadrupled risk (HR = 4.04, 95% CI = 2.19–7.46, p<0.001)

(Table 3). The difference between the estimated effect size of ε4/4 and twice the estimated

effect size of ε3/4 was not significant (p = 0.632), supporting a dose effect of ε4 on AD

susceptibility.

Almost identical effect size and effect pattern were observed for TOMM40 ‘523-L in Cauca-

sian Americans (Fig 1). The hazard ratios for the 523-L heterozygotes and homozygotes were

1.89 and 3.80 respectively (both ps<0.001). The dose effect of the ‘523-L allele was also evident,

and the estimated effect of the 523-L homozygosity was equivalent to twice the effect of the

523-L heterozygosity (p = 0.859).

APOE ε4 and TOMM40 ‘523-L with AD dementia in African Americans

The linkage between ε4 and ‘523-L was much weaker in African Americans, with the two vari-

ants being less concordant (Cohen’s κ = 0.53, 95% CI = 0.46–0.61). Specifically, while 1.1% of

the non-ε4 carriers had ‘523-L, only 47.8% of the ε4 carriers had ‘523-L (Table 2).

The Cox proportional hazards model shows that while the ε3/4 heterozygotes among Afri-

can Americans had higher risk for AD dementia, the estimated hazard ratio was not significant

Table 2. Distribution of TOMM40 ‘523 genotypes by APOE ε4*.

TOMM40 ‘523 Caucasian Americans African Americans

Non ε4 carriers ε4 carriers Non ε4 carriers ε4 carriers

Frequency Percent Frequency Percent Frequency Percent Frequency Percent

S/S 365 25.5 2 0.5 194 53.6 43 24.2

S/L 6 0.4 182 43.7 4 1.1 55 30.9

S/VL 682 47.7 9 2.2 130 35.9 34 19.1

L/L 0 0 30 7.2 0 0 7 3.9

L/VL 6 0.4 181 43.4 0 0 23 12.9

VL/VL 372 26.0 13 3.1 34 9.4 16 9.0

Total 1,431 100 417 100 362 100 178 100

* APOE ε2/4 not included.

https://doi.org/10.1371/journal.pone.0180356.t002

Table 3. APOE ε4 and TOMM40 ‘523-L with AD dementia in Caucasian Americans.

HR (95% CI, p) HR (95% CI, p)

Age 1.13 (1.11–1.14, <0.001) 1.13 (1.11–1.14, <0.001)

Male sex 0.97 (0.78–1.19, 0.738) 0.95 (0.77–1.17, 0.629)

Education 1.01 (0.99–1.04, 0.340) 1.01 (0.99–1.04, 0.319)

ε3/4 heterozygosity 1.85 (1.51–2.26, <0.001) -

ε4/4 homozygosity 4.04 (2.19–7.46, <0.001) -

‘523-L heterozygosity - 1.89 (1.54–2.32, <0.001)

‘523-L homozygosity - 3.80 (2.14–6.73, <0.001)

HR: Hazard ratio; CI: Confidence interval

The result in column 2 was from a Cox proportional hazards model which examined APOE ε4 genotypes on

incident AD dementia, and the result in column 3 was from a separate Cox model which examined TOMM40

‘523-L genotypes on incident AD dementia.

https://doi.org/10.1371/journal.pone.0180356.t003
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(p = 0.195) (Table 4). By contrast, the ε4/4 homozygotes increased the AD risk by over six fold

(HR = 6.32, 95% CI = 2.76–14.45, p<0.001). The lack of dosage effect for APOE ε4 in African

Americans may be due to small sample size, and the test that assessed the difference between

the effect of ε4/4 and twice the effect of ε3/4 was inconclusive. Notably, The effect pattern of

TOMM40 ‘523-L on AD dementia differed distinctively from that of APOE ε4 (Fig 2). The

‘523-L heterozygosity doubled the risk for incident AD dementia (HR = 2.21, 95% CI = 1.20–

4.08, p = 0.011), but we did not detect a significant association for ‘523-L homozygosity

(p = 0.650).

Since almost all of the non-ε4 African Americans did not carry ‘523-L allele and approxi-

mately half of the ε4 carriers had ‘523-L allele, we further split the ε4 carriers into those with

and without the ‘523-L allele. 8.4% of the 358 African American non-ε4 carriers were diag-

nosed with AD dementia, and this percentage increased to 10.8% and 17.7% respectively for

Fig 1. Cumulative hazards of incident AD dementia by APOE ε4 and TOMM40 ‘523-L genotypes in Caucasian

Americans. The figure illustrates cumulative hazards of incident AD dementia for representative female Caucasians with

mean age and education. The blue solid curve represents cumulative hazard for non-ε4 carriers, the black solid curve for

ε4 heterozygotes, and the red solid curve for ε4 homozygotes. Superimposed are the blue dash curve representing

cumulative hazards for non-‘523-L carriers, the black dash curve for ‘523-L heterozygotes, and the red dash curve for

‘523-L homozygotes.

https://doi.org/10.1371/journal.pone.0180356.g001
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the ε4 carriers without (N = 93) and with the ‘523-L allele (N = 85). Results from the Cox pro-

portional hazards model show that, compared with the non- ε4 carriers, African Americans ε4

carriers with the ‘523-L alleles had over twice the risk for incident AD dementia (HR = 2.34,

95% CI = 1.24–4.42, p = 0.009). The risk for the ε4 carriers in absence of ‘523-L allele was

weaker and not significant (HR = 1.66, 95% CI = 0.80–3.44, p = 0.177).

To assess the robustness of our findings considering differences between Caucasian and

African Americans in this study, we performed secondary analyses using a subset of individu-

als that were 1-to-1 matched by age, sex, education, length of follow-up as well as vital status. A

total of 464 Caucasian and 464 African Americans were included. Notably, while statistical dif-

ference was no longer observed in any of the matching variables (all ps>0.05), results were

consistent with those using the full dataset. In Caucasians, there was a high concordance

between ε4 and ‘523-L (Cohen’s κ = 0.94). Nearly none (0.6%) of the non-ε4 carriers and

almost all (92.4%) of the ε4 carriers had ‘523-L. The effect size and effect pattern on incident

AD dementia were similar between ε4 and ‘523-L (Table A in S1 File). In African Americans,

we observed a weak concordance between ε4 and ‘523-L (Cohen’s κ = 0.55). Nearly none

(1.3%) of the non-ε4 carriers had ‘523-L, but only 49% of the ε4 carriers had ‘523-L. The

results in relation to incident AD dementia for African Americans were essentially the same as

reported in the full dataset, such that the effect patterns on incident AD dementia differed

between ε4 and ‘523-L carriers (Table B in S1 File). The ε3/4 heterozygosity had higher risk

for AD dementia, but was not significant. By contrast, the ε4/4 homozygosity increased the

AD risk by over 7 fold, and was highly significant. The ‘523-L heterozygosity doubled the risk

for incident AD dementia, but we did not detect a significant association for ‘523-L homozy-

gosity. Further, ε4 coupled with ‘523-L had a stronger effect on the risk of AD dementia than

ε4 in the absence of ‘523-L.

Strand specific ε4 and ‘523-L linkage patterns in African Americans. In an exploratory

analysis, we examined phased ε4-‘523 haplotype variations in 83 African American ε3/4 het-

erozygotes (Table 5). In this sample, a majority (66.3%) of the ε4 alleles were linked to the

‘523-L allele, 24.1% linked to ‘523-S, and 9.6% linked to ‘523-VL. Similar to the genotypic

results, we observed that compared with non-ε4 carriers, African Americans with strand spe-

cific ε4-‘523-L haplotype show stronger effect on the increased risk for AD dementia

(HR = 2.01, 95% CI = 0.96–4.20, p = 0.064) than those with either ε4-‘523-S or ε4-‘523-VL

haplotypes (HR = 1.27, 95% CI = 0.38–4.27, p = 0.696).

Table 4. APOE ε4 and TOMM40 ‘523-L with AD dementia in African Americans.

HR (95% CI, p) HR (95% CI, p)

Age 1.11 (1.06–1.15, <0.001) 1.10 (1.06–1.14, <0.001)

Male sex 1.48 (0.83–2.66, 0.186) 1.49 (0.83–2.66, 0.183)

Education 1.01 (0.93–1.10, 0.789) 1.02 (0.94–1.10, 0.703)

ε3/4 heterozygosity 1.49 (0.82–2.73, 0.195) -

ε4/4 homozygosity 6.32 (2.76–14.45, <0.001) -

‘523-L heterozygosity - 2.21 (1.20–4.08, 0.011)

‘523-L homozygosity - 1.60 (0.21–12.0, 0.650)

HR: Hazard ratio; CI: Confidence interval

The result in column 2 was from a Cox proportional hazards model which examined APOE ε4 genotypes on

incident AD dementia, and the result in column 3 was from a separate Cox model which examined TOMM40

‘523-L genotypes on incident AD dementia.

https://doi.org/10.1371/journal.pone.0180356.t004
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Discussion

In this study, we examined the haplotypes between APOE ε4 and the neighboring TOMM40
‘523 variant in a large sample of community based older Caucasian and African Americans,

and we interrogated their associations with incident AD dementia. Several observations were

made.

We confirmed the linkage between ε4 and ‘523-L in Caucasians Americans. This linkage is

highly concordant, such that almost all the ε4 carriers had presence of the ‘523-L allele and

Fig 2. Cumulative hazards of incident AD dementia by APOE ε4 and TOMM40 ‘523-L genotypes in African Americans. The figure illustrates

cumulative hazards of incident AD dementia for representative female African Americans with mean age and education. For panel A, the blue solid

curve represents cumulative hazard for non-ε4 carriers, the black dash curve for ε4 heterozygotes, and the red solid curve for ε4 homozygotes. For

panel B, the blue solid curve represents cumulative hazards for non-‘523-L carriers, the black solid curve for ‘523-L heterozygotes, and the red dash

curve for ‘523-L homozygotes.

https://doi.org/10.1371/journal.pone.0180356.g002

Table 5. Strand specific haplotypes for ε3/4 heterozygotes in African Americans.

Group Haplotype (allele 1) Haplotype (allele 2) Frequency Percent

1: ε4_L ε3_L ε4_L 2 2.4

1: ε4_L ε3_S ε4_L 36 43.4

1: ε4_L ε3_VL ε4_L 1 1.2

1: ε4_L ε4_L ε3_L 1 1.2

1: ε4_L ε4_L ε3_S 1 1.2

1: ε4_L ε4_L ε3_VL 14 16.9

2: ε4_VL ε3_L ε4_VL 1 1.2

2: ε4_VL ε3_S ε4_VL 6 7.2

2: ε4_VL ε3_VL ε4_VL 1 1.2

3: ε4_S ε3_S ε4_S 3 3.6

3: ε4_S ε4_S ε3_L 1 1.2

3: ε4_S ε4_S ε3_S 1 1.2

3: ε4_S ε4_S ε3_VL 15 18.1

Total 83 100

https://doi.org/10.1371/journal.pone.0180356.t005
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almost all the non-ε4 carriers were absent of the ‘523-L allele. When modeled for the associa-

tions with incident AD dementia, ε4 and ‘523-L share very similar effect size and effect pattern

as expected. In both cases, every single allele doubles the risk for AD dementia and the dose

effect is evident. The two ‘523-L heterozygosities (‘523 S/L and ‘523 L/VL) show the same

strength in association with incident AD dementia. This strong linkage between ε4 and ‘523-L

among Caucasian Americans probably accounts for the lack of association of the poly-T repeat

length with age of AD onset in a previous report[16]. Some evidence suggests that the three

TOMM40 ‘523 genotypes (S/S, S/VL and VL/VL) that are exclusive to the non- ε4 carriers may

further differentiate age of onset for late onset AD[17], but the results have not been conclu-

sive[7, 18].

It is noted that the effect size of APOE ε4 on the risk of AD dementia in Caucasians can dif-

fer across studies due to a variety of reasons ranging from population or sample differences to

phenotypic variation. A previous study reported an odds ratio of 2.7 for ε3/4 and 12.5 for ε4/4,

relative to ε3/3[2]. The study differs from ours in several important ways. First, the prior study

is a meta-analysis that combined data from 40 participating centers with different study

designs. As the result, the samples are more heterogeneous. Indeed, the authors reported that

study specific odds ratios of AD for ε4 carriers versus non-carriers varied, and the associations

were weaker for population/community based studies. Second, the prior study was based on

cross-sectional data where prevalent AD cases are mixed with incident cases. By contrast, our

data came from community based cohorts and we focused on incident AD. All individuals

included in the analyses were free of dementia at baseline and followed longitudinally. The

effect size of ε4 reported in our study is in general consistent with those from similar popula-

tion or community based studies on incident AD [19–21]. Finally, our subjects are older and

the effect of ε4 tends to attenuate in old age.

We observed that the frequencies of TOMM40 ‘523 genotypes differ distinctively between

African and Caucasian Americans. There was an enrichment of ’523-S allele in African Ameri-

cans. In particular, the percent ’523-S/S carriers in African Americans was more than doubled

compared with Caucasian Americans. This result is consistent with an earlier report that the

‘523-S allele is more prevalent in African Americans than whites or Hispanics[22].

We also observed that the strong linkage between ε4 and ‘523-L haplotype was absent in

African Americans. While nearly none of the non-ε4 carriers had the ‘523-L allele, only less

than half of the ε4 carriers had ‘523-L. Consequently we could examine the effect patterns of

haplotype variations on incident AD dementia. In fact, data at both genotypic and allelic level

suggest that ε4-‘523-L haplotype among African Americans has a stronger effect on the sus-

ceptibility of AD dementia than other ε4-‘523 haplotypes. This finding helps further elucidate

the relationship between APOE ε4 and AD dementia in African Americans.

The reports on ε4 and AD in African Americans have been inconsistent[1, 23–26]. Multiple

studies show that the ε4 effect on AD tends to be weaker in African Americans than Caucasian

Americans[2, 27]. In addition, the strength of the ε4 allele is even weaker in African Yoruban

than African Americans[28–30]. These findings raise the possibility that the ε4 effect in Afri-

can Americans is likely affected by the degree of admixture with Caucasian or other popula-

tions. One hypothesis is that admixture leads to haplotype variations surrounding the APOE
locus. The cis ε4 haplotype difference due to population stratification is not new. One earlier

study reported an APOE ε4 and APOC1 HpaI+ haplotype that differs in frequency between

ADs and controls, and such difference is only observed in Caribbean Hispanics, but not in

African Americans[6]. Variation in TOMM40 ‘523—APOE haplotypes among African Ameri-

cans may well be just another example. Indeed, while the ε4-TOMM40 ‘523-L haplotype pre-

dominates in Caucasians, two additional haplotypes have been reported in Yorubans. The

linkage between ε4 and multiple ‘523 alleles in African Americans represents a genetic
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crossover between Caucasian and Western African populations[9]. Data from this study sup-

port the theory that, of the three ε4- TOMM40 ‘523 haplotypes, the two originated from the

Western African population are less potent than the ε4- TOMM40 ‘523-L haplotype in affect-

ing the susceptibility of AD. Since genetic risk factors in admixed populations including Afri-

can Americans are highly dependent on ancestral background, future work is warranted to

identify local ancestry in the APOE-TOMM40 region and to investigate its implication in the

risk of AD.

Extensive evidence suggests that the APOE gene is involved in amyloid deposition, a neuro-

pathologic hallmark of AD, via amyloid-β clearance [31, 32]. The APOE ε2, ε3, and ε4 alleles

encode three protein isoforms (apoE2, apoE3 and apoE4) which show differential response for

amyloid-β kinetics. In mouse models, apoE4 increases amyloid-β deposition relative to apoE2

or apoE3[33, 34]. In humans, APOE ε4 carriers have more severe burden of amyloid plaques

[35, 36], and the effect of ε4 on cognition and AD dementia is largely mediated by amyloid

and downstream neurofibrillary tangles [37, 38]. The biochemical mechanism by which the

TOMM40 ‘523 variant affects AD pathophysiology is an area of active research[39]. Structural

DNA variations, especially those in intronic or intergenic regions like TOMM40 ‘523, most

likely exert their effects by altering gene transcription efficiency, the timing of transcription,

transcript stability, transcript splicing, or possibly by changing patterns of epigenomic modifi-

cation[40–46]. There is support for the idea that short structural variants may be involved in

human diseases [47–49]. It has been demonstrated that TOMM40 ‘523 affects the expression

levels of APOE and TOMM40 mRNAs in the temporal and occipital cortexes of late onset AD

patients and normal controls[50], and the effect of the TOMM40 poly-T variation on tran-

scription regulation was recapitulated in a cell-based luciferase reporting system[51]. Gene

expression studies suggest that the number of protein import channels per mitochondrion

may be regulated by TOMM40 poly-T variants. Bekris et al. described a complex transcrip-

tional regulatory region for TOMM40 and APOE expression that extends throughout both

genes and is influenced by multiple polymorphisms including the TOMM40 poly-T locus[52].

It has been suggested that a relatively modest change in mRNA expression may produce

pathology that accumulate over time and is expressed clinically in later age.

To our knowledge this is the first study that investigated the effect of ε4- TOMM40 ‘523

haplotype variations on the risk of incident AD dementia among African Americans. Our data

came from a diverse group of community based older persons who were free of AD at enroll-

ment and followed longitudinally for incident events. The prospective nature of the design

avoids potential bias due to prevalent AD. Uniform and structured decision rules for AD diag-

nosis were applied across all three studies. Limitations of this study are also noted. These are

voluntary cohorts and participants are older and have higher education than the general popu-

lation. The findings await replications from other studies.
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