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Abstract By using the potentiometric titration method, we have determined the pKa

values of the two terminal lysine groups in six alanine-based peptides differing in the

length of the alanine chain: Ac–Lys–Lys–NH2 (KK), Ac–Lys–Ala–Lys–NH2 (KAK), Ac–

Lys–Ala–Ala–Lys–NH2 (KAK2), Ac–Lys–Ala–Ala–Ala–Lys–NH2 (KAK3), Ac–Lys–

Ala–Ala–Ala–Ala–Lys–NH2 (KAK4), and Ac–Lys–Ala–Ala–Ala–Ala–Ala–Lys–NH2

(KAK5) in aqueous solution. For each compound, the model of two stepwise acid–base

equilibria was fitted to the potentiometric-titration data. As expected, the pKa values of the

lysine groups increase with increasing length of the alanine spacer, which means that the

influence of the electrostatic field between one charged group on the other decreases

with increasing length of the alanine spacer. However, for KAK3, the pKa1 value (8.20) is

unusually small and pKa2 (11.41) is remarkably greater than pKa1, suggesting that the two

groups are close to each other and, in turn, that a chain-reversal conformation is present for

this peptide. Starting with KAK3, the differences between pKa1 and pKa2 decrease; how-

ever, for the longest peptide (KAK5), the values of pKa1 and pKa2 still differ by about

1 unit, i.e., by more than the value of log10 (4) = 0.60 that is a limiting value for the pKa

difference of dicarboxylic acids with increasing methylene-spacer length. Consequently,

some interactions between the two charged groups are present and, in turn, a bent shape

occurs even for the longest of the peptides studied.
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1 Introduction

The protonation state of ionizable side-chain groups of peptides and proteins is of great

importance for understanding biomolecular structure and function, and therefore much

effort has been devoted to understanding the relation between pKa and the structures of

biomolecules [1–6]. The protonation state of a titratable group is determined by the solvent

pH and the pKa of that group. The pKa of a given group is in turn influenced by its

electrostatic environment, which is determined by the protein’s conformation.

Alanine-based peptides, with the general formula XX–(A)n–YY, where X and Y denote

an amino acid residue with an ionizable side chain, have received much attention in recent

years, because they are water soluble and can model the conformation of the oligoalanine

chain as a function of chain length [7]. Since alanine is a small and neutral amino acid

residue, such peptides offer an opportunity for investigating the mutual influence of ion-

izable groups on each other and on their conformation. In this respect, the peptide Ac–XX–

(A)7–OO–NH2 (where X denotes diamino-butyric acid, A denotes alanine, and O denotes

ornithine), which is referred to as XAO, has received considerable attention [8, 9]. In XAO,

the ionizable side-chain groups of all four X and O groups are –NH3
?.

We investigated the structure of this peptide [10, 11] by CD and NMR spectroscopy and

concluded that it has a bent shape, and although the polyproline II structure appears for

individual residues, it is not characteristic of the shape of the entire peptide. Potentiometric

titrations [10, 11] yielded values of pKa1 = 3.46, pKa2 = 4.67, pKa1 = 6.35, pKa2 = 6.91,

with pKa1 being abnormally low, which provides evidence for the proximity of the like-

charged groups. The difference between the pKai values should decrease when the spacer

becomes longer, though not to zero because of a statistical factor equal to 4 for K1/K2 of

dicarboxylic acids with increasing methylene-spacer length [12].

In our recent work [7, 13], in order to determine the influence of the kind of ionizable

groups flanking the oligoalanine sequence on acidic–basic and conformational properties, we

investigated the following three alanine-based peptides: Ac–KK–(A)7–KK–NH2 (KAK), Ac–

OO–(A)7–DD–NH2 (OAD), and Ac–KK–(A)7–EE–NH2 (KAE), where A, K, O, D, and E,

denote alanine, lysine, ornithine, aspartic acid, and glutamic acid residues, respectively. For

these peptides, we determined both pKa values by potentiometric titration [7] with structural

conformation using CD and NMR spectroscopy [13]. We demonstrated [13] that the shape of

these peptides seems to depend on the size of the charged side chains at the ends, and that the

bent shape of the alanine sequence enables screening of the nonpolar heptaalanine core from

the solvent by the charged side chains, provided that the side chains bearing charged groups

are sufficiently short. The results of our studies mentioned above [7, 10, 11, 13] enabled us to

propose a hypothesis that the bent shape is characteristic of oligopeptides flanked with like- or

oppositely-charged groups, provided that the length of the spacer (including the segments of

the main chain and the side chains) between the charged groups is large enough to form a bent

structure and small enough to overcome the ring-closure entropy. The peptides acquire a bent

shape probably because the charged side-chain groups wrap around the non-polar oligoala-

nine–alanine sequence, thus shielding the non-polar residues from the solvent.

In the present study we investigated a series of water-soluble alanine-based peptides with

the sequence Ac–K–(A)n–K–NH2, where n varies from 0 to 5, by potentiometric titration. The

presence of only one basic residue at each end of the sequence enabled us to make a clearer

assessment as to the influence of the length of the alanine spacer on the acidic–basic properties

of these bi-cationic acids compared to the series with two different groups at each end, in

which case the second pKa can correspond either to deprotonation of the second basic group at

the already singly-deprotonated end or to deprotonation of a basic group the opposite end.
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2 Methods

2.1 Peptide Synthesis

The peptides Ac–KAAAK–NH2 [KAK3], Ac–KAAAAK–NH2 [KAK4], and Ac–KA-

AAAAK–NH2 [KAK5] (where K and A denote lysine and alanine, respectively), were

synthesized by standard solid-phase Fmoc-amino acid chemistry with a Millipore syn-

thesizer. Tentagel R RAM resins (1 g, capacity 0.19 mmol g-1) were treated with piper-

idine (20 %) in dimethylformamide (DMF), and all amino acids were coupled using the

DIPCI/HOBt (N,N0-diizopropylokarbodiimid/1-hydroksybenzotriazol) methodology. The

coupling reaction time was 2 h. Piperidine (20 %) in DMF was used to remove the Fmoc

group at all steps. After deprotection of the last Fmoc N-terminal group, each of the resins

was washed with methanol and dried in vacuo. Then the resins were treated with

1 mol L-1 1-acetylimidazole in DMF at room temperature for 2 h to attach the acetyl

group to the N-terminal part of the peptide (after a complete polypeptide chain was

assembled). In the final step, the resins were treated with a TFA/water/phenol/triisopro-

pylsilane (8.8/0.5/0.5/0.2) mixture (10 mL�g-1 of resin) at room temperature for 2 h to

remove the peptide from the resin. Cleavage of the peptide from the resin under these

conditions leaves a carboxyamide group at the C-terminus [14].

Each of the resins was separated from the mother liquid; the excess of solvent was then

evaporated to a volume of 2 mL, and the residue was precipitated with diethyl ether. The

crude peptides were purified by reverse-phase HPLC using a SupelcosilTM SPLC-ABZ C18

semi-preparative column (10 9 250 mm, 5 lm) with 4 mL�min-1 elution and 120 min

with an isocratic mixture of 0.5 % CH3CN in TFA to adjust the pH to approximately 2.0.

To identify the fractions containing the pure peptides, HPLC was run first with a small

amount of the crude peptide and the absorbance at 222 nm was measured for each fraction.

The time windows for the retention of purified peptides were determined as those corre-

sponding to the large peak in the plot of absorbance versus time. Subsequently, a semi-

preparative HPLC run was carried out and the fractions containing the pure peptide were

collected and lyophilized. The purity of each peptide was confirmed by analytical HPLC

and MALDI-TOF analysis. The purities of these peptides are: 99.82 % (KAK3), 99.4 %

(KAK4), and 99.85 % (KAK5).

Peptides KK, KAK, KAK2 were also synthesized by the solid-phase peptide synthesis

method but with a Thuramed TETRAS peptide synthesizer. The purity of each peptide,

determined by analytical HPLC and MALDI-TOF analysis, are 96.2 % (KK), 97.43 %

(KAK), and 94.57 % (KAK2).

2.2 Potentiometric Titration

All measurements were carried out at T = 298.1 ± 0.1 K in an e.m.f. cell containing a

microelectrode. The potentiometric microtitration unit was equipped with a computer-aided

microtitrator system and a millivoltmeter with a resolution of 0.01 mV. The titrant was added

drop wise using a 2.5 cm3 HAMILTON syringe with an accuracy of 0.001 cm3. Three

independent titrations were carried out for each of the peptides studied. For each titration, a

stock solution of the peptide was prepared at a concentration of approximately

0.001 mol�L-1, and 3 cm3 of this solution was added to the titration vessel. The solution of

the peptide in water was titrated with 0.018 mol�L-1 NaOH in water. The pKa value for water

was not considered an adjustable parameter, a value of 14 being assumed. The starting pH

values of the titrated solution of peptides are as follows: 4.4 (KK), 4.74 (KAK), 3.54 (KAK2),
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2.70 (KAK3), 2.64 (KAK4), and 2.77 (KAK5). The initial ionic strength of the titrated

solution of peptides was 0.003 mol�L-1; after complete titration by NaOH the ionic strength

decreased to 0.002 mol�L-1 (because a completely charged peptide bears a ?2 net charge,

which is replaced by two singly-charged sodium cations after complete titration). The

measurements were performed with at rate of 1 step per 2 min. For each titration point, the

e.m.f. was recorded only after allowing sufficient time for electrode equilibration.

Before carrying out a series of measurements, the electrode was calibrated as follows.

3 cm3 of 0.001 mol�L-1 NaH2PO4 in water was titrated with 0.01 mol�L-1 aqueous

solution of sodium hydroxide (NaOH); three independent titrations were carried out for

reliability and better accuracy. The electrode characteristics were fitted to the titration

curves from all three independent titrations simultaneously, using the program STOICHIO

[15, 16]. The consecutive pKa values of phosphoric acid were taken from the literature as

pKa1 = 2.3, pKa2 = 7.2, and pKa3 = 12.1, respectively. The fitted values of E� and S in the

equation for electrode characteristics (Eq. 1) were 394.8 (1.3) mV and 57.28 (0.13) mV,

respectively [the numbers in parentheses are the corresponding standard deviations (SD)].

The SD of the electromotive force and the titrant volume were 1.3 mV and 0.001 cm3,

respectively. The estimated error in pH is 0.02. This value is in agreement with the SD of

the e.m.f. obtained after fitting, 1–2 mV, depending on the peptide. The fit of the calculated

titration curve to a sample experimental titration curve is shown in Fig. 1.

E ¼ E� � S pH ð1Þ

where E is the electromotive force and the pH is calculated at each point from the total

concentration of the titrand and the titrant, volumes of the titrand and the titrant, the pKas,

and pKw.

2.3 Fitting Models of Chemical Equilibria to the Titration Curves

The model for the acid–base equilibria was fitted to the resulting titration curves with the

program STOICHIO [15, 16] which is based on a nonlinear confluence analysis. This program

can treat any model of chemical equilibria, and takes into account all possible sources of

Fig. 1 Calibration curve
(experimental titration points for
NaH2PO4 in water).
Experimental data are shown as
points and the curve
corresponding to the best-fitting
equilibria model is given by the
solid line. The standard deviation
in the e.m.f. is 1.34 mV
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experimental error (the error in e.m.f., titrant and titrated solution volume, reagent impurities,

etc.; see [14, 15] for details of the determination of the pKas). The SD of the titrant volume was

assumed to be rV = 0.001 cm3 and rE = 2.0 mV. The first of these values is the accuracy of

the microsyringe used to add the titrant to the titrated solution, while rE is much larger than the

resolution of the potentiometer given as 0.01 mV in Sect. 2.2, to take into account possible

electrode instability and other possible errors involved in measuring the e.m.f. as was done in

our previous studies [7, 13]. Because all of the peptides studied were terminally-blocked by

the acetyl group and by the amide group at the N- and at the C-termini, respectively, only the

R-NH3
? groups of the lysine side chains could take part in acid–base equilibria. Conse-

quently, all peptides under study were treated as bifunctional acids, and the 2 pKa values were

considered as quantities to be determined by the STOICHIO program. The general structure of

the peptides studied and the acid–base equilibria scheme are summarized in Scheme 1.

3 Results and Discussion

The titration curves for the KK, KAK, KAK2, KAK3, KAK4, and KAK5 peptides in water

are shown in Fig. 2a–f. Because the experimental points closely follow the titration curves

calculated with the use of the fitted acidity constants, it can be concluded that the model of

two stepwise dissociation equilibria fits the experimental data very well for the four

peptides: KK, KAK, KAK2, KAK4 and still rather well for KAK3 and KAK5.

The calculated pKa values are collected in Table 1. No correction was applied for

activity coefficients because first, given the value of the ionic strength (ranging from 0.002

to 0.003 mol�L-1; see Sect. 2.2), the corrections would amount to only 0.05 for pKa, which

is below the SD of pKa (Table 1) and, second, it is not clear to what extent the simple

treatment of ions as spherical particles within the framework of the Debye–Hückel theory

applies to the flexible and definitely non-spherical peptide molecules. For all peptides, the

SD of the pKas are reasonably small, which enables us to discuss them quantitatively.

For all studied peptides, the pKa1 value is lower then that of the reference compound

(10.5 for n-butylamine modeling the isolated lysine group [17]), while the second one is

either smaller than 10.5 (for shorter chains) or higher (for longer chains). The value of pKa1

generally increases with the alanine chain length, which is consistent with a decreased

influence of the positive electrostatic field of the other charged group at the opposite end of

the chain (the distance between the two charged groups is expected to increase with chain

length). For the KK peptide, the charged lysine groups are very close to each other and

Scheme 1 The structure of the peptides studied (a) and the acid–base equilibria involved in system (b)
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Fig. 2 Experimental titration curves of KK (a), KAK (b), KAK2 (c), KAK3 (d), KAK4 (e), KAK5 (f) in
water. Experimental points are shown as circles, and the curves corresponding to the best-fitting equilibria
models are given as solid lines. The standard deviations in the e.m.f. are: 3.36 (KK), 2.41 (KAK), 2.56
(KAK2), 4.16 (KAK3), 1.47 (KAK4), and 4.8 mV (KAK5)

Table 1 The two pKa values and their DpKa difference for each peptide: KK, KAK, KAK2, KAK3, KAK4,
KAK5, in water, at 298.1 K obtained by fitting of the equilibrium model of dissociation to the potentio-
metric titration curves

KK KAK KAK2 KAK3 KAK4 KAK5

pKa1 5.95 (0.12)a 8.73 (0.23) 9.36 (0.09) 8.20 (0.12) 9.67 (0.10) 9.93 (0.14)

pKa2 8.66 (0.13) 8.91 (0.14) 9.93 (0.17) 11.41 (0.29) 11.92 (0.27) 10.99 (0.19)

DpKa
b 2.71 0.18 0.57 3.41 2.25 1.06

a Numbers in parentheses are the standard deviations
b pKa2-pKa1
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pKa1 (6.4) is lower by 4 units with respect to that of the reference compound. It can be

observed that pKa1 does not vary very much from KAK to KAK2 and decreases to 8.20 for

KAK3. Because the pKa1 values for KAK, KAK2, and KAK3 are similar, a charged group

experiences a comparable electrostatic field from its counterpart in all these three com-

pounds. Therefore, the two charged lysine groups seem to be at a comparable distance from

each other in the three compounds, which, in turn, suggests that a chain reversal occurs for

KAK2 and KAK3. This result agrees with the conclusion from our earlier work [13] that,

for peptide chains of appropriate length that are flanked by a charged group at each end, a

chain reversal might be induced with a non-polar peptide core inside to shield them from

the solvent, while the charged groups outside expose them to the solvent. The difference

between the pKa values in the KAK3, KAK4, and KAK5 series decreases but, for KAK5,

still does not reach the value of log10 4 & 0.60 characteristic of bifunctional acids with

non-interacting functional groups (e.g., the dicarboxylic acids with a large methylene-

spacer length) [12]. This fact suggests that the two groups interact with each other and are

consequently close to each other, implying a bent shape for this peptide.

It can also be seen that there is a break in the trend in pKa1 variation in going from

KAK2 to KAK3; pKa1 increases monotonically from KK to KAK2 and then decreases for

KAK3. This behavior can be explained in terms of the shielding of the non-polar core by

the charged lysine head groups. Until KAK3, the oligoalanine part of the chain is not large

enough to form a hydrophobic core that could be shielded from the solvent. Consequently,

pKa1 increases with increasing alanine spacer size from 5.95 for KK to 9.36 for KAK2

(Table 1), reflecting the increased end-to-end distance. However, if a chain reversal occurs

for KAK3, and if the lysine end groups shield the alanine core from the solvent, then they

are close to each other, which is reflected in the decreased value of pKa1 (8.20 for KAK3

compared to 9.36 for KAK2, see Table 1). With further increase of the alanine spacer size,

the average distance between the lysine head groups becomes greater because of the

increased loop entropy and, thereby, flexibility of the chain, and pKa1 increases from 8.20

for KAK3 to 9.93 for KAK5 (Table 1).

The fact that starting from KAK3, the value pKa2 is higher than that of the reference

compound suggests that, after the first proton is released, the second charged group

becomes partially shielded from the solvent by the non-polar oligoalanine core. The for-

mation of hydrogen bonds with the deprotonated amino group of the other lysine residue

might also contribute to the increase of pKa2, because a hydrogen-bonded proton is more

difficult to dissociate.

4 Conclusions

Our previous study [13] of a series of alanine-based peptides consisting of Ac–KK–(A)7–

KK–NH2 (KAK), Ac–OO–(A)7–DD–NH2 (OAD), and Ac–KK–(A)7–EE–NH2 (KAE),

suggested that their conformation depends on the size of the charged side chains at the ends

and that the bent shape of the alanine sequence is formed by screening of this nonpolar

heptaalanine core from the solvent by sufficiently short, charged side chains, provided that

the length of the spacer between the charged groups is large enough to form a non-polar

core and small enough to overcome the unfavorable ring-closing entropy. The results

obtained in the current potentiometric-titration study, in which we used a series of alanine-

based peptides with sequence Ac–K–(A)n–K–NHMe (KAKn, n = 0, 1, 2, …, 5), dem-

onstrated that the pKa1 values are remarkably smaller than those for n-butylamine, which

can be considered as a model of the isolated lysine side chain until n = 3. But, pKa2-pKa1
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is still greater than the statistical factor of log10 (4) (found to be the limiting value for the

difference in pKa values for dicarboxylic acids with large methylene spacers [12]) even for

KAK5. Leaving out the KK and KAK peptides from the series, for which two lysine groups

are close to each other because of chain connectivity, these results suggest that the two

charged groups are close to each other for KAK2 and KAK3, which implies a chain

reversal for these peptides. This supports the hypothesis stated in our earlier work [13]. To

obtain further evidence, conformational studies of the KAKn peptides are required; these

are currently being carried out in our laboratory by CD and NMR spectroscopy.
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