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Abstract: In the last stage of colored point cloud registration, depth measurement errors hinder the
achievement of accurate and visually plausible alignments. Recently, an algorithm has been proposed
to extend the Iterative Closest Point (ICP) algorithm to refine the measured depth values instead
of the pose between point clouds. However, the algorithm suffers from numerical instability, so a
postprocessing step is needed to restrict erroneous output depth values. In this paper, we present a
new algorithm with improved numerical stability. Unlike the previous algorithm heavily relying on
point-to-plane distances, our algorithm constructs a cost function based on an adaptive combination
of two different projected distances to prevent numerical instability. We address the problem of
registering a source point cloud to the union of the source and reference point clouds. This extension
allows all source points to be processed in a unified filtering framework, irrespective of the existence
of their corresponding points in the reference point cloud. The extension also improves the numerical
stability of using the point-to-plane distances. The experiments show that the proposed algorithm
improves the registration accuracy and provides high-quality alignments of colored point clouds.

Keywords: point cloud registration; ICP; depth filtering

1. Introduction

RGB-depth (RGB-D) cameras are widely used for 3D modeling [1–4] and human pose
estimation [5] due to their ability to acquire depth images in real time. RGB-D cameras
provide color images aligned to the depth images, so each pixel location in a color–depth
image pair is recorded with the 3D coordinates of a point and its RGB data. The 6D data
enable the modeling of texture as well as structure.

To reconstruct the entire 3D structure of an object, one can use a single RGB-D camera
to acquire an RGB-D video, moving the camera around the object [1,2]. If the object is
dynamic, one can use a synchronized multiview RGB-D camera system [3,4]. In both cases,
estimating the 3D rigid transformation across point clouds is the key problem to solve to
obtain a single merged point cloud. If the frame rate of the RGB-D video is high, the identity
transformation can be regarded as the initial estimate [1]. For the multiview system, either
extrinsic calibration [6,7] or global registration algorithms [8–11] can be employed.

The remaining errors in the transformations are effectively reduced by the Iterative
Closest Point (ICP) algorithm [12–14] and its variants [15–26]. The ICP algorithm registers
a source point cloud to a reference point cloud by repeatedly alternating steps of correspon-
dence search and cost minimization. The correspondence search step transforms all source
points to the reference frame using the current pose and then finds from the reference
point cloud the closest point to each transformed source point. The point pairs whose
point-to-point distance is shorter than a threshold are regarded as correspondences. The
cost minimization step estimates the refined pose by minimizing a cost constructed from
the correspondences.

The ICP variants [15–26] have improved the original algorithm by solving differ-
ent problems, such as disambiguation of the correspondence search [15,21,24,26], defin-
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ing a better cost function [13,16–20,22,23,25,26], and searching for a better optimization
method [16–19,25]. Even with accurate poses, the registration accuracy is limited by the
random and systematic depth measurement errors of the RGB-D cameras [27]. The depth
errors also lead to the poor visual quality of the merged point cloud. Reducing the errors
in the earliest stage of the pipeline can wipe out the local structure, which is essential for
the correspondence search. For this reason, depth-error reduction is often the last stage of
the pipeline [8,26].

Simple postprocessing on the merged point cloud filters each 3D point using its
neighbors [28]. If the poses are inaccurate, only the neighbors from the same fragment
tend to have large weights. In this case, the accuracy of individual point clouds can be
improved; however, corresponding points across point clouds may not mix to produce a
seamlessly merged point cloud. On the other hand, the cost functions of the ICP algorithm
and its variants are designed to minimize the distance between corresponding points across
point clouds. Thus, the registration can become more accurate by minimizing the cost
further. A recent study showed that the cost of an ICP algorithm can be minimized further
by refining the measured depth values instead of the pose parameters [26]. However, the
depth-update equation derived from the cost function tends to be numerically unstable, so
a postprocessing step is needed to restrict the range of the output depth values. In addition,
the points outside of the overlapping surfaces between point clouds are not covered by the
cost function, so the depth errors of those points are not reduced by minimizing the cost
function. As a solution, a regularization method is applied at the final step.

In this paper, we present a new cost function that is not only stable to minimize
but also applied to all source points, irrespective of their corresponding points in the
reference point cloud. We provide the reasoning for the unstable case of using the point-to-
plane distance [26], where a 3D point-to-point vector is projected onto the surface-normal
direction. To prevent the unstable case, our cost function is built on an adaptive combination
of two different projected distances instead of a single projected distance.

Another contribution of this paper is that we consider the problem of registering a
source point cloud to the union of the source and reference point clouds. The source points
without their closest points in the reference point cloud will have their closest points within
the source point cloud as long as the distance threshold permits. This extension allows
all points to be processed in a unified filtering framework. Unlike the filtering approach
in [28], the closest points are independently collected from the source and reference point
clouds, and the effect of each set of closest points is controlled with a single parameter in
our approach. Thus, we can control the mixing across point clouds.

The experimental results in this paper show that our proposed method prevents
the unstable case, reduces the registration error, and provides high-quality merged point
clouds. The results also show that the intra-point-cloud closest points are effective not only
for reducing the depth errors but also for improving numerical stability.

The remainder of this paper is structured as follows. The following section provides
a summary of existing methods. Our proposed method is presented in Section 3. The
experimental results are provided in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

Kinect sensors are among the most widely used RGB-D cameras, which rely on either
the structured light-pattern projection or the Time-of-Flight technology [29]. Irrespective
of the technology, the standard deviation of the random depth errors increases with the
depth of the subject. For the structured light-pattern projection technology, the standard
deviation approximately increases with the squared depth of the subject [29]. For the Time-
of-Flight technology, the standard deviation increases with the inverse of the amplitude
of the received infrared light signal [30]. The RGB-D cameras used in our work are based
on the structured light-pattern projection as in Kinect v1 sensors, sharing similar depth-
error characteristics.
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For the global registration of point clouds, geometric invariants are used to estab-
lish pose hypotheses [8,9], or histogram features [31] are used to establish candidate
matches [11]. The global registration algorithms typically find solutions by minimizing
cost functions, for which robust, fast, and accurate optimization is crucial. The RANSAC
algorithm [32] is used in [8], and smart indexing data organization is used for the accelera-
tion [9] of the optimization [8]. In [11], the graduated nonconvexity algorithm is applied
only to the candidate matches for fast and accurate global registration of the point clouds.

The original ICP algorithm [12] has room for improvement, and many local regis-
tration algorithms [13–26] have been proposed by addressing different problems of the
original algorithm. Setting the threshold appropriately in the correspondence-search step is
important to collect sufficient correspondences while rejecting outliers. The threshold can
be determined by using data statistics [14]. Alternatively, the effect of the outliers can be
weakened by using a robust loss function [18] or a cost function based on sparsity-inducing
norms [23].

If the initial pose is inaccurate, the correspondence-search step based only on the
3D distance is prone to error. To improve the correspondence search, the color distance
between points can be used as an auxiliary measure, extending the 3D search to a 4D or 6D
search [15,21,24,26].

If the density of the point clouds is low or the initial pose is inaccurate, finding one-
to-one correspondence is neither exact nor accurate. From this point of view, probabilistic
approaches [16,17,19] allow a source point to match all points in the reference point cloud,
assigning matching probabilities to all the correspondences. The annealing schedule of the
matching probability distribution allows all the correspondences to be equally probable at
the beginning of the iterations and preserves only dominant one-to-one correspondences at
the end of the iterations [16,17]. To reduce the computational complexity of the probabilistic
approaches, a coarse-to-fine scheme [25] can be used or the probabilities can be assigned
only to the K-closest points [26], which can be efficiently obtained using a KD tree [33].

The original ICP algorithm relies on a cost function, which is the sum of squared point-
to-point distances [12]. Chen and Medioni proposed to use a different cost function based
on point-to-plane distances [13]. To compute the point-to-plane distance between a source
point and a reference point, the difference vector between the points is projected onto the
surface-normal vector of the reference point. The projected distance is equivalent to a
Mahalanobis distance induced by a 3× 3 matrix, which is the outer product of the surface-
normal vector. Segal et al. [20] show that point-to-plane and plane-to-plane distances can
be represented by Mahalanobis distances. The Mahalanobis distance can also be used
to reflect the anisotropic, inhomogeneous localization error of the measured points [22].
Park et al. [25] use a cost function based on both color and depth differences between two
point clouds.

Deformable ICP algorithms change the individual point locations as well as the pose
of the source point cloud [34–36]. The algorithms assume that the object is deformable or
articulated. In contrast, we assume that the multiview system is synchronous, so the object
is assumed to be rigid across point clouds.

Our proposed method can be regarded as the unification of depth-error reduction [30,37]
and point cloud registration [26]. Depth-error reduction algorithms refine measured depth
values using the neighborhood within a depth image [30,37]. The Iterative K Closet Point
(IKCP) algorithm [26] refines measured depth values using the K-closest points across
point clouds. Our proposed method exploits the advantage of using the closest points from
both source and reference point clouds.

Our method is similar to the bilateral filter for point clouds [28] in that it changes the
3D position of a point using its neighbors. However, our method has several differences
from the bilateral filter. One difference is the direction of change of the 3D point. Each
point moves along the surface-normal direction in the bilateral filter, whereas in our
method, it moves along the ray direction so that the changed 3D point position matches
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the original pixel location in the depth image. Another difference is that our method uses
color information, unlike the bilateral filter.

3. Proposed Method

In this section, we first review the Iterative K Closest Point (IKCP) algorithm [26] and
then present our proposed method addressing the problems of the IKCP algorithm.

Let us denote the source and reference point cloud by Ss and Sr, respectively, where
Ss = {X(s)

i }
Ns
i=1 and Sr = {X(r)

i }
Nr
i=1. We assume that the 3D rigid transformation from a

source point X(s)
i to its corresponding reference point X(r)

j has been given by the registration
pipeline. The transformation is represented by a 3× 3 rotation matrix R and a translation
vector T:

X(r)
j = RX(s)

i + T. (1)

Defining X̂(s)
i as X̂(s)

i = RX(s)
i +T, a residual vector di,j can be computed as di,j = X(r)

j − X̂(s)
i .

The IKCP algorithm for depth refinement aims at minimizing the following cost function.

E =
Ns

∑
i=1

Ei, (2)

where
Ei = ∑

j∈Ni

pi,jdT
i,jMi,jdi,j. (3)

In Equation (3), Ni is the index set of the K-closest points to X̂(s)
i . The K-closest points

are searched for from Sr with a constraint that requires ‖di,j‖ to be less than a threshold
τ. Thus, the cardinality of Ni can be less than K according to the magnitude of ‖di,j‖ and

the setting of τ. pi,j is the weight of the correspondence between X̂(s)
i and X(r)

j , which is
defined to decrease with the color-depth 6D difference between the two points. Finally,
Mi,j is a 3× 3 matrix determined by the type of the distance. For example, Mi,j = njnT

j if

the distance type is point-to-plane, where nj is the surface-normal vector of X(r)
j . For the

point-to-point distance, Mi,j is simply the 3× 3 identity matrix.

By regarding the depth Z(s)
i of X(s)

i = (X(s)
i , Y(s)

i , Z(s)
i )T as a variable and R and T as

fixed variables, Choi et al. [26] derived the following updated equation for minimizing E:

Z(s)
i ←

xTi RT ∑
j∈Ni

pi,jMi,j

(
X(r)

j − T
)

xTi RT ∑
j∈Ni

pi,jMi,jRxi
, (4)

where xi is the normalized image coordinates of X(s)
i satisfying X(s)

i = Z(s)
i x(s)i .

Denoting ∑
j∈Ni

pi,jMi,j by Mi, the update equation can become numerically unstable

if Rxi is nearly in the null space of Mi. In [26], to improve the numerical stability, Mi,j is
defined as Mi,j = εI+njnT

j , where ε is a small positive number. However, adding εI to Mi,j
does not completely prevent unwanted large changes in depth values, so Choi et al. [26]
rely on a postprocessing step that restricts large changes.

In the IKCP algorithm, such a numerically unstable case occurs when the ray direction
of a source point is nearly orthogonal to the dominant surface-normal direction of the
K-closest points in the reference point cloud, as illustrated in Figure 1. As the source point
is allowed to move only in the ray direction, the point-to-plane distance is difficult to
decrease in such a case.
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Figure 1. An unstable case in which the point-to-plane distance is hard to minimize by moving the
source point in the ray direction. The red and the blue points represent a source and a reference point
cloud, respectively. The ray direction is nearly orthogonal to the surface-normal direction.

Let us assume that pi,j is very large for a certain reference point. Denoting the index
of the point by j?, the dominant surface-normal direction is nj? , and the matrix Mi is
approximately εI + nj?nT

j? . Assuming that the ray direction Rxi is nearly orthogonal to nj? ,
Equation (4) is approximately

Z(s)
i ←

εxTi RT(X(r)
j? − T) + xTi RTnj?nT

j?(X
(r)
j? − T)

ε‖Rxi‖2 . (5)

According to our assumption, the absolute value of xTi RTnj? is very small; however,

nT
j?(X

(r)
j? − T) may not be negligible. Thus, with a small value of ε, the absolute value of

xTi RTnj?nT
j?(X

(r)
j? − T) may become non-negligible compared to the denominator, causing

the computation of Equation (4) to be numerically unstable.
An easy method for increasing the numerical stability is simply to use the point-to-

point distance. In this case, Equation (4) is simplified to

Z(s)
i ←

xTi RT ∑
j∈Ni

pi,j

(
X(r)

j − T
)

‖Rxi‖2 , (6)

where ε has been removed.
We propose an adaptive method that exploits the fact that the direction ri, whose dot

product with Rxi is never zero, is Rxi itself or its non-zero multiple. For our new definition
of Mi,j, let us define ri as

ri =
Rxi
‖Rxi‖

. (7)

We define Mi,j as a linear combination of rirTi and njnT
j :

Mi,j = (1− ci,j)rirTi + ci,jnjnT
j , (8)

where ci,j is the coefficient of njnT
j .

To avoid the numerical instability, ci,j needs to be small if nj is nearly orthogonal to ri.
To fulfill this requirement, we define ci,j as

ci,j = (nT
j ri)

2, (9)

where nT
j ri is the cosine of the angle θ between nj and ri. Thus, ci,j is cos2 θ, and sin2 θ is

1− cos2 θ or 1− ci,j.



Sensors 2021, 21, 7023 6 of 16

With our new definition of Mi,j, if nj is nearly orthogonal to ri, Equation (4) is approxi-
mated by

Z(s)
i ←

xTi RTrirTi ∑
j∈Ni

pi,j

(
X(r)

j − T
)

xTi RTrirTi Rxi
=

xTi RT ∑
j∈Ni

pi,j

(
X(r)

j − T
)

‖Rxi‖2 , (10)

which is equivalent to Equation (6) based on the point-to-point distance.
On the other hand, if nj is nearly parallel with ri, Equation (4) is approximated by

Z(s)
i ←

xTi RT ∑
j∈Ni

pi,jnjnT
j

(
X(r)

j − T
)

xTi RT ∑
j∈Ni

pi,jnjnT
j Rxi

, (11)

which is purely based on the point-to-plane distance.
If X(s)

i has no point satisfying ‖di,j‖ < τ, Equation (4) is not constructed for such X(s)
i

without valid closest points. To attract such points to those refined by valid closest points,
Choi et al. [26] use a regularization method that moves the source points as rigidly as
possible toward the reference points. As the cost function has been designed to preserve
the original structure of Ss, the depth measurement error in Ss is hardly reduced by the
method if the overlap between Ss and Sr is small.

To treat every source point uniformly, we can regard Sr ∪ S ′s as the reference point
cloud instead of Sr, where S ′s denotes the duplicate of Ss. Assuming that the distance
between neighboring points in Ss is shorter than τ, Ni is not an empty set for all i. In this
case, however, most of the K-closest points will tend to be selected from S ′s. Such closest
points hardly contribute to reducing the distance between Sr and Ss. To avoid this problem,
we select two sets of K-closest points from S ′s and Sr independently.

With the two sets of closest points, our cost function is defined as

Ei = ∑
j∈N (r)

i

pi,jdT
i,jMi,jdi,j + α ∑

k∈N (s)
i

pi,kdT
i,kMi,kdi,k, (12)

where N (r)
i and N (s)

i are the index sets of the K-closest points to X̂(s)
i and X(s)

i in Sr and S ′s,

respectively. We note that di,k = X(s)
k − X(s)

i as the transformation from Ss to its duplicate
S ′s is the identity transformation.

A positive constant α controls the effect of the K-closest points from S ′s. As we want
their effect to be small ifN (r)

i is not an empty set, a reasonable choice of α is a small positive
number, such as 0.01. We investigate the effect of α by varying its value from 0.01 to 1 in
Section 4.

Assuming that all points in Sr ∪ S ′s are fixed, we can derive the closed-form solution
that minimizes Equation (12). Equation (13) is the consequent update equation with the
two sets of K-closest points.

Z(s)
i ←

xTi

RT ∑
j∈N (r)

i

pi,jMi,j

(
X(r)

j − T
)
+ α ∑

k∈N (s)
i

pi,kMi,kX(s)
k


xTi

RT ∑
j∈N (r)

i

pi,jMi,jR + α ∑
k∈N (s)

i

pi,kMi,k

xi

. (13)

The proposed method can be extended to a set of L + 1 point clouds by iteratively
registering a point cloud to the union of the point clouds. Choi et al. [26] proposed an
algorithm for the extension, and Algorithm 1 shows the algorithm with a slight modification
to use Equation (13). In Algorithm 1, Ŝi is the transformed Si to the reference frame
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using the pose parameters Ri and Ti. ITERmax is the number of cycles of depth-filtering
operations. We set ITERmax to two throughout this paper, as in [26]. This setting allows
every point, except for those in S0, to be filtered twice. The points in S0 are filtered once
under this setting.

Algorithm 1: Multiview depth refinement algorithm.

Input: Point clouds {Si}L
i=0 and their pose parameters {Ri, Ti}L

i=1 with respect to
S0

Output: Merged point cloud S with refined depth values
1 Sort view indices i = 1, . . . , L from the nearest to the farthest from S0 to attain an

index set I
2 Reverse the order of I to attain J
3 Append 0 to J
4 for iter ← 1 to ITERmax do
5 G ← J
6 if iter is even then
7 G ← I
8 end
9 for s ∈ G do

10 Sr ← the union of {Ŝi : i 6= s}L
i=0

11 Apply the filter in Equation (13) to Ss and Sr to refine the depth values of
Ss

12 Compute Ŝs
13 end
14 end
15 S ← the union of {Ŝi}L

i=0

4. Results

This section provides experimental results. For a comparison to previous work, we
use the synthetic and real-world datasets of Choi et al. [26]. We provide quantitative results
using the synthetic dataset and qualitative results using the real-world dataset.

The synthetic multiview RGB-D dataset [26] was constructed by rendering graphics
models of the pose-varying human model dataset [38]. Twenty mesh models of different
poses were sampled from a male (models 0–199) and a female (models 6800–6999) appear-
ance, respectively. The number of views is twelve (L = 11), and the distance to the models
ranges from 1.5 m to 3 m. The 0th and 6th views are the closest, and the 3rd and 9th views
are the farthest. The standard deviation of depth noise is approximately in proportion to
the squared depth values [29], and such realistic noise was added to the rendered depth
images. The standard deviation of the noise ranges from 0.5 cm to 2.2 cm. The 3rd and 9th
depth images suffer from the highest noise level, while the 0th and 6th depth images suffer
from the lowest noise level. The ground-truth camera pose parameters are provided with
the dataset. Thus, we can compare the registered output depth images to the registered
ground-truth depth images with no pose error. Figure 2 shows sample RGB-D images from
the synthetic dataset.

We compare the proposed method to three existing methods [26,28,39] and two ex-
treme variants of the proposed method. We implemented the bilateral filter for point
clouds [28], which is referred to as the Bilateral filter. We applied the guided image
filter [39] to point cloud filtering, which is referred to as the Guided filter. The guided
image filter has shown high performance not only in image filtering but also in cost volume
filtering for stereo matching [40]. In our implementation, the parameters of the two filters
were set similarly to ours. For example, the maximum number of neighbors was set to
10 with the same threshold τ = 4 cm. If the number of neighbors was less than 5, then at
least five neighbors were used. As the filters were applied to the union of all multiview
point clouds, this setting gave the filters approximately the same number of neighbors
as the proposed method, which found a maximum of five closest points from the source
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and reference point clouds, respectively. The filters were applied twice so that each point
would be filtered twice as in our method. On the other hand, we used the results of Choi et
al. reported in [26] without re-implementation.

Figure 2. Sample RGB-D images in the synthetic dataset of Choi et al. [26]. (First row): Color images of the female model.
(Second row): Depth images of the female model. (Third row): Color images of the male model. (Fourth row): Depth
images of the male model. (First column): View 0. (Second column): View 3. (Third column): view 6. (Fourth column):
View 9. The intensity of the depth images is linear with depth values.

Our proposed Algorithm 1 is referred to as Filter adaptive. Filter p2p is a variant
of Filter adaptive, where only point-to-point distances are used. Filter p2l is another
variant, where only point-to-plane distances are used. The two variants are obtained
by fixing ci,j in Equation (8) to either 0 or 1. With the results of these variants, we can
understand the effect of the proposed adaptive cost function.

4.1. Results on the Synthetic Dataset

The synthetic data set provides perturbed pose parameters, where five different rota-
tional and translational perturbations were applied to the ground-truth rotation matrices
and translation vectors with rotation angles of 2◦ to 10◦ and translation lengths of 5 cm
to 25 cm, respectively. Regarding the perturbed pose parameters as the outputs of the
inaccurate calibration or global registration, the IKCP algorithm for pose refinement [26]
was applied to reduce the registration error. To simulate a practical use case of the pro-
posed method, the output pose parameters of the local pose refinement algorithm and the
noisy depth images were used as input in this section, unless otherwise mentioned. The
registration method of merging noisy point clouds with the estimated pose parameters is
referred to as initial.
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The accuracy was measured by computing the RMSE between a filtered source point
cloud and its corresponding ground-truth source point cloud:

RMSE =

√√√√ 1
Ns

Ns

∑
i=1
‖Rs,gtX

(s)
i,gt + Ts,gt −RsX

(s)
i − Ts‖2, (14)

where s, ranging from 0 to L, is the index of the source point cloud. Rs,gt and Ts,gt are
the ground-truth pose parameters of the sth view, while Rs and Ts are the estimated pose
parameters by the local pose refinement algorithm. X(s)

i,gt is the ith 3D point from the sth

ground-truth depth image, while X(s)
i is its corresponding filtered 3D point.

Figure 3 shows the RMSE. The proposed method and its variants consistently result
in lower errors than the existing methods [26,28,39], except for Filter p2l with α = 0.01.
One of the differences of the proposed Filters from the method of Choi et al. is the closest
points within source point clouds, which are used for intra-point-cloud filtering. The
reduced noise by the intra-point-cloud filtering is one of the contributions to the reduced
RMSE. Figure 3 shows that the proposed method is more effective for the views with more
noise, showing larger performance gaps from Initial.

Figure 3. Evaluation of the depth refinement algorithms on the synthetic dataset of Choi et al. [26].
The algorithms are initialized with the estimated transformations by a local pose refinement algo-
rithm [26] applied to the transformations that are perturbed away from the true pose. (Top): Error
according to different perturbation levels in the rotational (left) and translational (right) components.
(Bottom): Error according to the source view index with perturbation levels 10◦ (left) and 25 cm
(right). The plot shows the median RMSE. Lower is better. Best viewed in color.

The RMSE with α = 1 is consistently lower than with α = 0.01. A large α denotes
more intra-point-cloud filtering and relatively less inter-point-cloud filtering. The intra-
point-cloud filtering is not affected by the error in the estimated pose. Thus, a large α can
provide better results in the presence of a pose error.

If the multiview system has been calibrated accurately, one can expect low pose error.
To compare the performances in the absence of pose errors, we applied the methods to
the point clouds in their ground-truth poses. Figure 4 shows the results. Filter p2p and
Filter adaptive show consistent results, irrespective of the choice of α. It is interesting
to notice that Filter p2l with α = 0.01 provides better results than Guided filter. We
conjecture that this is due to the fact that the inter-point-cloud closest points are now
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more accurate neighbors for filtering. However, Filter p2l still shows worse results with
α = 0.01 than with α = 1.

Figure 4. Evaluation of the depth refinement algorithms on the synthetic dataset of Choi et al. [26].
The algorithms are initialized with the ground-truth pose parameters, so there is no pose estimation
error. (Left): Error according to different perturbation levels in the rotational component. The errors
are constant without pose estimation error. The main cause of the registration errors are depth errors.
(Right): Error according to the source view index.

Filter p2l suffers from the instability problem addressed in this paper. A source
point and its intra-point-cloud closest points tend to have similar ray directions and surface-
normal directions. An RGB-D camera cannot measure the depth of a surface whose normal
direction is orthogonal to its ray direction, so the normal directions are difficult to make
orthogonal to the ray directions as long as the depth measurements exist. Thus, the stability
of Equation (13) for Filter p2l increases with α, reducing the RMSE.

Figure 5 shows merged point clouds obtained by different depth refinement methods.
The results were obtained from the inputs with 25 cm perturbation levels. The qualitative
results are consistent with the quantitative results in Figure 3. Filters with α = 1 show
the best results with greatly reduced noise. Filter p2l with α = 0.01 shows the worst
result among Filters.

The running time of the proposed Algorithm 1 is reported in Table 1. The running time
was measured on a computer running Ubuntu 18.01 with an AMD Ryzen Threadripper
1920X 12-core processor and 128 GB of RAM. In Table 1, all the algorithms are based on
our unoptimized Python implementation. Therefore, the running times are appropriate
only for relative comparison. Among the Filters, Filter p2p is the most efficient and
Filter adaptive is the most demanding. As Filter adaptive computes two different
kinds of projection matrices, it requires more computation time. The intra-point-cloud
closest point search can be conducted only once, assuming that they do not change in the
whole process. This assumption can reduce the computation time. However, our current
implementation does not rely on the assumption. The running times of Bilateral filter
and Guided filter are approximately half of that of Filter p2p. This is mainly due to
the fact that the proposed method conducts the KD tree search once more for each filtering.

Table 1. Average running time (seconds).

Bilateral filter 220.02
Guided filter 201.17

Choi et al. 596.80
Filter adaptive 857.78

Filter p2p 432.26
Filter p2l 684.93
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Initial Bilateral filter Guided filter Choi et al.
Filter adaptive

(α = 0.01)

Filter adaptive (α = 1) Filter p2p (α = 0.01) Filter p2p (α = 1) Filter p2l (α = 0.01) Filter p2l (α = 1)

Figure 5. Point cloud rendering results. (First and third rows): Merged point clouds. (Second and
fourth rows): Magnified hand regions. We note that neither a preprocessing nor a postprocessing
method has been applied to the results.

4.2. Results on the Real-World Dataset

In this section, we describe the application of the proposed method to the real-world
dataset [26]. The dataset is composed of eight RGB-D images, as shown in Figure 6. The
dataset was captured under accurate calibration, and the extrinsic parameters were further
refined by the local pose refinement method [26]. Thus, we can expect that the error in the
estimated pose will be less than that of the synthetic dataset. Since the dataset was not
captured with accurate laser scanners, an exact quantitative evaluation is not available.
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Figure 6. Real multiview RGB-D images [26]. (First and third rows): Color images of the model. (Second and fourth rows):
Depth images of the model. The intensity of the depth images is linear with depth values. The face regions in the front
views have been blurred to protect the model’s identity.

Figure 7 shows merged point clouds obtained using different depth refinement meth-
ods. The best method for the results is subjective. If we focus on the stripe patterns on
the back, Filter p2l with α = 0.01 and Choi et al. [26] show the best results. Filters
with α = 1 do not improve the stripe pattern of Initial as much as those with α = 0.01.
The visual quality of a merged point cloud highly relies on the distance between similarly
colored points across point clouds. The small α increases the effect of the inter-point-cloud
filtering, so the inter-point-cloud distance is reduced. In addition, with the accurate pose
parameters, α = 0.01 provides quantitatively equivalent results to α = 1, except for Filter
p2l, as shown in Figure 4.

In contrast, if we focus on the artifacts near the outer thighs, Filter p2l with α = 0.01
shows the worst result. The errors caused by the numerical instability are reduced by
increasing α, as discussed in Section 4.1. However, neither the postprocessing method of
Choi et al. [26] nor the intra-point-cloud filtering of Filter p2l completely removes the
errors. In contrast, Filter adaptive suffers less from the outer thigh errors than Filter
p2l, showing the effectiveness of the adaptive combination of the projected distances.
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Initial Bilateral filter Guided filter Choi et al.
Filter adaptive

(α = 0.01)

Filter adaptive (α = 1) Filter p2p (α = 0.01) Filter p2p (α = 1) Filter p2l (α = 0.01) Filter p2l (α = 1)

Figure 7. Point cloud rendering results. (First and fourth rows): Merged point clouds. (Second,
third, fifth and sixth rows): Magnified regions. We note that neither a preprocessing nor a postpro-
cessing method has been applied to the results.

5. Conclusions and Future Work

We proposed a unified depth-filtering method for colored point-cloud registration.
Within the IKCP framework for depth refinement, our cost function is constructed by
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adaptively combining two different projected distances to prevent the numerical instability
of using the point-to-plane distance only. We extended the closest point search range to
include the source point cloud. This extension reduced the registration error further by
reducing the depth errors. It also improved the numerical stability of using the point-to-
plane distance.

Finding the balance between the intra- and the inter-point-cloud filtering is the key
for improving the registration accuracy and the visual quality of the merged point cloud.
In our future research, we will investigate an adaptive method for finding the balance.
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