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Abstract
1.	 Gut microbiome disequilibrium is increasingly implicated in host fitness reduc-

tions, including for the economically important and disease-challenged western 
honey bee Apis mellifera. In laboratory experiments, the antibiotic tetracycline, 
which is used to prevent American Foulbrood Disease in countries including the 
US, elevates honey bee mortality by disturbing the microbiome. It is unclear, how-
ever, how elevated individual mortality affects colony-level fitness.

2.	 We used an agent-based model (BEEHAVE) and empirical data to assess colony-
level effects of antibiotic-induced worker bee mortality, by measuring colony size. 
We investigated the relationship between the duration that the antibiotic-induced 
mortality probability is imposed for and colony size.

3.	 We found that when simulating antibiotic-induced mortality of worker bees from 
just 60 days per year, up to a permanent effect, the colony is reduced such that tet-
racycline treatment would not meet the European Food Safety Authority's (EFSA) 
honey bee protection goals. When antibiotic mortality was imposed for the hypo-
thetical minimal exposure time, which assumes that antibiotics only impact the bee's 
fitness during the recommended treatment period of 15 days in both spring and au-
tumn, the colony fitness reduction was only marginally under the EFSA's threshold.

4.	 Synthesis and Applications. Modelling colony-level impacts of antibiotic treatment 
shows that individual honey bee worker mortality can lead to colony mortality. 
To assess the full impact, the persistence of antibiotic-induced mortality in honey 
bees must be determined experimentally, in vivo. We caution that as the domes-
tication of new insect species increases, maintaining healthy gut microbiomes 
is of paramount importance to insect health and commercial productivity. The 
recommendation from this work is to limit prophylactic use of antibiotics and to 
not exceed recommended treatment strategies for domesticated insects. This is 
especially important for highly social insects as excess antibiotic use will likely 
decrease colony growth and an increase in colony mortality.
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1  | INTRODUC TION

Managed Western honey bees Apis mellifera, dominate the com-
mercial pollination of monocultures (Rader et al., 2009), increasing 
yields of the most nutritionally rich fruit, vegetable and nut crops 
by up to 90% (Southwick & Southwick, 1992). Since the turn of the 
century, managed A. mellifera colonies have experienced health 
declines worldwide and apiarists are losing up to 50% of colonies 
per annum in Europe and North America (Jacques et  al.,  2017; 
VanEngelsdorp et  al.,  2012, 2017). Habitat loss, climate change, 
pesticide exposure and the global spread and emergence of bee 
parasites and pathogens are all implicated in these losses (e.g. Potts 
et al., 2016).

American Foulbrood Diseases (AFB), caused by Paenibacillus 
larvae, is the most virulent bacterial disease of honey bee larvae 
(Krongdang et  al.,  2017). This disease is ubiquitous globally, and 
despite comprehensive understanding of its epidemiology and 
pathogenicity, it still often results in colony death. In Europe, hives 
with AFB infections must be burnt and buried (Anjum et al., 2015). 
Treatment with antibiotics in the tetracyclines class, including 
tetracycline and the related compound oxytetracycline, has been 
the preferred method to treat AFB in the United States for the 
last 50  years. Although P. larvae only infects larvae, non-target 
adult bees also ingest the antibiotic during prophylactic treat-
ment. Raymann et  al.  (2017) found that experimental exposure 
to a therapeutic dose of tetracycline considerably altered worker 
bees’ gut microbiome abundance and community composition and 
increased the bees’ mortality. By treating germ-free workers with 
tetracycline, they determined that the fitness reduction was not 
due to direct toxicity of tetracycline on the workers. Instead, im-
mune-challenge experiments attributed the fitness decrease to 
a reduction in microbiome-derived immune capacity (Raymann 
et al., 2017). Moreover, prophylactic treatment of bees with tetra-
cycline has been implicated in the presence of antibiotic resistance 
genes (ARGs) within the honey bee holobiont, including within P. 
larvae (Levy & Marshall, 2013; Tian et al., 2012). Not only does this 
reduce the efficacy of tetracycline in treating American Foulbrood 
disease in honey bees but it also increases the global reservoir 
of ARGs available to be acquired by human pathogens, thus con-
tributing to the antibiotic resistance crisis (Allen et  al.,  2010; Hu 
et al., 2017).

Dysbiosis (i.e. gut microbiome imbalance) has until recently 
largely been omitted from the investigation into reduced colony 
fitness (Hamdi et  al.,  2011). Honey bees have a highly conserved 
mutualistic relationship with their gut microbiome (Kwong & 
Moran, 2016; Schwarz et al., 2016), which is acquired socially and 
passed from nurse bees to newly emerged worker bees (Kwong, 
Medina, et  al.,  2017). The microbiome aids in nutrient acquisition 
and detoxification, development and immune defence (Kwong, 
Mancenido, et al., 2017; Zheng et al., 2017).

While the short-term fitness effect of antibiotic exposure on in-
dividual workers has been documented, the long-term impact at the 
colony level for these highly eusocial insects remains unknown. To 

assess the potential risks of long-term antibiotic exposure for hon-
eybee colonies, we take an in-silico approach in this study. We use 
the agent-based honeybee model BEEHAVE (Becher et al., 2014), 
which links colony processes with resource availability in a hetero-
geneous and dynamic landscape. The model runs for a number of 
years, allowing stressors to potentially accumulate over time. This 
enables investigations into the long-term effects of different fac-
tors on colony fitness and dynamics. BEEHAVE is a mechanistic, 
mathematical representation of a honey bee colony based on em-
pirical data and accepted theory. It has been positively evaluated by 
the European Food Safety Authority (EFSA) for its suitability as a 
tool in regulatory risk assessment (EFSA, 2015; Rortais et al., 2017) 
and confirmed to correctly implement the most important in-hive 
dynamics (Agatz et al., 2019). Moreover, BEEHAVE has been used in 
numerous studies to simulate the impact of viruses and pesticides 
on colony dynamics (e.g. McMahon et al., 2016; Prado et al., 2019; 
Rumkee et al., 2015; Thorbek, Campbell, & Thompson, 2017).

We implemented the effects of a disturbed gut microbiome in 
the model by increasing the daily mortality risk of bees during a 
defined period of time after treatment with antibiotics, parame-
terised based on Raymann et al. (2017). As it is unclear how long 
bees are affected by dysbiosis after exposure to antibiotics, we 
simulated a variety of possible effect durations. This ranged from 
two short periods to represent a hypothetical minimum effect sce-
nario in which the antibiotics only cause increased worker mortal-
ity during the recommended application period, up to a permanent 
effect. To evaluate our results, we compare the simulated reduc-
tion of the colony size with honey bee protection goals defined 
by EFSA.

2  | MATERIAL S AND METHODS

2.1 | The BEEHAVE model

Simulations were run in the BEEHAVE model V. 2013 (Becher 
et al., 2014; www.beeha​ve-model.net), and run in Netlogo v. 5.3.1 
(Wilensky, 1999). BEEHAVE simulates the development of daily bee 
cohorts from eggs, to larvae, pupae and adult workers and drones. 
Younger workers act as in-hive bees, caring for the brood until 
they develop into foragers and collect nectar and pollen from food 
sources in the landscape. Daily mortality probabilities are specific to 
the developmental stage and additional mortalities may apply due to 
other stressors, for example, foraging risks. To implement the impact 
of microbiome disturbance on the bees, we modified the daily mor-
tality probabilities of adult workers for a specific period. Details of 
this and all other changes to BEEHAVE are shown in the Supporting 
Information and Table  S1. For a full documentation of the model, 
including sensitivity analysis and ODD protocol (‘Overview, Design 
concepts, Details’, Grimm et  al.,  2006, 2010), see supplementary 
material of Becher et al. (2014). Evaluations of the BEEHAVE model 
have been done by the European Food Safety Authority (2015) and 
Agatz et al. (2019).

http://www.beehave-model.net
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2.2 | Calculation of mortality rates from empirical  
data

The antibiotic-induced mortality probability was derived from 
Raymann et al. (2017), in which five experimental treatment groups 
consisting of ~30 age-controlled A. mellifera workers were fed 
450 µg/ml tetracycline in sugar syrup for 5 days. The survival of the 
bees was then monitored daily for 10 days following the exposure.

2.3 | Imposed worker mortality

A binomial model was fitted to the available mortality data, where 
xi is the number of bees that died each day (for days i  =  1, …, T). 
We therefore model xi ~ Bin(ni, p), where p is the daily probability 
of mortality and ni is the number of bees that are alive each day. 
This is equivalent to assuming a constant mortality rate (e.g. Becher 
et al., 2014), but follows the structure of the empirical mortality data 
(Raymann et al., 2017) where the number of deaths in a series of dis-
crete time periods is reported, and the length of the time periods are 
the same throughout. We estimate p using maximum likelihood, and 
used a ‘resample with replacement’ bootstrap approach (n = 1,000) 
on the empirical data to derive consistent estimates of uncertainty 
at the level of the mortality probability parameter values. The distri-
bution of the derived mortality probabilities is shown in Figure S2. 
These bootstrapped samples are then propagated through the 
BEEHAVE model as the daily worker mortality probabilities. This is 
in contrast to earlier papers that used a single estimated value with 
no parameter uncertainty (e.g. Becher et al., 2014).

In contrast to standard toxicological assays where the toxi-
cant-induced mortality is the difference between mortality rates in 
treated minus rates in control groups, we modelled the control and 
treatment mortality probabilities separately so that we could quali-
tatively compare them. This also allowed us to determine the appro-
priateness of using the empirical control data (Raymann et al., 2017) 
rather than the BEEHAVE mortality value to represent a healthy 
colony.

Under default settings in BEEHAVE, a baseline daily mortality 
probability of 0.004 is imposed on all in-hive adult bees. This was 
derived by Becher et  al.  (2014) from a survival curve of healthy 
winter worker bees from Martin (2001). Honey bees kept sepa-
rate from their colony under experimental conditions experience 
high background mortality (Williams et al., 2013). Indeed, the em-
pirical control mortality probability from the Raymann et al. (2017) 
antibiotic experimental data derived mortality probability was ~10 
times greater than the standard mortality probability in BEEHAVE 
(Figure  S1). To adjust for the experimentally inflated background 
mortality, we transformed the data so that the pre-bootstrapped 
control mortality probability derived from the empirical data (0.029) 
was divided by the BEEHAVE baseline control for worker adults. This 
provided a transformation factor (7.25) which we could then use to 
transform all of the treatment and control mortality probabilities 
after the bootstrapping stage to more realistically represent natural 

colony development in the absence of individual-level mortality data 
from the field.

2.4 | Simulations

Every simulation was run with 1,000 bootstrapped mortality values 
giving 1,000 colony repeats per scenario, each with a unique random 
seed, and therefore resulting in a distribution of outputs. Simulations 
started on January 1st, with 10 000 initial bees and ran for a period 
of 10 years. We added 10 deformed wing virus infected and 10 un-
infected varroa mites at the start of simulations alongside the varroa 
treatment, as is standard in the EFSA risk assessment simulations 
(Becher et al., 2014; EFSA, 2013). All other parameters were set to 
the BEEHAVE defaults.

To address the uncertainties regarding the duration of microbi-
ome disturbance and to understand the costs of antibiotic treatment, 
we ran several scenarios spanning a gradient of effect durations of 
imposed antibiotic-induced mortality probabilities per annum with 
increments of 30  days per treatment duration scenario (Table  1). 
During the treatment days, the daily probability of mortality experi-
enced by the worker bees changed to one of the bootstrapped treat-
ment mortality probabilities. For non-effect days, it was set to one of 
the bootstrapped control mortality probabilities.

The 30-day effect duration is the minimum effect scenario and it 
assumes that antibiotics only increase the bee's probability of mor-
tality during the treatment period, after which the gut microbiome 
recovers. The current guidelines for US apiarists state that to protect 
against AFB, hives should be treated with three applications of pow-
dered oxytetracycline, 4–5 days apart in the spring and the autumn 
(Lafrenière & Ostermann, 2017). Hence, we imposed a minimum 
antibiotic-induced mortality probability for 15  days in spring and 

TA B L E  1   Description of simulated antibiotic effect scenarios 
and corresponding conditions

Scenario: days of 
antibiotic-induced 
mortality Days of imposed mortality

0 No imposed mortality

30 Days 60–75 + days 260–275

60 Days 60–90 + days 260–290

90 Days 60–105 + days 260–305

120 Days 60–120 + days 260–320

150 Days 60–135 + days 260–335

180 Days 60–150 + days 260–350

210 Days 60–165 + days 260–365

240 Days 1–15 + days 60–180 + days 260–365

270 Days 1–30 + days 60–195 + days 260–365

300 Days 1–45 + days 60–210 + days 260–365

330 Days 1–60 + days 60–225 + days 260–365

365 Continuous imposed mortality
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autumn of each year. In the maximum effect scenario, we assume 
that gut microbiome depletion after antibiotic exposure is irrevers-
ible and results in a permanently increased probability of mortality. 
This is plausible because the only route by which A. mellifera acquire 
and replenish their core gut microbiome, is through social transfer 
(Powell et al., 2014); if the whole colony has antibiotic-induced dys-
biosis, then all future generations could inherit a maladapted micro-
bial community. In this scenario, the daily probability of mortality 
experienced by the worker bees is always one of the treatment 
antibiotic-induced mortality probabilities. All simulations were run 
under the assumption that every worker will ingest antibiotics at a 
therapeutic dose.

2.5 | Data manipulation and visualisation

Data were assembled in R version 3.4.1 (R Core Team, 2016), using 
the dplyr (Wickham et al., 2017) package. The survival models were 
fitted using the survival package (Therneau,  2015). Bootstrapping 
was performed using the boot package (Canty & Ripley, 2017) and 
visualised using ggplot2 (Wickham, 2009).

2.6 | Data analysis

To assess differences in colony fitness outcomes, we used the num-
ber of overwintering adults and percentage decrease in colony size; 
these parameters are used in EFSA's plant protection product risk 
assessment (EFSA,  2013). In BEEHAVE, the census date for over-
wintering colony size is the 31st of December; if the colony size is 
below 4,000 adults on this census date, overwinter colony mortal-
ity is applied (Becher et al., 2014). As is standard plant protection 
product risk assessments, we present the change in colony size as 
the difference in overwintering colony size between the treatment 
and control groups, divided by the number of adults in the control 
group (EFSA,  2013). Modelled colony losses were then compared 
with two recommended protection goals. First, a maximum reduc-
tion of 7% in colony size which is deemed as a ‘negligible effect’ cut-
off by the EFSA, and second a maximum reduction of 20% in colony 

size which is an ‘economic viability’ cut-off suggested by Thorbek, 
Campbell, and Thompson (2017) and Thorbek, Campbell, Sweeney, 
et al. (2017).

3  | RESULTS

3.1 | Effects of antibiotic-induced mortality on 
colony growth and colony size

The model outputs show a negative relationship between the in-
crease in the number of days of imposed antibiotic-induced mortal-
ity (ABM) and the percentage change in overwintering colony size 
(Figures 1 and 2). This negative relationship was amplified with each 
additional year due to the cumulative reduction of colony size affect-
ing the potential capacity of the colonies each year.

3.2 | Protection goals

Colony size in the simulated treatments with 60–365 days of annual 
imposed ABM per year were all reduced by more than 7% by the end 
of the first year and for all consecutive years, compared to the 0-day 
ABM control colony size in the same year, therefore surpassing the 
EFSA ‘negligible threshold’ (Figure 1; Table S2; EFSA, 2013). Despite 
the minimum effect scenario (30-day ABM) not breaching the EFSA 
protection goal cut-off, it still causes a noticeable fitness cost across 
all years (Figures 1 and 2; Table S2). The more permissive 20% eco-
nomic viability cut-off (Thorbek, Campbell, & Thompson, 2017) was 
breached for the scenarios with 120–365  days of ABM (Figure  1; 
Table S2).

3.3 | Colony losses

The model outputs displayed a positive relationship between the du-
ration of imposed antibiotic-induced mortality and the percentage 
of colony failure (Figure 3). Once a colony has failed (conditional on 
them having fewer than 4,000 adults on the 31st December), the 

F I G U R E  1   Mean percentage change 
in the colony size on the 31st December 
of each year ± SEcompared to the 0-day 
antibiotic-induced mortality control on 
the 31st December in the same year 
(n = 1,000). The black horizontal solid line 
corresponds to a zero per cent fitness 
difference. The black horizontal long 
dash represents the 7% negligible fitness 
affect cut-off set by the EFSA (2016). 
The black horizontal short dash line 
represents the 20% economic viability 
threshold (Thorbek, Campbell, &amp; 
Thompson, 2017)
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total number of adults will be recorded as 0 in the following years 
and thus the colony losses across time are cumulative. The extent 
of cumulative colony losses is visualised in Figures 2 and 3 by the 

increasing degree of bimodality in the violin plots with both year 
and ABM treatment duration, where the bottom mode represents 
the number of colonies that have failed (see Table  S3). The only 

F I G U R E  2   Effect of the duration of 
imposed antibiotic-induced mortality 
on the number of overwintering adults 
(mortality probabilities derived from 
Raymann et al., 2017); central diamond 
represents the mean; width represents 
the kernel density and vertical length 
represent the range of the data. Each 
treatment (n = 1,000 bootstrap repeats) 
represents a different effect duration 
simulation. Once a colony has failed, the 
total number of adults is recorded as 0 
in the following years. The cumulative 
number of failed colonies can be seen in 
the bottom mode of the violin plot

F I G U R E  3   Cumulative percentage 
of failed colonies per treatment on the 
31st December of each year (n = 1,000). 
The colony losses across time are 
cumulative and the pool of active 
colonies is progressively smaller with 
each year
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treatments with no colony loss were the 0-day control and the 30-, 
60- and 90-day ABM treatments in year 1 (Table S3). The minimum 
time of imposed antibiotic mortality required to cause over 1% col-
ony failure was 120-day ABM from the fifth year. 5% colony failure 
was reached first in the 180-day ABM treatment by the third year, 
while in the ninth year colony failure was over 10% for this treatment 
(Figure 3; Table S3). Predictably, the highest percentage of colony 
failure was seen in the 365-day antibiotic treatment in the tenth 
year, where 38% of the colonies failed (Table S3).

4  | DISCUSSION

Here, we present an in-silico approach to determine the possible ef-
fects of antibiotic treatment of honey bees at the colony level. Using 
BEEHAVE, we found a consistent negative relationship between the 
duration that antibiotic-induced mortality is imposed and the colony 
size over a 10-year period. Colony size was decreased by more than 
7%, therefore breaching the EFSA honey bee protection threshold 
for all but the 0 day ABM control and the 30 days of annual ABM 
treatments across years, while the economic viability threshold of 
20% decrease in colony size was breached for the 120–365 days of 
annual ABM treatments, again across all years (EFSA, 2013; Thorbek, 
Campbell, Sweeney, et al., 2017). We simulated scenarios that differ 
in how long these effects last across a year, ranging from a scenario 
where antibiotic ingestion causes dysbiosis and fitness reduction 
only while the antibiotic is being applied under the recommended 
minimum treatment regime, to a permanent effect scenario, which 
assumes that antibiotic ingestion causes permanent dysbiosis and 
therefore decreased fitness.

The European Food Safety Authority states that ‘The effect 
on the colony (of plant protection products) should not exceed 7% 
compared with control colonies’ (EFSA, 2013). The simulation exper-
iments performed here suggest that if antibiotic treatment causes 
dysbiosis-induced mortality for 60–365 days or for 120–365 days 
per year then the 7% and 20% colony size reduction target, respec-
tively, would be surpassed after just 1  year (Thorbek, Campbell, 
& Thompson,  2017). Moreover, the most recently published Bee 
Informed Survey 2015–2016 found that commercial beekeepers 
consider a 16.5% loss rate to be acceptable (Kulhanek et al., 2017); 
this was surpassed in the first year of the 90-day ABM treatment and 
all following treatment durations.

It is challenging to accurately compare the colony-level fit-
ness effect of antibiotic treatment with that of an untreated AFB 
infection due to the complexity of P. larvae infection dynamics. P. 
larvae spores can survive for 35 years and less than 10 spores are 
required to cause a fatal infection in larvae, yet in some cases, col-
onies may contain low levels of P. larvae spores and never show 
clinical symptoms (Genersch, 2010; Haseman, 1961). For example, 
P. larvae was found in 9.7% of surveyed Danish honey bee colonies, 
but only 3.7% of colonies presented clinical symptoms (Hansen & 
Brødsgaard, 1999). In addition, there is a scarcity of published case 
studies where an infection was left unchecked until the death of 

the colony and so the average time from presentation of clinical 
symptoms, to colony death is not known to us. However, we can 
assume that a colony will be destroyed by beekeepers shortly after 
the development of a visible infection (Hansen & Brødsgaard, 1999). 
We have shown here that the minimum antibiotic effect scenario to 
cause colony failure after just 1 year was 120-day ABM, where 0.5% 
of the colonies failed while the maximum, permanent effect scenario 
resulted in failure of 11.7% of the colonies. The relative benefit of 
prophylactic antibiotic treatment of this disease then depends on 
the prevalence and virulence of the AFB infection and on the se-
verity of the dysbiotic effect on the gut microbiome caused by anti-
biotic treatment. Although the results obtained here should not be 
viewed as quantitative predictions of effect sizes, this highlights the 
need for an experimental investigation into the long-term impact of 
antibiotic treatment on honey bee gut microbiomes.

Tetracyclines are broad spectrum antibiotics which affect 
gram-positive and gram-negative bacteria. Disturbing the mutualis-
tic core microbiome of honey bees can trigger an interdependent 
cascade of events at a molecular and ecological level which together 
affect the fitness of their host and the colony as a whole. Treatment 
with antibiotics may prevent the core bacteria from providing vital 
services such as detoxification, dietary supplementation and pro-
tection against parasites and pathogens (e.g. Raymann et al., 2017; 
Schwarz et  al.,  2016). Metagenomic surveys revealed that honey 
bees from colonies with colony collapse disorder had different com-
munity compositions compared to healthy colonies and were lacking 
strains known to positively stimulate immunity and aid in nutrient 
acquisition (Cox-Foster et al., 2007).

Predicting the potential for colonies to recover from gut dys-
biosis is problematic, and at present there is no long-term data to 
elucidate the possibility either way. As there are no microbiome ac-
quisition pathways independent of social transfer within the colony, 
the microbiome is unlikely to recover completely after an applica-
tion of antibiotics to the hive (Powell et al., 2014). The honey bee's 
core gut microbiome shows a high degree of spatial structure and 
co-dependence and the order of colonisation by different species is 
important for maintenance of an effective gut microbiome (Ellegaard 
& Engel, 2019). Raymann et al. (2017) found that even when tetracy-
cline-treated bees were returned to a hive alongside nestmates with 
a healthy microbiome, the treated bees’ microbiome did not return 
to the baseline composition of abundance after a week and they still 
experienced increased mortality akin to bees who were returned 
to xenobiotic nestmates. After dysbiosis, previously mutualistic mi-
crobes can transition into pathogenic states, or transient pathogens 
such as Serratia marcescens can fill the niche space of a core sym-
biont in honey bees (Schwarz et  al., 2016). Tetracycline treatment 
resulted in an increase in the core bacteria Gilliamella apicola and a 
decrease in the core Bifidobacterium (Raymann et al., 2017), which is 
a trend seen in the microbiomes of colonies with CCD (Cox-Foster 
et al., 2007) and therefore is likely representative of an unhealthy 
bee.

It could be postulated that a colony may re-establish a healthy gut 
microbiome community under certain circumstances, for example if 
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only a small proportion of bees within the colony ingest the antibiotics 
at a concentration capable of causing dysbiosis. Healthy bees would 
then be able to re-inoculate newly hatched bees, and restore the mi-
crobiome in future generations. However, tetracycline can be detected 
in hives up to 3 months post-application (Al-Waili et al., 2012); there-
fore, it appears unlikely that any individuals could avoid exposure.

Given that P. larvae is also already developing resistance to tetracy-
clines (Alippi et al., 2014), prophylactic antibiotic treatment should be 
used with caution. Furthermore, there is a strong case for universally 
reducing our use of antibiotics where possible, to preserve their effi-
cacy in treating human pathogens. Tian et al. (2012) found that most of 
the tetracycline resistance genes within the bee gut microbiome have 
>99% sequence identity to genes which are carried by human patho-
gens. This indicates that bees can potentially act as a reservoir for med-
ically important resistance genes, subsequently increasing that gene's 
ecological connectivity and therefore its risk to humans and livestock.

Consequently, non-antibiotic treatments including the shook-
swarm method and probiotics should be favoured where pos-
sible. Dietary probiotic lactobacilli treatment is as efficient at 
inhibiting P. larvae as the recommended antibiotic treatment (Daisley 
et  al.,  2019). In the future, probiotics may both prevent and treat 
American Foulbrood disease and therefore present a clear alterna-
tive. The most common current non-antibiotic AFB management 
technique is the shook-swarm method, whereby colonies with light 
AFB infections in the spring have their adults ‘shaken’ into a new 
nest and the comb is destroyed (Hansen & Brødsgaard, 2003). This 
method has been shown to be effective at removing AFB symptoms 
and is more profitable than simply destroying the whole colony and 
purchasing new bees (Pernal et al., 2008). It does however present a 
considerable cost to the ‘shaken’ colony, which will have to re-build 
its resources and rear new brood at the beginning of the foraging 
season.

It is important to take note of the caveat that large complex mod-
els such as BEEHAVE are only as accurate as the data used to param-
eterise them, the appropriateness of mathematical models and the 
assumptions upon which they were created (Aldebert et al., 2018). 
As such, we should view these results as an attempt to explore the 
range of potential outcomes in the absence of gold-standard empir-
ical studies, and to highlight the importance of future research in 
these areas. By bootstrapping the empirical mortality data before 
applying the survival model to derive mortality probabilities, we 
were able to incorporate uncertainty through the mortality parame-
ters to give a predictive distribution for model outputs that accounts 
for uncertainties in our knowledge of this key parameter. Other pa-
rameters in the model were based on the BEEHAVE defaults, eval-
uated by Agatz et al. (2019). However, this means that we are likely 
underestimating the true variability in the outputs, and accounting 
for these potential additional uncertainties would be a useful area of 
future research.

Our study highlights the need to carefully consider how best 
to extract and interpret results from laboratory experiments both 
to explain natural systems and to parameterise models. This is es-
pecially true for social insects, where differences at an individual 

level or in a social context need to be taken into account when 
measuring physiological or behavioural responses. This is particu-
larly important when extrapolating results from laboratory pesti-
cide risk assessments investigating individuals, as misinterpreting 
these results could have great economic costs with regard to food 
security. Here, the control mortality derived from the empirical 
data did not represent mortality experienced by bees within a nat-
ural colony when input to the model, leading to unrealistic levels 
of colony failure (Figure S1). This discrepancy is expected because 
honey bees in controlled experiments, where bees are main-
tained outside the hive environment, are expected to show higher 
mortality than under normal conditions within the hive (Sonter 
et al., 2019). We accounted for this discrepancy by transforming 
our control and treatment bootstrapped data proportional with 
the baseline mortality in BEEHAVE.

The most recent survey of managed honey bees in the United 
States found that 26.3% of commercial colonies were lost in the win-
ter of 2015 (Kulhanek et al., 2017). This degree of colony losses is 
first reached in our model outputs in the 8th year of the 330-day 
AMB treatment and in the 4th year of the 365-day ABM treatment. 
This highlights that we are likely missing important interacting fac-
tors which lead to greater colony loss. The reported drivers for the 
colony losses include viruses, pesticides, varroa and starvation; gut 
microbiome disequilibrium will certainly be interacting either syn-
ergistically or additively with these factors (Kwong, Mancenido, 
et al., 2017; Zheng et al., 2017). While BEEHAVE is able to include 
varroa infestations, virus infections and dynamic foraging condi-
tions, we are unable to model the interactions between these and 
antibiotic-induced gut microbiome dysbiosis due to a scarcity of 
data. It is therefore vital that empirical studies attempt to unpick 
these interactions to allow appreciation of the full cost of the pro-
phylactic use of antibiotics in honey bees.

In a broader context, our research cautions that using antibi-
otics to treat mass-reared animals is problematic not just for ver-
tebrates but also for insects. Increasingly, new insect species are 
being domesticated for intensive pollination, for example, sting-
less bees, mining bees and bumble bees (Garibaldi et al., 2017). 
Insects’ dependence on their microbiome varies depending on 
their life histories (Engel & Moran,  2013). Compared to social 
bees, solitary bees' microbiomes are more transient and environ-
mentally determined, largely due to the lack of stable inter-gen-
erational transmission pathways (Kwong, Medina, et  al.,  2017; 
Voulgari-Kokota et al., 2019). Regardless, most pollinators rely on 
their microbiomes to metabolise and detoxify polysaccharides in 
their diet (Zheng et al., 2017). To optimise productivity, it is para-
mount that the gut microbiome is preserved when domesticating 
insects.

5  | CONCLUSIONS

The simulations presented here highlight that honey bee colonies 
are at risk not only from American Foulbrood disease but also 
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potentially from the treatment against the disease. This highlights 
the importance of minimising the longevity and intensity of antibi-
otic treatment where possible, to reduce undesirable side effects 
such as dysbiosis-caused host fitness reductions and evolution of 
resistance in commensal microbes. To validate these results, the 
temporal extent of the mortality effect imposed on honey bees 
needs to be measured, ideally by conducting long-term experi-
ments at the colony level to validate fitness effects. If empirical 
studies support long-lasting effects of tetracyclines on mortality 
and dysbiosis, strict regulation on antibiotic use in beekeeping 
should be considered.
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