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a b s t r a c t 

Metal-organic frameworks (MOFs) offer innovative solutions to the limitations of traditional 

oral drug delivery systems through their unique combination of metal ions and organic 

ligands. This review systematically examines the structural properties and principles of 

MOFs, setting the stage for their application in drug delivery. It discusses various classes 

of MOFs, including those based on zirconium, iron, zinc, copper, titanium, aluminum, 

potassium, and magnesium, assessing their drug-loading capacities, biocompatibility, and 

controlled release mechanisms. The effectiveness of MOFs is illustrated through case 

studies that highlight their capabilities in enhancing drug solubility, providing protection 

against the harsh gastrointestinal environment, and enabling precise drug release. The 

review addresses potential challenges, particularly the toxicity concerns associated with 

MOFs, and calls for further research into their biocompatibility and interactions with 

biological systems. It concludes by emphasizing the potential of MOFs in revolutionizing 

oral drug delivery, highlighting the critical need for comprehensive research to harness their 

full potential in clinical applications. 

© 2024 Shenyang Pharmaceutical University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Advancements in medical sciences rely not only on
discovering new drugs but also on the innovation of effective
delivery systems for these therapeutic agents [ 1 ,2 ]. Drug
delivery systems (DDS) are essential in ensuring that
medications are delivered to the correct part of the body,
at the right time, and at the proper dosage [ 3 ,4 ]. Metal-organic
frameworks (MOFs) are at the forefront of this innovation.
MOFs are constructed by integrating metal nodes with organic
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linkers to form highly porous structures suitable for drug
delivery ( Fig. 1 ) [ 5 ]. Examples include Zr-MOF (UiO-66) and Fe-
MOF (PCN-600), which demonstrate significant stability and
functionality ( Fig. 1 ). These frameworks, including others like
Zn-MOF (ZIF-8) and Mg-MOF (MOF-74), are tailored for specific
applications due to their adjustable properties such as pore
size and chemical functionality ( Fig. 1 ) [ 5 ,6 ]. However, why
metals and organics? The fusion of metal nodes with organic
linkers is pivotal. Metals provide rigidity, ensuring that the
framework is stable. Meanwhile, the organic components
bring functionality and flexibility [ 5 ,6 ]. Hence, the way these
rsity.

sevier B.V. This is an open access article under the CC BY-NC-ND 

https://doi.org/10.1016/j.ajps.2024.100951
http://www.sciencedirect.com/science/journal/18180876
http://www.elsevier.com/locate/AJPS
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajps.2024.100951&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wuwei@shmu.edu.cn
https://doi.org/10.1016/j.ajps.2024.100951
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Asian Journal of Pharmaceutical Sciences 19 (2024) 100951 

Fig. 1 – Schematic representation of the synthesis of various MOFs, where metal clusters such as Zr6 O4 (OH)4 and Fe3 O(OH)3 
are intricately combined with organic linkers such as H2 BDC and TCPP. The resulting structures include cubic Zr-MOF 
(UiO-66), known for its robustness, and porphyrin-incorporated Fe-MOF (PCN-600 (M)), illustrating the versatility and 

functional adaptability of MOFs. Additionally, ZIF-8 and MOF-74 exemplify the synthesis of frameworks with exceptional 
thermal stability and gas adsorption properties using 1-methylimidazole and 2,5-dihydroxy-terephthalic acid as linkers, 
respectively. Reproduced with permission from [ 6 ]; Copyright 2017 ACS. 

m  

r
a

[
g
a
M
g
b
e

s
M
t
g
t

c
d
b
t  

s

etals and organic groups connect gives MOFs their unique,
obust and porous structure, making them valuable in many 
pplications [ 6 ,7 ]. 

Since their introduction in 1989 by Hoskins and Robson 

 8 ], MOFs, also recognized as coordination polymers, have 
arnered significant attention. Fast forward to 2006, Horcajada 
nd his colleagues pioneered the concept of employing 
OF nanoparticles (MOF-NPs) for drug delivery [ 9 ]. In their 

roundbreaking study, they utilized two chromium (Cr)- 
ased MOFs, MIL-100 and MIL-101. Impressively, these MOFs 
ncapsulated up to 1.4 g ibuprofen (IBU) per gram and 
howcased a controlled release over 3 to 6 d for MIL-100 and 

IL-101, respectively [ 9 ]. This innovation opened the door 
o a myriad of medical applications for MOFs, ranging from 

as delivery for wound healing [ 10-12 ] to advanced sensing 
echniques [ 12 ,13 ]. 

Oral administration is preferred for its simplicity and 

onvenience for patients [ 1 ,14 ], yet it faces challenges like 
rug stability under acidic stomach conditions and poor drug 
ioavailability due to water solubility issues [ 15 ,16 ]. Unlike 
raditional delivery systems such as micelles, liposomes,
ilica, and polymeric nanoparticles, MOFs distinguish 
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themselves with their high surface area and customizable
properties. These features position MOFs as promising agents
to revolutionize oral drug delivery [ 15 ,17-23 ]. Additionally,
the physical and chemical attributes of MOFs can be readily
customized through modifications to pore size and shape,
as well as alterations to the chemical properties, achieved
by manipulating inorganic clusters and organic ligands
[ 24-26 ]. Given their porous nature, MOFs can encapsulate
drug molecules to enhance solubility, protect against the
harsh digestive environment, and ensure sustained release,
effectively addressing many challenges associated with oral
drug administration [ 2 ,27-30 ]. 

However, the excitement surrounding MOFs is not only
tempered by their own inherent set of challenges but also by
the challenges presented by the highly acidic environment of
the body [ 31 ,32 ]. Their very high porosity, which is usually
beneficial, can also make them somewhat brittle and not
always stable, especially when they come into contact with
water or in the acidic pH of the stomach [ 32-35 ]. In such acidic
environments, the protonation of organic linkers and metal
leaching can lead to MOF degradation, compromising their
structural integrity and functionality. This means that while
MOFs have considerable potential for different uses, they need
to be carefully checked to ensure that they are suitable for
specific purposes. 

Therefore, as with any emerging scientific innovations,
MOFs introduce a series of questions and considerations.
Are they safe for human consumption? How do they fare in
terms of toxicity? Can the lab successes with MOFs be scaled
up to meet the pharmaceutical industry’s demands? And,
importantly, where do they fit within the complex regulatory
landscapes? The transition of MOFs from lab to clinical
use presents challenges but holds transformative potential
for patient care. MOFs enhance drug delivery, allowing oral
administration of drugs otherwise unsuitable due to digestive
instability, thus improving patient adherence and health
outcomes [ 36 ]. While exploring their potential, it is crucial
to address the challenges traditional oral DDSs face, such as
poor drug solubility, instability in the digestive tract, and low
bioavailability. 

In conclusion, this review on MOFs in advanced oral DDSs
positions us at the threshold of a potentially transformative
era in pharmaceutical sciences. Through this exploration, we
aim to shed light on the opportunities MOFs present and
the challenges that must be overcome to make a significant
impact in the field of oral drug delivery. 

2. Advantages of MOFs in oral drug delivery 

Addressing these challenges, MOFs offer cutting-edge
advantages for oral drug delivery. With high drug-loading
capacities, controlled release mechanisms, and protection
from harsh gastrointestinal (GI) conditions, MOFs enhance
the efficacy and precision of oral therapeutics. Their tunable
structures promise not only enhanced bioavailability but
also tailored drug delivery strategies, marking them as
significant advancements in medical technology [ 36 ]. Hence,
the advantageous properties of MOFs for oral drug delivery
are diverse and impactful, some of which are discussed below.
2.1. High loading capacity 

High drug loading capacities (LC) stand out as a pivotal
advantage of MOFs in the context of oral drug delivery
( Table 1 ). This attribute stems from their highly porous
structure, which provides an extensive surface area and
volume to accommodate pharmaceutical compounds. Unlike
conventional drug carriers, MOFs can encapsulate a larger
amount of drug molecules within their pores and onto
their surfaces. Studies have demonstrated that MOFs show
a Brunauer–Emmett–Teller (BET) surface area ranging from
1,000 to 7,000 m ²/g, which is markedly higher than the
700 to 1,200 m ²/g range seen in mesoporous silica [ 37 ].
Complementing the surface area, the pore volume of MOFs
ranges from 1.04 to 4.40 cm ³/g, dwarfing the 0.6 to 2 cm ³/g
offered by mesoporous silica [ 37 ]. In regard to the practical
aspect of drug loading, MOFs demonstrate a superior insulin
(INS) LC of 350 to 397 mg/g, a considerable improvement
over the 261 mg/g LC of mesoporous silica [ 2 ,38 ,39 ]. In
summary, MOFs exhibit superior performance across all
three metrics when compared to mesoporous silica, with
a minimum of approximately 1.34 times to a maximum of
approximately 6 times better in terms of surface area, pore
volume, and drug LC. Moreover, the charge of the metal ions
can facilitate electrostatic interactions with drug molecules,
especially if the drug is ionized. Positively charged metals
can interact with negatively charged drug molecules and vice
versa , which can affect the loading and release behaviors
of the drug [ 40 ]. The zinc-based MOF (Zn- MOF), ZJU-64-
NSN, anointed with an anionic network rich in thiadiazole
groups, demonstrates a potent affinity for the cationic drug
procainamide (PA), facilitating ultrafast PA loading of 21.2
wt% in merely 1 min [ 30 ]. This rapid loading is indicative
of the strong ionic interactions between the drug and the
MOF. Therefore, these advantages maximize the efficiency
of each dosage by delivering more therapeutic agent per
unit volume, potentially reducing the frequency of dosing
and improving patient compliance. Furthermore, the ability
to load significant quantities of drugs into MOFs means
that smaller and fewer pills or capsules may be needed,
which can enhance patient comfort and adherence to
treatment regimens. Hence, this immense internal surface
area, combined with the material’s customizable nature,
makes MOFs a playground for chemists. By selecting different
metals and organic ligands or by post-synthesis modification,
scientists can tailor-make MOFs for specific applications
[ 27 ,41 ]. 

2.2. Controlled and sustained drug release 

MOFs can be engineered to degrade or change structure at
specific pH levels, releasing their payloads only in certain
environments (such as the less acidic pH of the intestines, as
opposed to the stomach). This can be used to protect drugs
that are sensitive to stomach acid and to ensure release at the
intended site of absorption ( Table 1 ). In a study, the efficacy
of a zirconium (Zr)-based MOF (NU-1000) as a carrier for oral
INS delivery was evaluated [ 2 ]. The encapsulated INS@NU-
1000 was exposed to both gastric acid (pH 1.29) and neutral
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Table 1 – Key properties of MOFs enhancing oral drug delivery. 

Property Feature Details Ref. 

High Loading Capacity Various MOFs ZJU-64-NSN: 21.2 wt% in 1 min [ 30 ] 
GEN@MIL-100: 27.1 wt% [ 46 ] 
IBUNa@UiO-66-PDC: 27.60 wt% [ 19 ] 

Controlled and Sustained Release Controlled Release NU-1000: 10% release at pH 1.29; 91% at pH 7.0 [ 2 ] 
UiO-66-PDC: Minimal release at pH 2.0; near-complete at pH 7.4 [ 19 ] 

pH-Responsive Release ZJU-64-NSN- 20% release at pH 2.0; 70% at pH 7.4 in 10 h [ 30 ] 
Protection from GI Environment Al-MOF for OVA Al-MOF: Retains 90% activity, withstands GI fluids [ 45 ] 

Ti-nanoMOF for aspirin Ti-nanoMOF: Maintains structural integrity under GI conditions [ 44 ] 
Protection from GI Environment Al-MOF Retains 90% activity, withstands GI fluids [ 45 ] 

Ti-nanoMOF Maintains structural integrity under GI conditions [ 44 ] 
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pH 7.0) solutions, representing the stomach environment 
nd physiological conditions, respectively [ 2 ]. The results,
scertained through UV–visible spectroscopy, indicated that 
nly 10% of INS was released in the acidic condition after 1 h,
uggesting robust protection by NU-1000 [ 2 ]. In contrast, under 
eutral conditions, a substantial release of 91% was observed,
ignaling the degradation of NU-1000 and subsequent INS 
elease. These outcomes underscore the potential of NU-1000 
s an oral INS delivery system, offering protection in the 
tomach and targeted release in the bloodstream [ 2 ]. 

The pH-responsive drug delivery capability of ibuprofen 

odium (IBUNa) into a Zr-MOF (UiO-66-PDC) was explored 

y monitoring its drug release in PBS at pH 2.0 and 

.4, approximating stomach and intestinal conditions,
espectively, at 37 °C [ 19 ]. At an acidic pH of 2.0, mimicking
tomach conditions, the drug release was minimal, with only 
pproximately 10% of the drug being released. This can be 
ttributed to the protonation of the pyridine heterocyclic rings 
n the framework, leading to electrostatic interactions that 
ightly hold the anionic drug IBUNa [ 19 ]. At a neutral pH of 7.4,
epresentative of the intestinal environment, the drug release 
as significantly accelerated, with most of the drug being 

eleased within the first few hours and nearing completion 

fter 72 h. The shift to a neutral pH results in deprotonation,
hich diminishes the electrostatic attractions and allows 

or the efficient release of the drug [ 19 ]. This differential 
elease pattern exhibits a pronounced pH-responsive drug 
elivery capability of UiO-66-PDC within the digestive system,
ighlighting its promising potential as an oral drug delivery 
ehicle. 

Metal ion charges can influence drug interactions and 

elease behaviors. For example, the ZJU-64-NSN, with its 
nionic thiadiazole-rich network, shows a strong affinity for 
he cationic drug PA [ 30 ]. Notably, in an acidic environment 
ith a pH 2.0, the release of PA was substantially inhibited,
ith only ∼20% of the drug released after 50 h, demonstrating 

he interaction’s resilience in gastric-like conditions [ 30 ]. In 

ontrast, a neutral pH 7.4 resulted in a marked increase in 

he release rate, with over 70% PA release in the initial 10 h,
nderscoring a pH-responsive release ideal for drug delivery 

n the intestinal region [ 30 ]. These findings highlight the 
otential of MOFs in delivering drugs effectively at specific 
ites within the body, harnessing pH differences for targeted 

herapy. 
.3. Protection from the harsh GI environment 

he GI tract presents several challenges, including acidic pH 

n the stomach and the presence of enzymes that can degrade 
rugs before they reach their absorption sites in the intestine.
o enhance MOF stability in the GI tract, some studies 
 Table 1 ) have synthesized stable MOFs with hard bases ( e.g.,
arboxylate-based ligands) and high-valent metal ions ( e.g.,
r4 + , Ti4 + , Fe3 + , and Al3 + ) [ 42-45 ]. In this way, MOFs provide
 protective environment for drugs as they pass through 

he harsh GI tract, which is essential for oral drug delivery.
OFs can encapsulate drugs within their pores, shielding 

hem from acidic conditions and enzymatic degradation. The 
tability of MOFs under different pH conditions allows drugs to 
emain intact in the stomach. In a study, an aluminum-based 

OF (Al-MOF) was utilized to encapsulate ovalbumin (OVA), a 
odel antigen, for oral vaccination. This Al-MOF system was 

esigned to protect OVA from degradation in the stomach’s 
cidic environment and from denaturation by digestive 
nzymes, facilitating its intact delivery to the intestine for 
ffective immunization [ 45 ]. The study revealed that these Al- 
OFs exhibited exceptional stability, retaining approximately 

0% of β-galactosidase activity over nine weeks across 
ariable temperatures, thus eliminating the necessity for 
efrigeration [ 45 ]. Furthermore, the OVA@Al-MOFs withstand 

he harsh conditions of simulated GI fluids, maintaining 
heir structural and functional integrity, which underscores 
heir efficacy in protecting antigens during GI passage 
 45 ]. In another study, a titanium-based MOF (Ti-nanoMOF),
pecifically tetragonal titanium (IV) aminoterephthalate MIL- 
25-NH2 , was evaluated for its potential as an efficient oral 
herapeutic agent for the detoxification of salicylate (aspirin) 
ntoxication [ 44 ]. The Ti-nanoMOF was then characterized 

or stability under simulated GI tract conditions. MIL-125- 
H2 retains its crystalline structure and microporosity when 

ubjected to conditions that mimic the human GI tract [ 44 ].
hen tested in gastric media (HCl, pH 1.2 at 37 °C for 2 h),

ollowed by intestinal conditions (simulated intestinal media,
IF; pH 6.8 at 37 °C for 24 h), MIL-125-NH2 maintained its 
tructural integrity [ 44 ]. The results were confirmed through 

owder X-ray diffraction (PXRD) of the recovered GI contents,
hich showed that MIL-125-NH2 possesses a remarkably high 

tability, retaining its crystalline structure throughout the GI 
ract after 24 h [ 44 ]. 
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Furthermore, the protective capabilities of MOFs can be
tailored through the choice of metal ions and organic linkers
that construct the framework. Some MOFs can also take
advantage of pH-responsive linkers that respond to pH
changes as the MOF moves from the stomach to the intestine,
triggering the release of the drug at the desired location.
In the present study, the synthesis of a zirconium-based
MOF (Zr-MOF), designated UiO-66-PDC, was accomplished
utilizing the ligand H2 PDC (2,5-pyridinedicarboxylic acid)
[ 19 ]. Remarkably, the structural composition of UiO-66-PDC
remained robust, exhibiting no significant degradation after
prolonged exposure to aqueous conditions for 5 d. The
encapsulation of the anti-inflammatory agent IBUNa into
the MOF matrix was achieved with a drug LC quantified
at 27.60 wt%, referred to as IBUNa@UiO-66-PDC [ 19 ]. A pH-
responsive release profile was observed, with preferential
release in an intestinal simulated environment (pH 7.4) over
a gastric simulated environment (pH 2.0). This differential
release characteristic highlights the potential of UiO-66-PDC
for targeted drug delivery in oral administration applications
[ 19 ]. 

In summary, MOFs serve as a versatile platform for oral
drug delivery by offering protection from the acidic and
enzymatic environment of the GI tract, ensuring that drugs
are released in a controlled manner at the site where their
absorption is maximized and minimizing potential gastric
side effects. 

2.4. Enhanced drug solubility and bioavailability 

MOFs, with their unique porous structure and high surface
area, offer significant advantages in enhancing the solubility
and bioavailability of orally administered drugs, particularly
for those with poor water solubility ( Table 1 ). Encapsulating
these drugs in MOFs increases their dissolution rate in GI
fluids, thereby improving oral bioavailability. A study by
Botet-Carreras et al. [ 46 ] focused on encapsulating genistein
(GEN), a bioflavonoid with anticancer properties, within
MIL-100 (Fe) nanoparticles. This approach achieved a drug
loading of 27.1 wt% and resulted in a 62-fold increase
in bioavailability compared to free GEN. Additionally, the
GEN@MIL-100 formulation boosted the drug’s plasma levels
by 12-fold, increased the mean residence time (MRT) by 4-
fold, and extended the drug half-life by 5.5-fold compared to
free GEN [ 46 ]. Similarly, the use of UiO-66(Zr) was explored
for magnolol, a bioactive compound with low solubility [ 47 ].
The encapsulation within UiO-66 (Zr) more than doubled
the relative bioavailability of magnolol, with significant
improvements in the area under the curve (AUC) and a
marked increase in systemic drug presence over time [ 47 ].
These MOFs also allow for controlled drug release, which is
beneficial for hydrophobic drugs. The gradual release of drugs
in the stomach and intestines enhances absorption. Moreover,
MOFs can be engineered for optimal drug-MOF interactions
through hydrogen bonds, π- π stacking, and electrostatic
forces. Specifically, UiO-66 (Zr) demonstrated a high drug LC
for magnolol of 72.16% ± 2.15% after 36 h [ 47 ]. 

In summary, MOFs can revolutionize oral drug delivery by
increasing the solubility of poorly soluble drugs, protecting
them from the gastric environment, and controlling
their release rate, all of which contribute to enhanced
bioavailability and therapeutic efficacy. 

3. Exploring MOFs in oral drug delivery 

The advancement of materials science has been significantly
enriched by MOFs, crystalline materials known for their
unique composition of organic ligands and metal ions. These
structures, notable for their diversity and functionality, are
increasingly relevant in oral drug delivery. MOFs offer a
versatile platform for drug encapsulation and controlled
release, with a focus on enhancing bioavailability and targeted
delivery. This exploration delves into various MOFs designed
for oral use from 2018 to 2023, examining their structural
features and the innovative methods used to improve drug
therapies, thereby highlighting their potential to revolutionize
oral medication efficacy and precision. 

3.1. Zr-MOFs 

In 2008, a pioneering study by Lillerud et al. introduced a
novel class of Zr-MOFs [ 48 ]. Among these, the UiO series,
which takes its name from the University of Oslo, has been
particularly noteworthy. These structures are composed of
[Zr6 O4 (OH)4 (RCO2 )12 ] clusters that form octahedral shapes,
which are linked by linear dicarboxylate ligands to create
expansive, porous networks [ 49 ,50 ]. Typically, represented
by the formula [Zr6 O4 (OH)4 (L)6 ]n, where ’L’ represents the
organic linkers, these frameworks are distinguished by their
Zr6 clusters. These clusters, along with their variations,
have become a staple as inorganic secondary building
units (SBUs) in the design and development of a broad
spectrum of Zr-MOFs that have been reported in the
literature since their discovery [ 49 ,50 ]. In the study of Zr-
MOFs, researchers have successfully synthesized frameworks
that incorporate three or four carboxylate groups in their
linkers. For instance, the use of a flat linker known as
tetrakis(4-carboxyphenyl)porphyrin (TCPP) with Zr6 building
units leads to the creation of structures such as PCN-223
and PCN-224, depending on the connectivity of the Zr6

units [ 51 ,52 ]. Similarly, a compound called 1,3,6,8-tetrakis(p-
benzoate)pyrene, when connected with Zr6 units, forms
structures known as NU-901 and NU-1000 [ 53 ]. The robust
Zr-O bonds and the durability of their SBUs endow Zr-MOFs
with remarkable chemical, thermal, and aqueous stability
[ 50 ]. This stability, coupled with their structural versatility,
has resulted in the discovery of different types of Zr-MOFs,
each with potential utility in various applications [ 49 ,50 ]. The
biocompatibility of zirconium, which naturally occurs in the
human body at an average of 300 mg and with a recommended
daily intake of 4.15 mg [ 29 ,54 ], has stimulated increased
academic research into the use of Zr-MOFs for biomedical
purposes. However, the scope of this review is specifically
tailored to examine Zr-MOFs ( Table 2 ) that have been utilized
in the context of oral drug delivery. 

The two studies present advancements in the field of
Zr-MOFs for oral INS delivery, each utilizing the unique
properties of Zr-MOFs to overcome the challenges associated
with the oral administration of INS. In a study conducted
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Table 2 – MOFs in oral drug delivery: types and case studies (2018–2023). 

Materials Year Drug Drug loading 
method 

DrugLE/ LC Release kinetics Stability Biocompatibility 
and safety 

Key findings Conclusion/ 
implications 

Refs 

NU-1000 
(Zr-based) 

2018 INS Simple 
immersion 

40 wt% Slow degradation 
in bloodstream 

simulation, 10% 

release in 
stomach acid 

Stable in 
simulated 
stomach and 
bloodstream 

conditions 

Not mentioned High INS loading, 
protects in 
stomach acid, 
retains activity 

Potential for oral 
INS delivery 

[ 2 ] 

UiO-66 
(Zr-based) 

2020 Magnolol Simple 
impregnation 

72.16% ±
2.15% at 36 h 

Not mentioned Not 
mentioned 

No toxicity at 
2,000 mg/kg in 
rats 

Higher 
bioavailability 
with Uio-66(Zr) 
carrier 

Potential carrier 
for poorly soluble 
drugs 

[ 47 ] 

UiO-66, 
UiO-66-NH2 , 
UiO-66-COOH, 
UiO-67, 
Zr-NDC and CS 

2020 FU Simple 
immersion 

66.28% in 
Zr-NDC 

Limited release 
in acidic 
environment, 
significant in 
intestinal fluid 

Improved 
stability with 
CS coating 

Not mentioned Controlled 
release, 
enhanced oral 
bioavailability of 
5-FU 

Effective for oral 
administration of 
FU 

[ 55 ] 

UiO-66-PDC 

(Zr-based) 
2021 IBUNa Simple 

immersion 
27.60 wt% pH-responsive, 

10% release at 
pH 2.0, complete 
in 72 h at pH 7.4 

Excellent 
stability in 
water for 5 d 

Increased 
toxicity 

pH-responsive 
release in the 
digestive system 

Promising for 
oral drug delivery 
in varying pH 

[ 19 ] 

UiO-68-NH2 

(Zr-based) 
2022 INS Simple 

immersion 
LC: 33 wt% < 20% release in 

24 h in GI 
conditions, 
complete release 
in 10–12 h in PBS 

Strong 
acid-proof 
stability 

No noticeable 
side effects or 
toxicity in 
diabetic rats 

Protective 
environment, 
transferrin 
coating enhances 
intestinal 
transport 

Effective for oral 
INS delivery with 
high 
bioavailability 

[ 42 ] 

UiO-66 
(Zr-based) 

2023 
Captopril/IBU 

Simple 
immersion 

LE, Captopril: 
99.78%, IBU: 
96.65% 

Slower release 
rates in 
an acidic 
medium than 
phosphate buffer 

Stable across 
pH 1 to 11 

Not mentioned Enhanced 
loading capacity, 
modulated 
release rate by 
pH 

Effective for drug 
delivery, 
especially 
water-soluble 
drugs 

[ 29 ] 

MIL-127 
(Fe-based) 

2018 Aspirin 
(ASA) 

Contact with 
different ASA 

concentrations 

LC: ∼0.14 g/g No release of 
salicylates after 
medium change 

Exceptional 
GI stability 

Good 
biocompatibility, 
safe in ASA 

overdose 

Significant 
reduction in GI 
absorption of 
salicylates 

Efficient for oral 
detoxification 

[ 60 ] 

MIL-100 
(Fe-based) 

2020 INS Simple 
immersion 

LC: 4.6% 

LE: 77.1%. 
Protected from 

rapid 
degradation in 
acidic conditions, 
released in 
simulated 
intestinal fluid 

Resistant to 
gastric acid 
environment 

Over 80% 

viability of 
Caco-2 cells 
after 48 h 

Increased 
intestinal 
absorption in 
mice, enhanced 
plasma INS 
levels in rats 

New strategy for 
effective oral 
protein delivery 

[ 39 ] 

( continued on next page ) 
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Table 2 ( continued ) 

Materials Year Drug Drug loading 
method 

DrugLE/ LC Release kinetics Stability Biocompatibility 
and safety 

Key findings Conclusion/ 
implications 

Refs 

NH2 −MIL101 
(Fe-based) 

2021 Exendin-4 Simple 
immersion 

LC: 40.2%; LE: 
87% ± 1.7% 

Mainly diffusion 
and 
disintegration of 
nanoparticles 

Not explicitly 
mentioned 

Tested against 
Caco-2 and E12 
cells, showing 
biocompatibility 

Higher 
movement 
ability in mucin, 
zwitterionic 
nature aids 
mucus 
transportation 

Promising for 
oral delivery of 
exendin-4, 
potential in 
diabetes 
treatment 

[ 59 ] 

MIL-100 
(Fe-based) 

2021 GEN Simple 
impregnation 

LC: 27.1 wt% Burst release in 
first 30 min, then 
over 3 d 

Assessed 
under 
simulated 
physiological 
conditions 

Not mentioned Improved oral 
bioavailability, 
prolonged drug 
release 

Enhances oral 
bioavailability of 
GEN, potential in 
antitumor 
treatments 

[ 46 ] 

MIL-88B 
(Fe-based) 

2022 NO from 

DNIC-2 
Post- 
synthetic 
modification 

Not 
mentioned 

Burst release in 
first 30 min, 
followed by 
progressive 
delivery 

pH- 
dependent 
decomposition, 
protected 
under acidic 
conditions 

Over 80% 

viability of 
human 
intestinal cells 

Improved oral 
bioavailability, 
effective blood 
pressure 
reduction 

Promising for 
enhanced oral 
delivery of NO, 
improved 
bioavailability 

[ 43 ] 

MOF-5 
(Zn-based) 

2020 5-FU Simple 
immersion 

LE: 84.1% Sustained 
release in GIT 
conditions 

Not explicitly 
mentioned 

Toxicity against 
HeLa cells 

CMC-coated 
5-FU@MOF-5 
showed 
sustained release 
and notable 
toxicity against 
HeLa cells 

Potential for 
colonic 
administration of 
5-FU 

[ 67 ] 

ZJU-64-NSN 

(Zn-based) 
2022 PA Simple 

immersion 
LC: 21.2 wt% Enhanced 

stability with PEG 

coating, targeted 
intestinal release 

Improved 
chemical 
stability with 
PEG coating 

Not explicitly 
mentioned 

Fast loading and 
controlled 
release of PA in 
the targeted 
intestinal 
surroundings 

Effective for oral 
drug delivery, 
particularly for 
PA 

[ 30 ] 

Zn-MOF with 
Sodium 

Alginate 

2022 siRNA 

targeting 
TNF α

Encapsulation 
in MOF and 
sodium 

alginate 
hydrogel 

Not 
mentioned 

Designed to 
prevent 
premature 
release in GI 
environment 

Survives low 

pH 

environment 
in stomach 
and small 
intestine 

Uptake by 
macrophages, 
cell viability 
assessed 

Significant 
reduction in 
progression of 
colitis in mice 

Improves 
protection and 
enhances 
delivery of 
MOF-siRNA to 
the colon for UC 

treatment 

[ 68 ] 

CMC/Cu- 
MOF@IBU 

2018 IBU Simple 
immersion 

LE: 93.0%, LC: 
279.2% 

Controlled 
release in GIT 
conditions 

High stability 
for drug 
dosing over 
an extended 
period 

Low cytotoxicity 
to Caco-2 cells 

Controlled drug 
release and high 
stability in 
intestinal tract 
conditions 

Effective 
controlled DDS 
for oral 
administration of 
IBU 

[ 77 ] 

( continued on next page ) 
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Table 2 ( continued ) 

Materials Year Drug Drug loading 
method 

DrugLE/ LC Release kinetics Stability Biocompatibility 
and safety 

Key findings Conclusion/ 
implications 

Refs 

Cu-MOF 2019 IBU Simple 
immersion 

LC: 48.19 wt% Sustained 
release in GIT 
conditions 

Better 
protection 
against 
stomach pH 

Low toxicity 
against Caco-2 
cells 

Efficient 
controlled drug 
delivery in GIT 
conditions 

Potential oral 
DDS for IBU 

[ 20 ] 

IITI-3 
(Cu-MOF) 

2023 INS Loaded into 
IITI-3 and 
modified with 
gelatin 

LC: 20 wt% Studied under 
different pH 

conditions 

Stable in 
biological 
fluid pH 

ranges from 3 
to 10 

Good 
biocompatibility 
and 
hemocompatibility 

Stability across a 
wide pH range, 
suitable for GI 
conditions 

Promising for 
controlled INS 
delivery, 
potential in oral 
delivery systems 

[ 78 ] 

Ti-based MOFs 
with TEOS 

2018 IBU Resolving IBU 

into 
n-hexane 
solution and 
adding MOFs 

LC: ∼10 wt% 95% release in 
24 h in PBS 

Observed 
stability after 
48 h in PBS at 
37 °C 

Good 
biocompatibility 
with L929 cell 
lines 

Effective size 
reduction and 
controlled drug 
release 

Potential as drug 
carriers with 
good 
biocompatibility 
and controlled 
release 

[ 84 ] 

MIL-125-NH2 

(Ti-nanoMOF) 
2019 ASA Adsorption in 

MIL-125-NH2 

High ASA 

adsorption 
capacity of 
2.59 mol/mol 

Controlled 
release in GI tract 

High stability 
in GI tract 
conditions 

Safe, protective 
effect against 
ASA overdose 

Outperformed 
Norit@activated 
carbon in ASA 

detoxification 

Promising oral 
therapeutic 
agent for ASA 

detoxification 

[ 44 ] 

Al-MOF 2019 OVA 

Encapsulation 
in situ in 
Al-MOF 
crystals 

LC: 14.7% ±
1.3%, LE: 
94.1% ± 4.8% 

Sustained 
release over 
approximately 7 
d 

Extraordinary 
stability in 
normal saline 
and harsh GI 
conditions 

Utilized yeast 
capsules for 
transport across 
the intestinal 
epithelium 

Al-MOFs 
provided 
significant 
protection and 
facilitated 
transport of OVA 

Promising 
strategy for oral 
administration of 
vaccines, offering 
protection and 
effective 
transport 

[ 45 ] 

K-based 
CD-MOFs 

2021 IMC Dissolution in 
anhydrous 
ethanol and 
loading into 
CD-MOF 

40.2% in 
CD-MOF, 
increased to 
94.0% when 
encapsulated 
with 
Eudragit R © RS 

Higher 
dissolution rate 
for IMC/CD-MOF; 
reduced initial 
burst release 
after 
encapsulation 

Eudragit R © RS 
encapsulation 
regulates 
release rate 
and 
potentially 
offers 
protection 

CD-MOF 
nanocrystals 
showed higher 
dissolution rate 
than raw IMC; 
encapsulation 
reduced burst 
release 

Promising for 
sustained drug 
release, 
especially for 
poorly soluble 
drugs 

γ -CD-MOF [ 107 ] 

Mg-MOF-74 2023 IBU, 5-FU, 
Curcumin 

Wet- 
impregnation 

LC: 30, 50, 
and 80 wt%, 
respectively. 

Direct function 
of drug solubility 
and molecular 
size 

High stability 
in GI tract 
conditions 

Not mentioned High solubility 
and small 
molecular size 
lead to faster 
release rates 

Importance of 
physical and 
chemical 
properties of 
drugs in 
MOF-based DDSs 

[ 114 ] 
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in 2018, researchers investigated the use of an acid-resistant
Zr-MOF, NU-1000, for oral INS delivery [ 2 ]. The goal was to
protect INS from the acidic environment of the stomach
and enable its release in the intestines, where it can be
absorbed into the bloodstream. The MOF was shown to
encapsulate INS effectively, with a LC of 40 wt%, and protected
it from degradation in simulated stomach acid, releasing
only a minimal amount in these conditions [ 2 ]. The MOF
demonstrated stability and protected the INS effectively,
releasing only 10% of the hormone in simulated stomach acid
after 60 min [ 2 ]. The second study in 2022 explored an oral
INS delivery system using transferrin-coated acid-resistant
Zr-MOF (UiO-68-NH2 ) nanoparticles ( Fig. 2 A and 2B) [ 42 ]. These
nanoparticles showcase a high INS LC of 33 wt% and are
designed to protect INS in the stomach’s acidic environment
while promoting absorption in the intestines [ 42 ]. 

The release kinetics demonstrate a controlled release, with
less than 20% of INS released in simulated GI conditions over
24 h and almost complete release in neutral conditions within
10–12 h [ 42 ]. The T@I@U formulation, comprising transferrin-
coated, acid-resistant MOF nanoparticles, exhibited superior
performance in INS delivery in mice. This was highlighted by a
robust fluorescence signal, indicating efficient INS absorption
and sustained release, peaking at 8 h and persisting for 12 h
( Fig. 2 C and D) [ 42 ]. In terms of organ distribution, strong
fluorescence in the liver mirrored the natural INS secretion
pathway, in contrast to the negligible signal from free INS,
which degraded quickly in the GI tract, and the minimal signal
from the I@U group ( Fig. 2 E) [ 42 ]. Notably, confocal imaging
confirmed that T@I@U uniquely crossed the intestinal
epithelial barrier, effectively reaching the intestinal villi, a feat
not achieved by the other formulations ( Fig. 2 F). Moreover, this
system significantly enhances oral bioavailability, achieving
29.6%, and shows a pronounced hypoglycemic effect in
diabetic rats without noticeable side effects [ 42 ]. This study, in
conjunction with the first, emphasizes the potential of MOFs
in safeguarding and controlling the release of INS, enhancing
its oral bioavailability, and offering a promising alternative to
traditional INS delivery methods. 

Building on the exploration of MOFs for INS delivery,
another study delves into enhancing the oral bioavailability
of magnolol, a compound with a wide spectrum of biological
activities, including anti-inflammatory, antimicrobial, and
potential anticancer effects [ 47 ]. The study utilized the Zr-
based MOF UiO-66 (Zr) for the impregnation of magnolol,
aiming to overcome its traditionally low bioavailability,
which is typically approximately 4%−5% [ 47 ]. The MOF
demonstrated a high drug loading efficiency (LE) of 72.16% ±
2.15% for magnolol, and the in vitro release study indicated a
significant increase in the bioavailability of magnolol when
delivered through the MOF, with the relative bioavailability
nearly doubling [ 47 ]. This approach mirrors the strategies seen
in INS delivery studies, where MOFs are employed to protect
and effectively deliver bioactive molecules orally. 

In the realm of oral drug delivery for cancer treatment,
a study synthesized a series of Zr-MOFs, including UiO-
66, UiO-66-NH2 , UiO-66-COOH, UiO-67 and Zr-NDC, with the
latter incorporating 2,6-naphthalene dicarboxylic acid [ 55 ].
Among these, Zr-NDC was notable for its superior drug LC,
particularly for the anticancer drug 5-fluorouracil (5-FU). To
improve the oral bioavailability of 5-FU, Zr-NDC was modified
with chitosan (CS), which increased drug loading to 66.28%
and controlled the drug release of 20% in acidic stomach
conditions and 70% in intestinal fluid [ 55 ]. This approach
promises to enhance the effectiveness of oral chemotherapy
treatments. 

Continuing the trend of utilizing Zr-MOFs for oral drug
delivery, UiO-66-PDC, where PDC stands for H2 PDC, was
developed (2021) to carry IBUNa, enhancing its stability
against stomach acidity [ 19 ]. The MOF demonstrated a
drug LC of 27.60 wt% and exhibited pH-sensitive release
characteristics, releasing only approximately 10% of the drug
at a stomach-like pH of 2, while releasing the majority within
the first 5 h at an intestinal pH of 7.4 [ 19 ]. Biocompatibility
assessments using MTT assays with 4T1 cells indicated
that UiO-66-PDC was biocompatible, further supporting its
potential as an oral DDS [ 19 ]. 

In a study conducted in 2023, Zr-MOFs were investigated
to enhance the LC and control the release of captopril and
IBU in different pH environments, which is crucial for oral
DDSs [ 29 ]. These MOFs, Zr-MOF1 and Zr-MOF3, synthesized
through chemical methods, and Zr-MOF2, created using a
solvothermal method, show increased surface areas and
pore volumes, which are beneficial for drug loading. These
MOFs showed high drug loading efficiencies, nearly 99.8%
for captopril and 96.65% for IBU [ 29 ]. Drug release was pH-
responsive and crucial for targeted delivery within the GI tract,
and the MOFs were stable across a wide pH range. Specifically,
the release kinetics showed that in a phosphate-buffered
solution at pH 7.4, which simulates intestinal conditions, the
release of drugs was more significant compared to the release
in a buffered solution at pH 1.2, mimicking stomach acidity
[ 29 ]. 

Collectively, these studies illustrate a progressive
enhancement in the design and functionality of MOFs
for oral drug delivery. From INS to cancer treatments and
anti-inflammatory drugs, MOFs have shown remarkable
potential in improving the bioavailability and stability
of orally administered drugs. The evolution from simple
encapsulation to targeted delivery and pH-responsive release
mechanisms reflects the dynamic nature of this research area
and its promise for future pharmaceutical applications. 

3.2. Iron-based MOFs (Fe-MOFs) 

Fe-MOFs have emerged as promising vehicles for drug
delivery owing to their high drug-loading capacities, favorable
biocompatibility, and versatile functionalities. In a pioneering
study conducted in 2006, Horcajada and coworkers introduced
an innovative category of MOFs characterized by their
expansive pore sizes, notably MIL-100(Cr) and MIL-101(Cr) [ 9 ].
The acronym "MIL" refers to the Materials of the Institute
Lavoisier. These frameworks were distinguished by their Cr
core and the integration of organic linkers, specifically 1,3,5-
benzenetricarboxylate or 1,4-benzenedicarboxylate (H2 BDC).
The resulting MOFs demonstrated a remarkable capacity for
encapsulating significant amounts of IBU, indicating their
potential utility in drug delivery applications [ 9 ]. However, the
potential in vivo oxidation of trivalent Cr to its hexavalent
state, which is highly toxic, poses a significant concern. In
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Fig. 2 – Illustrative depiction of the transferrin-coated, acid-resistant nano MOF (nMOF) system designed for the oral 
administration of INS. (A) Outline of the creation process of amino-functionalized UiO-68-based nanostructures 
(UiO-68-NH2). (B) Demonstrates the in vivo pathway of the transferrin-adorned UiO-68-NH2 nanosystem for oral intake, 
tackling both the challenging acidic environment of the stomach (i) and the barriers posed by epithelial cell layers (ii). (iii) 
The transferrin-layered UiO-68-NH2 nanosystem facilitates significantly enhanced absorption by intestinal cells under 
normal physiological conditions. (C) Displays the in vivo fluorescence pattern and intensity of RITC-labeled INS following 
oral administration of various INS formulations at distinct time intervals. (D) Ex vivo fluorescence imaging of the intestines 
and (E) images of major organs, such as the heart, liver, spleen, lung and kidney (arranged top to bottom), in mice observed 

4 h after oral INS administration. (F) Confocal laser scanning microscopy (CLSM) visuals of cross-sectioned intestinal tissues 
in rats captured 2 h postoral administration of differing INS formulations. Reproduced from [ 42 ]; copyright 2022 AAAS. 
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response to this issue, these researchers turned to trivalent
iron (Fe), a less toxic alternative, to create MIL-53(Fe). This
Fe-MOF demonstrated a notable IBU LC of approximately
20 wt%, and the drug was fully released after three weeks
in simulated body fluid at 37 °C in vitro [ 56 ]. Subsequently,
in pursuit of safer alternatives, researchers developed MIL-
101(Fe) and MIL-100(Fe), which were reported in 2009 and
2010, respectively [ 57 ,58 ]. Horcajada’s team advanced drug
delivery technology by synthesizing a suite of Fe-MOFs,
namely, MIL-53 (Fe), MIL-88 (Fe), MIL-100 (Fe), and MIL-101
(Fe). These MOFs were crafted using different combinations
of materials and organic linkers: MIL-53 (Fe) with FeCl3 ·6H2 O
and terephthalic acid (H2 BDC), MIL-88 (Fe) with FeCl3 ·6H2 O
and fumaric acid, MIL-100 (Fe) with iron powder and trimesic
acid, and MIL-101 (Fe) with FeCl3 ·6H2 O and amino H2 BDC.
Each MOF’s unique composition contributes to its ability
to effectively encapsulate and deliver drugs [ 58 ]. These
frameworks are distinguished by their nontoxicity and porous
nature, which enables them to serve as efficient carriers
for the targeted delivery of a variety of drugs aimed at
combating cancer and HIV. The drugs encapsulated within
these MOFs, such as busulfan, azidothymidine triphosphate,
doxorubicin, and cidofovir, benefit from enhanced delivery
mechanisms. Furthermore, these MOFs have the potential to
merge treatment with diagnostic functions, paving the way
for more personalized and precise medical treatments [ 58 ].
These Fe-MOFs were designed to carry drugs, leveraging the
lower toxicity profile of iron compared to Cr. The introduction
of these MOFs represented a significant advancement in the
field of drug delivery, offering a more biocompatible option
for the encapsulation and controlled release of therapeutic
agents. In the context of this review, we delve into various
case studies that highlight the use of Fe-MOFs in oral drug
delivery ( Table 2 ). These studies collectively underscore the
potential of Fe-MOFs as innovative carriers for therapeutic
agents, offering insights into their drug-loading capacities,
release mechanisms, and biocompatibility, which are critical
for effective oral DDSs. 

In a 2020 study, researchers approached the persistent
challenges of oral INS delivery, specifically its degradation
in the stomach and insufficient intestinal absorption [ 39 ].
They engineered a cutting-edge nanocomposite microsphere
system incorporating Fe-MOF nanoparticles, known as
MIL-100, which demonstrated a notable INS LC of 35% [ 39 ].
These nanoparticles were further modified with sodium
dodecyl sulfate (SDS), enhancing INS permeation through
in vitro Caco-2 monolayer models ( Fig. 3 A). To augment
the system’s resistance to the harsh gastric environment,
the Ins@MIL100/SDS nanoparticles were encased within
biodegradable microspheres composed of mPEG-b-PLLA [ 39 ].
This biocompatible polymer not only provides additional
protection against stomach acidity but also facilitates
the gradual release of INS in the intestinal fluid ( Fig. 3 B).
In Fig. 3 C, cellular uptake of INS-loaded nanoparticles,
visualized using CLSM with RhoB-Ins as a model, showed
clear red fluorescence in cells treated with Ins@MIL100
and Ins@MIL100/SDS, unlike cells with free INS. The
Ins@MIL100/SDS treatment led to more intense fluorescence
than Ins@MIL100, indicating enhanced internalization of INS
by Caco-2 cells due to MIL-100 nanoparticles and further
improvement with SDS modification [ 39 ]. Fig. 3 D shows that
INS encapsulation in Ins@MIL100 or Ins@MIL100/SDS notably
increased its permeation through Caco-2 cell monolayers,
with over 60% penetration in 8 h. These results, consistent
with the cellular uptake data, indicate that MIL-100-based
nanoparticles significantly enhance INS transcellular
transport. Upon oral administration in BALB/c nude mice
and diabetic rats (1 h postadministration), strong rhodamine
B fluorescence in the intestines of mice treated with
Ins@MIL100/SDS@MS ( Fig. 3 E) indicated successful protein
delivery by the MOF-NP microspheres, with this fluorescence
persisting for 8 h [ 39 ]. Therefore, the Ins@MIL100/SDS@MS
nanocomposite system significantly improved the intestinal
absorption of INS compared to the administration of free
INS or the unencapsulated Ins@MIL100/SDS [ 39 ]. This led
to substantially elevated plasma INS levels for an extended
period of over 6 h in diabetic rats, which effectively reduced
blood glucose levels [ 39 ]. 

Building on advancements in oral INS delivery, another
study in 2021 focused on enhancing the oral bioavailability
of the peptide exendin-4, which has significant therapeutic
importance but has challenging delivery dynamics due to the
harsh GI environment [ 59 ]. In their innovative research, Zhou
et al. developed a delivery system using zwitterionic hydrogel-
coated Fe-MOF (NH2 −MIL-101) nanoparticles to encapsulate
exendin-4, a drug used in type 2 diabetes treatment [ 59 ].
The nanoparticles were engineered to enhance the oral
bioavailability of the peptide. The study reported a notable
drug LE of 92.3%, with the nanoparticles achieving a drug
loading content of 0.417 g/g [ 59 ]. The release kinetics
were carefully evaluated, revealing a slow and controlled
release of exendin-4 in a neutral Tris–HCl buffer (pH
7.4), while a phosphate buffer induced a rapid release,
demonstrating the system’s pH sensitivity [ 59 ]. This pH-
responsive behavior is crucial for protecting the peptide in
the acidic stomach environment and releasing it when it
reaches the more neutral intestines. When tested in vivo ,
the MOF nanoparticle-based system significantly enhanced
the plasma concentration of exendin-4 in a diabetes rat
model, maintaining elevated levels for over 8 h post
administration [ 59 ]. The relative pharmacological availability
was quantified at 17.3%, indicating a substantial improvement
over traditional delivery methods [ 59 ]. This study highlights
the potential of MOF nanoparticles in transforming the oral
delivery landscape for peptides such as exendin-4. Building
on advancements in oral delivery systems, researchers
approached the low oral bioavailability of GEN, a flavonoid
with antitumor potential, by encapsulating it within MIL-
100 [ 46 ]. This encapsulation strategy aimed to mitigate the
poor water solubility and rapid metabolism of GEN. The study
achieved a notable GEN loading of 27.1 wt% in the MIL-100
(Fe) nanoparticles. Upon testing, approximately 40% of GEN
was released within the first 30 min, followed by a sustained
release over the subsequent 3 d [ 46 ]. This encapsulation not
only protected GEN from premature metabolic breakdown but
also facilitated prolonged release, enhancing its bioavailability
for potential oral antitumor applications [ 46 ]. 

In a pivotal study, researchers explored the efficacy
of MIL-127, a biocompatible MOF, as an oral detoxifying
agent for decontaminating drugs commonly involved in
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Fig. 3 – (A) A diagrammatic representation detailing the creation of the Ins@MIL100/SDS@MS nanocomposite. (B) A 

schematic depiction of the journey of Ins@MIL100/SDS@MS through the stomach, followed by the disintegration of the 
microspheres in the intestine, leading to the exposure and subsequent infiltration of the Ins@MIL100/SDS composite 
through the intestinal epithelium. (C) Depiction of uptake by Caco-2 cells observed after exposure to various treatments: 
free INS, free INS combined with SDS, Ins@MIL100, and Ins@MIL100/SDS. Rhodamine B-labeled INS (RhoB-Ins) served as the 
model INS for this experiment. A 20 μm scale bar was used for reference. (D) The diagram tracks the passage of INS across 
Caco-2 cell monolayers over various time frames ( n = 3), utilizing fluorescein isothiocyanate-labeled INS (FITC-Ins) as the 
model INS for this analysis. (E) Postoral administration, ex vivo fluorescence imaging of the intestines showcases the 
distribution of RhoB-labeled INS (Rho-Ins) in the Ins@MIL100/SDS and Ins@MIL100/SDS@MS treatments at different 
intervals. Reproduced with permission from [ 39 ]; Copyright 2020 ACS. 
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verdoses [ 60 ]. MIL-127, composed of iron(III) trimers and 

zobenzenetetracarboxylate anions, demonstrated a high 

ffinity for aspirin (ASA), a commonly overdosed medication,
ith an impressive LC of approximately 0.14 g/g under 

imulated GI conditions [ 60 ]. 
The comparison with activated charcoal and UiO-66 

evealed that while these substances released 11% and 

4% of adsorbed ASA upon transitioning from gastric to 
ntestinal conditions, MIL-127 showed no such release,
ndicating superior affinity and stability [ 60 ]. Notably, MIL- 
27 maintained exceptional GI stability, with less than 9% 

egradation, and was found to be excreted in feces without 
evere toxicity, ensuring its integrity along the GI tract.
his minor GI degradation resulted in slight iron absorption 

n the duodenum and jejunum but did not lead to any 
ignificant toxicity [ 60 ]. These findings suggest that MIL-127 
an significantly reduce the GI absorption of salicylates by 
ore than 40-fold, offering a protective effect against ASA 

verdose and preventing histological damage in the stomach 

nd jejunum [ 60 ]. The study concludes that MIL-127 and 

otentially other MOFs could serve as efficient and safe oral 
etoxifying agents, marking a promising advancement in the 
reatment of drug overdoses. 

In another study, researchers engineered a novel oral 
elivery system for nitric oxide (NO), a key regulator in 

ardiovascular health, by immobilizing a dinitrosyl iron 

omplex (DNIC-2) onto MIL-88B MOF to create a DNIC@MOF 
icrorod [ 43 ]. This system aimed to improve the oral 

ioavailability of NO for chronic cardiovascular disease 
reatment. The MIL-88B MOF, composed of biocompatible 
e3 + and 1,4-benzenedicarboxylate (H2 BDC), was designed to 
elease DNIC-2 under specific conditions. DNIC-2, serving as 
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an NO prodrug, was encapsulated within the MOF through a
postsynthetic modification process. The release kinetics of NO
from DNIC-2 indicated a burst release in the first 30 min, with
continued release over 3 d [ 43 ]. 

Incorporating the transformer-like behavior, the
DNIC@MOF microrod responds to the acidic gastric
environment by transforming to protect the encapsulated
DNIC-2, ensuring its stability against degradation. As the
microrod transitions to the neutral pH of the intestines,
it undergoes controlled decomposition, releasing DNIC-2
in a targeted manner, which then liberates NO. Therefore,
DNIC@MOF demonstrated stability in acidic environments,
transforming to protect DNIC-2, and decomposing in neutral
pH to release NO [ 43 ]. Biocompatibility tests showed over
80% viability of human intestinal epithelial cells, suggesting
safety for oral use [ 43 ]. 

A significant finding was the increase in oral bioavailability
of NO from 29.7% with DNIC-2 alone to 65.7% when
conjugated with MIL-88B, indicating a 2.2-fold improvement
[ 43 ]. The study concludes that the DNIC-2@MOF microrod is
a promising strategy for enhancing the oral delivery of NO,
with potential benefits for long-term cardiovascular disease
management. 

These case studies collectively highlight the innovative
and transformative potential of Fe-MOFs in oral drug delivery.
They offer a glimpse into the future of personalized medicine,
where such frameworks could provide tailored therapeutic
regimens with enhanced efficacy and safety profiles. As we
continue to explore the capabilities of Fe-MOFs, their role
in revolutionizing drug delivery and patient care becomes
increasingly evident, marking a new era in the treatment of
various diseases. 

3.3. Zn-MOFs 

The exploration of Zn-MOFs for drug delivery has been a
dynamic field of study, with MOF-5, synthesized from zinc
nitrate and H2 BDC, serving as a foundational structure
since its inception by Yaghi and his team in 1999 [ 61 ].
MOF-5 undergoes structural changes in varying water
concentrations, a process driven by hydrolysis that involves
water molecules interacting with the MOF’s metal sites. This
instability is partly necessary to allow the body to process
and eliminate the MOF after it has delivered its therapeutic
payload [ 62 ]. To balance this, MOF-5 must maintain sufficient
stability to function effectively before it degrades in the body.
Hybrid frameworks, such as MOF-5/Mag-H, which incorporate
inorganic building blocks, are engineered to enhance both
stability and flexibility, making them suitable for drug delivery
applications [ 62 ]. 

Researchers synthesized nanoscale Zn-MOFs (ZnBDP_X
MOFs) using zinc ions and functionalized organic spacers
(H2 BDP_X; X = H, NO2 , NH2 , OH) [ 63 ]. The stability of
these ZnBDP_X nanoparticles was rigorously assessed
under simulated physiological conditions relevant to both
intravenous and oral drug delivery, demonstrating excellent
stability, particularly for ZnBDP_OH, which formed a protein
corona to prevent aggregation [ 63 ]. The study further explored
drug loading and release, revealing that the MOF surface area
and ligand functionalization significantly influenced the
delivery of two antitumor drugs, mitoxantrone and RAPTA-C
[ 63 ]. ZnBDP_OH and ZnBDP_NH2 MOFs enabled controlled
drug release, while ZnBDP_NO2 and ZnBDP_H facilitated
faster release, underscoring the potential of MOFs in drug
delivery applications [ 63 ]. 

Zeolitic imidazolate frameworks (ZIFs), which are a subset
of Zn-MOFs, are constructed from Zn(II) ions linked with
imidazolate or its derivatives. These structures are extensively
utilized in oral DDSs ( Table 2 ) due to their favorable properties
[ 64-66 ]. In a study, a novel pH-responsive dual DDS utilizing
ZIF-8 was developed [ 65 ]. This system features a core-shell
nanofiber membrane made from poly(lactic acid)/chitosan
(PLA/CS), with the hydrophilic drug Astragalus polysacharin
(APS) in the core and the hydrophobic drug camptothecin
(CPT) in the shell. ZIF-8 NPs create a protective layer on
PLA/CS, forming multifunctional PLA/CS@ZIF-8 nanofiber
membranes [ 65 ]. These membranes exhibit enhanced
hydrophilicity, surface roughness, and controlled drug
release in both acidic and neutral environments. The release
mechanism for both APS and CPT involves diffusion and
framework corrosion, with in vitro tests confirming the
system’s cytocompatibility. The PLA/CS@ZIF-8 nanofiber
membranes hold promise as a versatile, pH-responsive dual
drug release system [ 65 ]. In exploring the frontier of oral
DDSs, Zn-MOFs have garnered significant attention due to
their unique chemical versatility and biocompatibility. In this
study, MOF-5 was utilized to encapsulate the anticancer
drug 5-FU, aiming to enhance oral delivery efficiency
[ 67 ]. The encapsulation efficiency of 5-FU within MOF-
5 reached 84.1%, facilitated by hydrophobic interactions
and π- π stacking between the drug and the framework’s
organic ligands [ 67 ]. A key innovation was the application of
carboxymethylcellulose (CMC) to coat the drug-loaded MOF-5,
which provided protection through the digestive system and
enabled sustained release under GI tract conditions [ 67 ].
The controlled release was demonstrated in drug release
tests, and the system’s cytotoxicity against HeLa cells was
confirmed via the MTT assay, indicating its potential to
reduce side effects compared to intravenous drug delivery
[ 67 ]. This suggests that the CMC/5-FU@MOF-5 composite
could be a viable candidate for targeted colon drug delivery,
offering a strategic approach to cancer treatment. In the
realm of oral drug delivery, the study of anionic MOFs such
as ZJU-64-NSN represents a significant advancement [ 30 ].
This Zn-MOF, with its one-dimensional channels adorned
with thiadiazole groups, was engineered to enhance the
oral bioavailability of PA, a cationic drug often compromised
by gastric degradation. The synthesis of ZJU-64-NSN was
meticulously controlled to produce nanoscale crystals,
facilitating an ultrafast drug LC of 21.2 wt% within just 1 min
[ 30 ]. To bolster the MOF’s stability and prevent premature
drug release, a polyethylene glycol (PEG) biopolymer coating
was applied, ensuring that PA was released predominantly in
the intestinal tract where absorption into the bloodstream is
optimal [ 30 ]. This innovative approach to oral drug delivery
showcases the potential of MOFs such as ZJU-64-NSN to
overcome the limitations of traditional administration
methods, providing a controlled release mechanism that
could significantly improve therapeutic outcomes [ 30 ]. In
addressing the challenges of oral drug delivery for ulcerative
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Fig. 4 – (A) Diagrammatic representation of the envisioned hydrogel–metal-organic framework composite system 

(SA@MOF-siRNA) designed for ulcerative colitis therapy. (B, C) Depiction of colon targeting and the circulation of MOF-RhoB 

and SA@MOF-RhoB in the bloodstream. (B) The spatial distribution of these particles within the colon as captured by a 
multimodal optical in vivo imaging system, with a corresponding graph showing the statistical analysis of fluorescence 
intensity. (C) Measurement of RhoB concentration in blood serum, accompanied by a side graph illustrating the temporal 
changes in serum fluorescence intensity. An asterisk indicates a significance level of P < 0.05. Reproduced with permission 

from [ 68 ]; copyright 2022 BMC. 
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olitis treatment, a study developed a Zn-MOF hybridized 

ith sodium alginate to form a protective hydrogel ( Fig. 4A ) 
 68 ]. This innovative system encapsulated small interfering 
NA (siRNA) targeting TNF α, a critical inflammatory agent in 

lcerative colitis [ 68 ]. Zn-MOF, synthesized from zinc nitrate 
exahydrate and 2-methyl imidazole, was designed to shield 
he siRNA as it traversed the GI tract, ensuring stability and 

argeted release in the colon. 
The system shows its ability to withstand the low pH of the 

tomach and to release siRNA in the more neutral pH of the 
ntestines [ 68 ]. Biocompatibility assessments indicated that 

OF-siRNA was nontoxic and well tolerated by macrophages.
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Moreover, mice with DSS-induced ulcerative colitis were
orally administered RhoB-labeled MOF-RhoB and SA@MOF-
RhoB. After 12 h of administration, stronger fluorescence
intensity was observed in SA@MOF-RhoB than in MOF-RhoB
in the colon, as confirmed by multimodal in vivo imaging and
statistical fluorescence analysis ( Fig. 4B ) [ 68 ]. Blood samples
showed higher concentrations of SA@MOF-RhoB, indicating
enhanced absorption and prolonged circulation in the blood
( Fig. 4C ), highlighting its potential for inflammation control.
Furthermore, these findings demonstrated that the hydrogel-
MOF hybrid system significantly reduced the progression of
colitis in animal models, avoiding common side effects such
as weight loss and bloody stools [ 68 ]. 

In conclusion, these studies collectively underscore the
transformative potential of Zn-MOFs in enhancing the efficacy
and safety of oral DDSs. By offering controlled release,
targeted delivery, and improved stability, Zn-MOFs stand at
the forefront of innovative therapeutic solutions, paving the
way for more effective and patient-friendly treatments for a
variety of ailments. 

3.4. Copper-based MOFs (Cu-MOFs) 

Cu-MOFs are emerging as a significant class of materials in
the biomedical field due to their exceptional physicochemical
properties. Copper ions (Cu+ 2 /Cu+ ) in MOFs can modify
crucial antioxidants in cancer cells, such as glutathione, and
produce damaging radicals through Fenton-like reactions,
offering a targeted approach to cancer cell destruction [ 69 ].
Copper homeostasis is crucial for organismal health, as
both excessive and deficient copper levels are associated
with various diseases. Abnormal copper concentrations and
metabolism at disease sites, particularly in cancer, present
a promising therapeutic target [ 70 ,71 ]. Additionally, Cu-MOFs
are gaining interest due to copper’s essential role in various
biological processes, such as respiration, metabolism, and cell
signaling [ 72 ,73 ]. 

HKUST-1, also known as MOF-199, is a well-known three-
dimensional (3D) Cu-MOF that was first reported by Chui
et al. in 1999. It features a structure composed of dimeric
cupric tetracarboxylate units, where each copper ion is
coordinated with four oxygen atoms from two molecules
of 1,3,5-benzenetricarboxylic acid [ 74 ]. In addition, Cu-TCPP
MOFs with TCPP, stand out as a notable category within
two-dimensional Cu-MOFs [ 75 ]. A study explored a Cu-
MOF, HKUST-1, for drug delivery, encapsulating the drug
baclofen. This compound was integrated into a CMC hydrogel,
enhancing drug release control in the GI tract. In vitro
tests indicated improved release uniformity and significant
cytotoxicity against human colon cells, suggesting potential
for targeted drug delivery [ 76 ]. 

Emerging case studies further highlight the promising role
of Cu-MOFs in revolutionizing oral drug delivery ( Table 2 ).
In exploring innovative solutions for oral drug delivery,
two studies have made significant strides using Cu-MOFs
to improve the bioavailability and controlled release of
IBU [ 20 ,77 ]. The first study encapsulated IBU within Cu-
MOFs and further embedded these into pH-sensitive gelatin
microspheres (Cu-MOF/IBU@GM). This design aimed to utilize
the protective properties of the microspheres to achieve
stable and controlled release of the drug within the GI
tract. The Cu-MOFs, synthesized from copper nitrate and
H2 BDC, demonstrated a drug LE of 48.19 wt%, with release
kinetics evaluated under simulated GI conditions [ 20 ]. In vitro
drug release tests simulating GI conditions revealed that
the gelatin-encapsulated Cu-MOF/IBU microspheres provided
enhanced protection against stomach acidity and prolonged
drug stability. Biocompatibility tests indicated low toxicity
against Caco-2 cells, suggesting suitability for oral delivery
[ 20 ]. 

Furthering this research, the second study encapsulated
Cu-MOF@IBU within a CMC hydrogel bead to form a
pH-sensitive nanocomposite [ 77 ]. This CMC encapsulation
significantly altered the release behavior, while Cu-MOF@IBU
alone released approximately 95% of the drug within 2 h in an
acidic environment, the CMC/Cu-MOF@IBU nanocomposite
extended the release to only 70% over 8 h [ 77 ]. CMC serves
as a diffusion barrier, and its pH-sensitive properties enable
controlled release that protects the drug from stomach acidity
and facilitates more sustained release in the intestines [ 77 ]. 

These investigations underscore the potential of Cu-MOFs
in creating more effective DDSs for oral administration. Both
the gelatin microspheres and the CMC hydrogel beads have
been shown to be promising carriers, enhancing the stability
and controlled release of IBU, which could be applied to other
therapeutic agents as they pass through the digestive system.

Building on the advancements in Cu-MOFs for oral drug
delivery, a study explored the potential of a gelatin-coated
Cu-MOF, named IITI-3, for controlled oral INS delivery [ 78 ].
IITI-3, synthesized with a novel linker, aimed to address oral
delivery challenges by ensuring stability in the GI tract and
maintaining INS bioavailability [ 78 ]. The MOF demonstrated
a 20 wt% INS LE and stability across a pH range of 3 to
10, suitable for the varying conditions of the GI tract. [ 78 ]
Additionally, IITI-3 was confirmed to be biocompatible and
hemocompatible, indicating its safety for medical use [ 78 ]. The
study’s findings suggest that IITI-3 is a promising material for
the controlled oral delivery of INS, potentially offering a new
approach to diabetes treatment. 

In conclusion, the development of Cu-MOFs for drug
delivery represents a burgeoning field that holds great
promise for improving therapeutic outcomes. These
frameworks offer a versatile platform for the targeted
and controlled release of drugs, addressing the challenges
of oral drug delivery and paving the way for new treatment
modalities. 

3.5. Titanium-based MOFs (Ti-MOFs) 

The Ti-MOFs feature a distinctive networked structure. This
intricate configuration emerges from the self-organizing
reaction where titanium ions or clusters bond with targeted
functional groups, notably those with carboxyl or nitrogenous
heterocyclic molecules. Meenakshi and collaborators, in
2009, achieved a milestone by synthesizing the first Ti-MOF
connected through carboxylic acid. This was accomplished
by combining titanium isopropoxide (Ti(i-OPr)4) with H2 BDC,
resulting in the formation of MIL-125 [ 79 ]. Ti-MOFs are
distinguished by their advantageous properties, which
include notable biocompatibility, exceptional catalytic
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xidation, and effective photocatalytic attributes [ 80-85 ].
n comparison to alternative MOFs, Ti-MOFs are of interest 
ue to their significant biocompatibility, reduced toxicity,
nd enhanced chemical durability [ 80 ,85 ,86 ]. Currently, two 
undamental types of Ti-MOFs, pristine MIL-125 and its 
mino-functionalized derivative MIL-125-NH2 , along with 

heir composite forms, such as AgNP@MIL-125-NH2 , PCN-224 
Zr/Ti), PAN/CA/MIL-125/TiO2 , and MIL-125-Hb, have been 

tilized as transporters for diverse pharmaceutical agents, as 
ell as in applications targeting antibacterial and anticancer 

herapies [ 85 ,87-91 ]. Studies have shown that MIL-125 and 

ts amino-functionalized form, MIL-125-NH2 , are utilized as 
arriers for a range of drugs, such as chloroquine (CQ) [ 92 ] 
nd diclofenac sodium (DS) [ 93 ]. The biocompatible Ti-MOF 
IL-125 has been explored for pH-responsive drug delivery,

eleasing drugs preferentially in the acidic environment of 
nflamed or tumor tissues (pH 5.4–6.0) [ 93 ]. The compatibility 
f MIL-125 with DS was assessed, revealing a substantial LC of 
3.6 wt% [ 93 ]. Release studies in PBS at varying pH levels (8.0 
o 5.4) at 37 °C, analyzed via HPLC, showed that DS@MIL-125 
ignificantly prolonged the release half-life of DS at pH 5.4 
o 16 h, eightfold longer than DS alone. Cumulative release 
t pH 5.4 reached 80% of the loaded DS, while at pH 6.5,
.4 and 8.0, the release was 62%, 55% and 35%, respectively,
ndicating a targeted release at more acidic, disease-affected 

ites [ 93 ]. These findings suggest MIL-125′ s potential as 
n effective carrier for anti-inflammatory and antitumor 
herapies. MIL-125 and MIL-125-NH2 have been identified as 
otential carriers for CQ, with both materials demonstrating 
 high capacity for drug loading due to their high surface 
reas [ 92 ]. Sustainable release of CQ from these carriers was 
bserved, with approximately 70% of the drug being released 

ver a period of 13 d in a phosphate buffer solution [ 92 ].
he findings from these experiments suggest that Ti-MOFs 
ould serve as effective carriers for CQ, facilitating its slow 

elease. A recent study ( Table 2 ) has advanced drug delivery 
echnology by creating smaller, biocompatible Ti-MOFs using 
etraethyl orthosilicate (TEOS) [ 84 ]. This innovation aimed 

o harness the drug delivery potential of MOFs, particularly 
or controlled-release applications. The synthesized Ti-MOFs,
hen tested with IBU as the model drug, demonstrated a drug 

E of approximately 10%. Remarkably, these MOFs released 

pproximately 95% of the IBU within 24 h, indicating a highly 
fficient release mechanism [ 84 ]. Stability tests showed that 
ven after 48 h in phosphate-buffered saline at 37 °C, the 
OFs remained stable, with biocompatibility confirmed by 

ositive L929 cell line assays [ 84 ]. The introduction of TEOS 
esulted in a 42.78% size reduction of the MOFs, underscoring 
heir potential as effective drug carriers in targeted therapy 
pplications [ 84 ]. 

Ti-MOFs, particularly those modified with amino groups,
ave shown increased chemical stability in water [ 94 ], making 

hem promising candidates for oral drug administration 

espite previous concerns regarding MOF porosity and water 
nstability [ 95 ,96 ]. In a comparative study ( Table 2 ), the Ti-
anoMOF, MIL-125-NH2 , was evaluated for its efficacy in 

ral aspirin detoxification against other MOFs, including 
IL-53(Fe), MIL-53(Fe)−2OH, MIL-100(Fe), UiO-66(Zr), UiO- 

6(Zr)−NH2 , ZIF-8(Zn), and the traditional detoxifying agent 
orit@activated carbon [ 44 ]. MIL-125-NH exhibited an 
2 
xceptional aspirin adsorption capacity of 2.59 mol/mol,
hich was significantly higher than the capacities of 
orit@activated carbon, recorded at 0.017 and 0.023 mol/mol 

 44 ]. Under simulated GI conditions, MIL-125-NH2 proved to 
e exceptionally stable, with less than 35% degradation, and 

t remained effective in aspirin adsorption [ 44 ]. In vivo studies 
onfirmed its safety and indicated a significant reduction 

n serum salicylate levels, demonstrating its potential as an 

ffective oral therapeutic agent for aspirin detoxification [ 44 ]. 
In summary, Ti-MOFs have made remarkable strides 

rom their inception to their use in oral drug delivery.
heir stability and controlled release capabilities in the GI 

ract make them promising for future oral therapies. These 
evelopments underscore Ti-MOF’s potential to transform 

ral drug administration, ensuring safe, efficient, and targeted 

reatment options. 

.6. Al-MOFs 

he pioneering synthesis of an Al-MOF, MIL-53(Al), by 
oiseau et al. in 2004 marked a significant advancement 
n the field of MOFs [ 97 ]. This MOF, typically produced via
 hydrothermal method involving aluminum nitrate and 

,4-benzenedicarboxylic acid, is lauded for its exceptional 
tability in acidic conditions, distinguishing it from its 
ounterparts [ 97 ]. Subsequent research has demonstrated 

hat Al-MOFs are versatile materials with applications ranging 
rom waste removal and antibacterial treatments to DDSs 
 45 ,98 ,99 ]. Furthermore, a study delved into the efficacy 
f modified aluminum-benzene dicarboxylate-based MOFs 
or the removal of methotrexate (MTX) from wastewater.
H2 −MIL-101 was identified as the most effective, with 

 high MTX adsorption capacity of 457.69 mg/g due to 
ts large surface area and functional groups [ 99 ]. The 
dsorption followed a controlled process, aligning with 

angmuir isotherm and pseudo-second-order kinetics, and 

as spontaneous and exothermic [ 99 ]. NH2 −MIL-101 also 
roved to be recyclable with minimal capacity loss after 
ultiple cycles, highlighting its potential for sustainable 
astewater treatment and drug delivery applications [ 99 ]. In 

 related innovative study ( Table 2 ), researchers engineered 

l-MOF to address the challenges of oral vaccination,
uch as antigen degradation by gastric acid and proteases 
nd the physical barriers of the intestinal epithelium 

 45 ]. The Al-MOFs encapsulated the model antigen OVA 

ith high efficiency, achieving a loading content of 14.7% 

nd a LE of 94.1%. Characterization of these Al-MOFs 
evealed their exceptional stability, capable of withstanding 
mbient temperature fluctuations, acidic gastric conditions,
nd proteolytic digestion [ 45 ]. The encapsulated OVA was 
eleased in a sustained manner over approximately 7 
, showcasing the potential of Al-MOFs for prolonged 

ntigen delivery. A pivotal aspect of this study was the 
trategic use of yeast capsules derived from Saccharomyces 
erevisiae, which served as a "Trojan horse" to ferry the 
l-MOF-armored OVA across the intestinal barrier [ 45 ].
his strategy effectively targeted the membrane phagocytic 
attern-recognition receptor Dectin-1 on M cells, enhancing 
accine uptake and the subsequent immune response. The 
tudy’s findings suggest that the combination of Al-MOFs with 
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yeast capsules could significantly improve the oral delivery of
vaccines, offering a protective and efficient delivery system
that could pave the way for new vaccination strategies [ 45 ]. 

In conclusion, these studies collectively underscore
the versatility and potential of Al-MOFs in environmental
and healthcare applications, from purifying wastewater to
innovating oral vaccine delivery, reflecting the expansive
possibilities that these materials hold for future technological
and medical advancements. 

3.7. Potassium-based cyclodextrin MOFs 

In a pioneering contribution to the field of biocompatible
materials, Smaldone et al. unveiled the synthesis of a novel
cyclodextrin MOF (CD-MOF) [ 100 ]. This MOF, distinguished
by its high symmetry, porosity, and ultrahigh surface area,
is crafted exclusively from edible components: potassium
ions, ethanol, and CD [ 100 ]. The distinctive blend of water
solubility and nontoxicity in CD-MOFs has broadened the
horizons in the biomedical domain, especially in the realm
of DDSs [ 101 ,102 ]. In a study ( Table 2 ), lansoprazole (LPZ) was
effectively integrated into CD-MOFs utilizing a sophisticated
cocrystallization technique, which involved the interaction
of LPZ with γ -CD in the presence of potassium ions
(K+ ) [ 103 ]. The resulting K-based CD-MOFs demonstrated a
significant drug LC, achieving a payload of 23.2% ± 2.1%
by weight, indicative of a 1:1 molar ratio between LPZ and
γ -CD [ 103 ]. Remarkably, the drug retained its spectroscopic
integrity within the CD-MOFs even after two years of storage.
Raman spectroscopy confirmed the homogeneity of the
drug incorporation, revealing that each particle of the CD-
MOFs maintained a consistent chemical composition [ 103 ].
This homogeneity in drug loading and the stability of the
drug within the CD-MOFs underscore their potential as a
reliable medium for drug delivery applications. Furthermore,
potassium cation-based β-CD MOFs (K- βCD-MOFs) were
synthesized and optimized for rapid crystallization [ 104 ]. The
research revealed that the drug LC of these MOFs is influenced
by the size and lipophilicity of the drug molecules, with IBU
achieving a loading of 7.4 wt% [ 104 ]. The solubility of IBU
was significantly enhanced when incorporated into K- βCD-
MOF, demonstrating the framework’s potential to improve the
water solubility of pharmaceuticals [ 104 ]. 

The development of sustained-release DDSs using CD-
MOFs is gaining momentum. Overcoming the challenge of
low drug loading in CD-MOF microspheres, which hinders
their efficacy for oral formulations, is a current research
focus [ 105 ]. Encapsulating CD-MOFs with organic polymers
has emerged as a promising strategy to bolster their stability
in aqueous conditions and enhance drug loading without
compromising their structural properties, paving the way for
advanced oral drug delivery applications [ 106 ]. In a study, the
goal was to augment the oral bioavailability and modulate the
release kinetics of indomethacin (IMC), a drug challenged by
poor water solubility ( Table 2 ). To address this, researchers
encapsulated γ -CD-MOF nanocrystals synthesized from γ -CD
and K+ within Eudragit R © RS microspheres using spray drying
technology [ 107 ]. Drug loading into CD-MOF nanocrystals
achieved an efficiency of 40.2%, which significantly improved
to 94.0% upon encapsulation with Eudragit R © RS [ 107 ]. This
encapsulation not only enhanced the dissolution rate of the
IMC compared to its raw form but also successfully moderated
the initial burst release of the drug, indicating a controlled
release profile. The microspheres exhibited a smooth surface
and maintained the cubic shape of the CD-MOF nanocrystals,
with sizes between 200 and 700 nm [ 107 ]. Stability was
conferred by the Eudragit R © RS polymer, which protected
the CD-MOF structure and regulated the drug release rate.
Pharmacokinetic studies in rats showed that IMC-loaded CD-
MOF nanocrystals and further encapsulated microspheres
significantly improved the oral bioavailability of IMCs [ 107 ].
These findings demonstrate the potential of this spray-drying
encapsulation technique in creating oral DDSs that enhance
solubility and provide sustained drug release. 

In conclusion, the body of research on CD-MOFs for
oral drug delivery underscores a clear trajectory toward
enhancing the bioavailability and controlled release of drugs.
The encapsulation of CD-MOF nanocrystals with polymers
such as Eudragit R © RS represents a significant leap in this
direction, offering a promising platform for the future of oral
DDSs. These advancements not only highlight the potential
of CD-MOFs in improving drug solubility and stability but
also pave the way for new, more effective oral therapeutic
interventions. 

3.8. Magnesium-based MOFs (Mg-MOFs) 

Magnesium (Mg), an essential mineral for human health, plays
a pivotal role in bone matrix synthesis, osteoblast activity,
and bone mineralization processes [ 108-110 ]. Additionally,
it possesses anti-inflammatory properties through the
regulation of inflammatory cytokines, contributing to its
therapeutic profile [ 111 ]. Mg-MOFs, notably Mg-MOF-74,
represent a sophisticated fusion of essential minerals with
organic molecules for medical use [ 112 ]. This framework,
which combines Mg ions with 2,5-dihydroxyterephthalic acid,
stands out for its potential as a carrier for therapeutic agents,
utilizing the natural advantages of Mg to promote health
benefits [ 112 ]. 

In the realm of osteoporosis treatment, bone pain
stands as a primary concern, often managed clinically with
ketoprofen. However, the chronic oral administration of
ketoprofen is associated with adverse effects. To address this
challenge, researchers have developed Ket@Mg-MOF-74, an
innovative oral DDS that leverages Mg-MOF-74 technology
[ 113 ]. This multifunctional approach comprehensively tackles
bone pain, bone mass loss, and inflammation associated
with osteoporosis. Mg-MOF-74 demonstrated remarkable
stability, while Ket@Mg-MOF-74 exhibited controlled release
capabilities for both ketoprofen and Mg ions in solution [ 113 ].
In vitro experiments underscored its potential to mitigate
pain-related gene expression, enhance osteogenic cytokine
production, and reduce pro-inflammatory factor secretion.
Ket@Mg-MOF-74 represents a promising oral delivery system
for osteoporotic pain management, offering a comprehensive
approach that combines pain relief, anti-inflammatory action,
and bone formation promotion [ 113 ]. In another study
( Table 2 ), Mg-MOF-74 was investigated for its potential to
fine-tune the release of orally delivered drugs, examining
IBU, 5-FU, and curcumin [ 114 ]. These drugs were selected
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Fig. 5 – Addressing the Complexities of Oral MOF Delivery: Navigating Toxicity, Stability, and Physiological Barriers in the 
Gastrointestinal Tract and Beyond. This image illustrates the transit of oral MOFs through the GI tract. It highlights the 
challenges posed by the varying pH levels, from the highly acidic stomach to the neutral blood circulation, and the biological 
barriers, such as the mucosal layer and enterocyte cell membranes. The MOFs must remain stable while traversing these 
barriers to reach systemic circulation and deliver their therapeutic payload effectively. Created with BioRender. 
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or their diverse solubility and molecular sizes and were 
ncorporated into the MOF at 30, 50 and 80 wt% loadings [ 114 ].
he study’s findings have significant implications for oral drug 
elivery. The solubility and size of the drug influenced its 
elease from Mg-MOF-74, with 5-FU released most rapidly,
uggesting a benefit for drugs requiring fast absorption in the 
I tract [ 114 ]. Conversely, curcumin’s slower release profile 
oints to the potential for creating sustained-release oral 
ormulations [ 114 ]. This research underscores the versatility 
f MOFs in creating customized release profiles for oral drugs,
hich is crucial for improving bioavailability and therapeutic 

ffectiveness. Mg-based biomaterials, especially Mg-MOF-74,
ave shown great potential in enhancing oral drug delivery 
y leveraging their bone health and anti-inflammatory 
enefits. The ability of Mg-MOF-74 to modulate drug release 
ffers the promise of more effective, body-compatible oral 
herapies with fewer side effects. This technology could be 
ransformative, allowing for tailored drug release profiles 
hat enhance the bioavailability and effectiveness of oral 

edications. 

. Challenges and limitations of using MOFs 

n oral drug delivery 

he quest to revolutionize drug delivery mechanisms has 
ed to the advent of MOFs. As promising as they appear, it 
s essential to recognize that they are not without potential 
hallenges and limitations, especially when considering their 
eployment in oral drug delivery ( Fig. 5 ). Delving deeper into 
hese concerns ensures a holistic perspective and paves the 
ay for strategic advancements in this field. 

.1. Potential toxicity concerns 

n the realm of oral drug delivery, MOFs present a unique set of
hallenges and considerations, particularly concerning their 
oxicity. These challenges are primarily influenced by factors 
uch as dose, physicochemical properties, biotransformation,
nd chemical composition [ 115 ], all of which are critical in 

etermining the safety and efficacy of MOFs when used for 
ral administration. 

One of the key concerns with MOFs in oral delivery could 

e the certain dose of MOFs and their ability to bypass 
hysiological barriers and accumulate in specific tissues or 
rgans [ 36 ,115 ,116 ]. This characteristic can potentially lead 

o severe side effects [ 116 ]. The physicochemical properties 
f MOFs, including size and shape, are also crucial. The 
maller MOF nanoparticles, due to their increased penetration 

bility, can disrupt cellular processes, potentially leading to 
nflammatory responses or even cellular apoptosis in severe 
ases [ 117 ]. However, this reduced size can lead to faster 
egradation due to a larger surface area exposed to the 
iological environment, necessitating a careful assessment of 
heir colloidal stability or agglomeration behavior, especially 
or particles smaller than 200 nm [ 118-120 ]. 

The surface chemistry of MOF NPs is crucial, serving as 
he main interaction point with biological systems and greatly 
nfluencing their toxicity. This interaction often involves 
he generation of reactive oxygen species (ROS) on the 
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surface of MOFs, leading to oxidative stress, which is a
precursor to cellular damage and various forms of chronic
diseases if exposure is prolonged [ 121 ]. Chemical stability
under biologically relevant conditions is another critical
factor affecting the toxicity of MOFs [ 115 ,122 ]. The unique
composition of MOFs, comprising both inorganic and organic
components linked by coordination bonds, means that their
degradation behavior in different cellular compartments can
lead to a higher local concentration of potentially toxic metals
or organic linkers. For instance, the degradation of certain
MOFs in the acidic environment of lysosomes could release
zinc ions at concentrations high enough to induce cytotoxic
effects such as mitochondrial dysfunction or DNA damage
[ 35 ,115 ]. The varying pH values in different parts of the human
body, especially within the GI tract, can significantly impact
the degradation rate of MOFs, influencing their stability and
subsequent toxicity [ 123 ,124 ]. 

The chemical composition of MOFs, encompassing both
inorganic metal clusters and organic building blocks, is a
determinant of their overall toxicity [ 125 ]. Different metals
used in MOFs exhibit varying levels of cytotoxicity, and this
is often correlated with their rate of degradation in biological
media [ 115 ]. The nature of the organic linker is equally
important, as different linkers can have varying effects
on the biofriendliness and toxicity of the MOFs [ 115 ,125 ].
The hydrophobic or hydrophilic nature of these linkers can
influence the rate at which MOFs are excreted from the
body, with hydrophobic linkers typically associating with lipid
droplets and leading to slower removal [ 115 ,126 ]. 

In summary, the application of MOFs in oral drug delivery
requires a thorough understanding of their toxicological
profile. This includes careful consideration of their size, shape,
surface chemistry, stability under physiological conditions,
and chemical composition. Such an understanding is vital to
harness the potential of MOFs in delivering therapeutic agents
effectively and safely through the oral route. 

4.2. Challenges of MOFs in GI tract 

4.2.1. Stability issues in the GI environment 
The acidic environment of the stomach, characterized by a
low pH typically ranging from 1 to 2 due to the presence
of hydrochloric acid ( Fig. 5 ), plays a crucial role in digestion
and pathogen defense [ 127 ]. However, this highly acidic
milieu can present significant challenges for the stability and
functionality of materials such as metal MOFs introduced into
the body for biomedical applications, such as DDSs [ 40 ,128 ]. 

Here are some detailed points on the implications of
the acidic environment of the stomach on MOFs: (1) Acidic
degradation of MOFs. Many MOFs are constructed with metal
nodes that are connected by organic linkers. These linkers are
often susceptible to protonation or hydrolysis under acidic
conditions, leading to the breakdown of the MOF structure
[ 34 ,129 ]. The degree of susceptibility to acid varies widely
depending on the chemical nature of the MOF. For instance, in
acidic environments, metal ions and protons compete to bond
with the organic linkers in MOFs, leading to the breakdown
of MOFs with softer metal components such as ZIF-8(Zn)
[ 123 ]. In contrast, in basic or alkaline environments, hydroxide
ions replace organic linkers, accelerating the degradation of
MOFs with harder metals such as MIL-100(Fe) or UiO-66(Zr)
[ 124 ,130 ]. (2) Protonation of organic linkers. The organic linkers
in MOFs can sometimes contain functional groups such as
amines, carboxylates, or others that can be protonated in an
acidic environment [ 115 ]. This protonation can disrupt the
coordination bonds between the linkers and the metal nodes,
potentially leading to framework collapse [ 115 ,117 ]. 3) Metal
leaching. When MOFs decompose in an acidic environment,
the metal ions can leach out. Not only does this destroy the
framework, but it can also pose toxicity issues if the metals
are not biocompatible or if they exceed safe concentration
levels in the body [ 131 ,132 ]. (3) Kinetics of degradation. The
rate of degradation of MOFs in an acidic environment is also
a critical factor. Fast degradation can lead to a burst release of
any encapsulated drugs [ 133 ], while slow degradation might
fail to release the drug payload effectively [ 132 ]. 

4.2.2. Mucosal epithelial barrier 
The epithelial mucous layer ( Fig. 5 ), a sophisticated biological
hydrogel, is a crucial first line of defense in oral DDSs.
It consists of an epithelial mucous layer interspersed with
aqueous pores approximately 200–300 nm in diameter,
functioning as a selective diffusion barrier [ 40 ]. This layer
discriminates between molecular passages, facilitating the
transport of certain small molecules while obstructing those
of substantial size [ 134-136 ]. For MOFs that exceed 300 nm,
there is a predisposition for rapid mucus clearance due to
their size. The intrinsic hydrophilic and negatively charged
nature of the mucous layer, attributed to the presence of lipids,
proteins, and glycosylated mucins, endows it with selective
permeability characteristics [ 134 ,135 ,137 ,138 ]. Particles that
are hydrophilic and bear a neutral charge traverse this
mucus layer without impediment, in stark contrast to charged
entities that may engage in repulsive or adhesive interactions
with mucins [ 139 ]. As MOFs navigate successfully through
this mucosal layer, they next encounter the epithelial cell
membranes, presenting another critical barrier for oral drug
delivery [ 36 ,40 ]. The transition from mucus layer interaction
to cellular membrane penetration highlights the multifaceted
role of the mucosal epithelial barrier in regulating drug
delivery. 

The mechanisms of transmembrane absorption include
transcellular route and paracellular route. MOFs that
possess hydrophobic and positively charged surfaces are
preferentially internalized via the transcellular pathway.
This route involves the direct passage of MOFs through
cell membranes, typically via endocytosis, where they are
enveloped by the cell membrane and internalized within
endocytic vesicles [ 140 ]. Conversely, the paracellular route,
involving passage between epithelial cells, is less feasible
for MOFs due to tight junctions that restrict openings
to less than 2 nm [ 141 ,142 ]. Therefore, the design of
MOFs primarily focuses on enhancing their capability to
undergo transcellular absorption [ 45 ]. However, the epithelial
absorption of such hydrophilic and neutrally charged entities
is naturally inhibited by the hydrophobic and negatively
charged properties of the cell membrane. Particles with
properties aligned for transcellular uptake are therefore
essential for effective drug delivery. Once internalized, MOFs
encounter the lysosomal environment, which is highly acidic
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Fig. 6 – Infographic illustrating the sequential stages in the development of oral MOFs for drug delivery, highlighting the 
research and development phase, preclinical and clinical testing, and the final review and approval process for clinical use. 
Created with BioRender. 
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molecules such as CD or cross-linked PEG are attached 
nd may lead to the destabilization of the MOFs, potentially 
nducing the premature release of the encapsulated drugs 
nd causing toxic effects [ 40 ]. This underscores the need for 
areful consideration in the design of MOF-based systems 
o ensure stability, controlled release, and biocompatibility 
 40 ,143 ]. Navigating both the mucous and cellular barriers 
resents significant challenges in the engineering of MOF- 
ased delivery systems that must synergistically fulfill the 
equirements of both barriers [ 40 ]. This section not only 
ighlights the critical role of the mucosal epithelial barrier 

n oral drug delivery but also illustrates how understanding 
ransmembrane absorption mechanisms is essential for 
esigning effective MOF-based systems. 

.3. Challenges of MOFs in blood 

ithin the physiological context of human blood, maintaining 
 pH value between 7.35 and 7.45 and enriched with 

hosphate ions (PO3 
−4 ), a distinct interactive dynamic with 

OFs emerges ( Fig. 6 ). The robust coordination capacity of 
O3 

−4 with metal ions, driven by the availability of lone-pair 
lectrons from the oxygen atoms in the phosphate structure,
as the potential to undermine the porous integrity of MOFs,
uch as ZIF-8 [ 119 ,144 ]. This interaction not only risks the 
tructural collapse of the MOFs but also raises concerns about 
OF-induced red blood cell (RBC) aggregation and hemolysis 

 119 ]. Moreover, this phosphate-triggered MOF disintegration 

an make it difficult to deliver drugs to the exact place where 
hey are needed. Additionally, the release of organic ligands 
nd metals during this process can be inadvertently toxic to 
he human body. 
. Possible ways to overcome the challenges 

or oral delivery of MOFs 

ddressing the challenges of oral delivery for MOFs involves 
arious innovative approaches, each targeting specific aspects 
f MOF performance and safety. These strategies are crucial in 

ptimizing MOFs for effective and secure drug delivery. 

.1. Tackling toxicity concerns 

o mitigate or eliminate the potential toxicity of MOFs,
 variety of approaches can be adopted. A proactive step 

s to undertake comprehensive toxicity assessments using 
oses that exceed the typical concentrations employed in 

linical settings [ 145 ]. Particularly vital is the evaluation of 
rally administered MOFs, examining their pharmacokinetic 
rofiles, including absorption, distribution, metabolism, and 

xcretion (ADME), in in vivo models, alongside in vitro dose- 
esponse studies [ 146-148 ]. Furthermore, the application 

f surface modifications, such as polymer coatings, can 

ubstantially enhance the colloidal and chemical stability 
f MOFs. These alterations not only deter the unsolicited 

dsorption of biomolecules, fats, or proteins but also mitigate 
he formation of a biocorona, which is advantageous for 
avigating specific physiological routes [ 121 ]. A case in point 

s MIL-100 (Fe), a MOF that has garnered attention in toxicity 
esearch due to its potential in biomedical contexts. This 
OF illustrates the efficacy of surface modifications: native 
IL-100 (Fe) particles tend to clump together in physiological 

nvironments, yet this is significantly counteracted when 
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to their surface, thus enhancing their overall stability
[ 130 ,149 ,150 ]. The development of materials with built-in
safety features, an approach termed “safe-by-design,” is
becoming increasingly prevalent [ 151 ,152 ]. MOFs, with their
customizable metal clusters and organic linkers, stand out
as a particularly versatile and forward-looking material
class within this paradigm. This “safe-by-design” principle
is applicable throughout the life cycle of MOFs, from their
initial synthesis and drug incorporation phases to subsequent
surface modifications. 

The fabrication of MOF nanoparticles adhering to safe
and sustainable design standards is readily attainable.
Utilizing only biocompatible materials and chemicals, such as
solvents, acids, bases, mineralizing agents, and modulators,
significantly reduces the risk of toxicity if the MOFs are to
break down [ 153 ,154 ]. The shift toward more conscientious
research practices is evidenced by recent studies. These
include methods for creating MIL-100 (Fe) without the
use of toxic substances and techniques for incorporating
drugs into MOFs and applying surface coatings in water-
based, nontoxic environments, indicating a move toward
more responsible and sustainable material synthesis in the
industry [ 149 ,155 ]. 

5.2. Strategies to overcome GI tract challenges with MOFs

To navigate the rigorous conditions of the GI tract and
harness the potential of MOFs in drug delivery, several tailored
strategies can be employed. The development of MOFs that
are inherently resistant to acids involves using metal ions and
organic linkers that remain stable in the stomach’s low pH
conditions. By selecting materials that are less likely to break
down in acid, these MOFs can maintain their structure and
function [ 2 ,42 ]. In the realm of developing acid-resistant MOFs,
a study conducted by Chen et al. serves as a pertinent example
[ 2 ]. They investigated a Zr-MOF known as NU-1000, designed
for the oral delivery of INS. INS is particularly vulnerable to
degradation in the stomach’s acidic environment, and the
objective was to use NU-1000 to encapsulate and safeguard
it against such conditions [ 2 ]. 

Enhancing MOFs after they are initially synthesized
is another strategy. This post-synthesis enhancement can
include adding groups to the MOF that are not affected by
acid or replacing parts of the MOF that are sensitive to
acid with parts that are more resistant. A concrete example
would be the use of silane coupling agents [ 84 ,112 ,156-
158 ]. These agents can introduce silanol groups to the MOF
structure, which, upon further condensation, form a silica-like
protective layer on the surface of the MOF particles [ 112 ,159 ].
This silica layer is known for its chemical resistance and can
protect the MOF from the acidic environment of the stomach
[ 112 ,159 ]. In the work presented by Huang et al., Fe-MOF
featuring Fe(II) ions and 1,1′ -(1,4-butanediyl)bis(imidazole)
was developed and utilized for encapsulating doxorubicin
[ 160 ]. The Fe(II)-imidazolate bonds within the MOF structure
demonstrated an increased rate of degradation in acidic
environments, leading to a more rapid release of the drug
at a pH of 5.5 as opposed to a neutral pH of 7.4. To mitigate
this swift degradation and regulate drug release, researchers
applied a silica coating to the surface of the MOF, which
effectively slowed the decomposition of the nanocarrier under
acidic conditions [ 160 ]. 

Another approach to improve stability is encapsulating
MOFs within microspheres. This encapsulation provides an
additional protective layer, ensuring that the MOFs remain
intact and functional as they navigate through the GI
system. A novel biodegradable nanocomposite microsphere
incorporating INS-loaded Fe-MOF nanoparticles (MIL-100) has
been developed [ 39 ]. These microspheres are designed to
safeguard the MOF nanoparticles from rapid degradation in
the acidic milieu of the stomach, ensuring their integrity until
they reach the intestine [ 39 ]. Upon reaching the simulated
intestinal fluid, the microspheres facilitate the release of the
encapsulated INS, effectively mimicking the desired in vivo
release profile [ 39 ]. 

Post-modifications, especially surface coatings with
protective shells such as polymers such as CS [ 55 ], alginate
[ 68 ], gelatin [ 20 ], and PEG, have been used to increase MOF
stability. In an innovative study, researchers synthesized
Zr-NDC, a Zr-MOF, and modified it with CS to enhance the
oral delivery of 5-FU [ 55 ]. The CS modification significantly
increased the stability of the MOF in the GI tract, addressing
a major challenge in the oral administration of 5-FU [ 55 ].
This stability-focused design of the CS-coated Zr-NDC MOF
presents a promising strategy for improving the stability
and oral bioavailability of Zr-MOF and 5-FU, respectively.
A study investigated the oral delivery of IBU using a Cu-
MOF encapsulated within pH-sensitive gelatin microspheres
[ 20 ]. Due to the rapid decomposition of Cu-MOF in acidic
conditions, a swift release of the drug was noted at pH 1.2,
with 95 % of IBU released within 2 h [ 20 ]. In contrast, the
application of a GM polymer coating resulted in a more
controlled release, with approximately 72 % of the drug
released over 8 h in a pH sequence of 1.2, 6.8 and 7.4,
reflecting the pH-sensitive nature of the gelatin polymer and
the diffusion barrier provided by the GM [ 20 ]. The PEGylated
DDS PEG/PA@ZJU-64-NSN was developed to enhance the oral
bioavailability of PA by protecting it against degradation in
the gastric environment [ 30 ]. The incorporation of PEG into
the Zn-MOF significantly improved the chemical stability
of the PA@ZJU-64-NSN complex [ 30 ]. Hence, implementing
these methods can significantly enhance the durability
and effectiveness of MOFs as drug carriers, enabling them
to transport therapeutic agents safely through the acidic
sections of the GI tract. 

5.3. Overcoming the challenges of MOF in blood 

Addressing the challenges presented by the bloodstream for
MOF-based delivery systems requires meticulous design to
achieve both therapeutic efficacy and compatibility with blood
components [ 161 ]. Hemocompatibility is of particular concern,
as MOFs must not induce adverse reactions such as hemolysis
or interfere with the normal function of blood cells [ 161-163 ]. 

To ensure safe interaction with blood, MOFs can be
designed with biocompatible metals and linkers that resist
degradation and prevent the release of potentially toxic ions,
showing their hemocompatibility [ 161 ]. For example, using
biocompatible materials such as zirconium or copper in
the MOF structure can improve blood compatibility due to
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heir stability and low toxicity [ 161 ,164 ]. Zirconium-based 

OFs, in particular, have been studied for their resistance 
o degradation in biological environments, resulting in 

emocompatibility [ 164 ]. 
Additionally, coatings can be applied to MOFs to reduce 

heir reactivity with blood components and to avoid triggering 
he body’s immune response [ 165 ,166 ]. Coatings, such as 
ydrophilic polymers ( i.e., PEG and gelatin), can be employed 

o create a stealth-like effect, allowing MOFs to circulate 
ndetected by the immune system and thereby reducing 
he possibility of clearance by phagocytic cells. Additionally,
y attaching PEG to the surface of MOFs, researchers aim 

o control the interactions between these nanoparticles and 

iological media, such as blood plasma [ 58 ,78 ,165 ,167 ]. A study
y Mobin et al. highlights the hemocompatibility of IITI- 
, a gelatin-coated Cu-MOF designed for oral INS delivery 
 78 ]. This MOF’s stability and blood compatibility make it 
 promising candidate for safe oral drug administration,
nsuring that it can pass through the digestive system and 

nto the bloodstream without causing adverse reactions. 

. Regulatory considerations for clinical 
ranslation and opportunities 

he clinical transition of MOFs faces a rigorous regulatory 
athway ( Fig. 6 ), chiefly managed by the U.S. Food and Drug 
dministration (FDA) and the European Medicines Agency 

EMA), which necessitates specific demonstrations of their 
afety and efficacy tailored to their unique properties as 
ral DDSs [ 168 ]. Key to navigating this regulatory landscape 

s demonstrating the unique safety challenges and efficacy 
otentials of oral MOFs, including their biocompatibility 
nd stability under physiological conditions. Critical to the 
pproval of oral MOFs is a thorough assessment of their 
afety and biocompatibility [ 14 ,169 ]. Specific evaluations 
ocus on the impacts of MOFs and their biodegradation 

roducts, which are crucial for ensuring patient safety and 

eeting stringent regulatory standards [ 115 ,122 ]. Another 
ignificant hurdle is the scale-up from laboratory synthesis 
o industrial production, maintaining MOFs’ consistency,
urity, and stability, each of which is essential for ensuring 
eliable drug delivery and regulatory compliance [ 170 ]. Such 

onsistency is crucial for ensuring reliable drug delivery and 

atient safety. 
Furthermore, the clinical translation of oral MOFs 

ecessitates a series of preclinical and clinical tests. Initially,
heir safety and efficacy must be established in animal 

odels [ 171 ,172 ]. Following successful preclinical results,
OFs enter a phased approach in clinical trials, each phase 

esigned to systematically evaluate their safety, dosage,
fficacy, and side effects in humans [ 115 ]. To date, more than 

0,000 MOFs have been documented, and it is predicted that 
ver half a million MOF structures exist, offering an extensive 
rray of MOF configurations for exploration and practical 
se [ 173 ,174 ]. Despite this, the first clinical trial utilizing 
OFs was launched in 2018 with the objective of improving 

he efficacy of X-ray radiotherapy (RT) in cancer therapy 
NCT03444714]. To date, only one MOF has progressed to a 
hase I clinical trial [ 173 ]. This indicates that there is still 
 significant amount of research and development needed 

efore MOFs can become a commonplace option in clinical 
ettings. The biosafety of materials like MOFs is paramount 
n clinical settings. Despite promising applications, no MOF- 
ased therapeutic agents have yet received FDA approval,
mphasizing the critical need for focused development on 

heir safety profiles. It has been three decades since MOFs 
ere first discovered, and materials based on MOFs are only 
ow beginning to demonstrate their potential, particularly in 

elivery systems such as oral administration. Key challenges 
hat must be addressed include enhancing the stability and 

iocompatibility of MOFs in the GI and circulatory systems.
 specific area of focus should be on postmodifications 
f MOFs, aiming to endow these materials with smart,
esponsive behaviors within the GI environment, including 
umen, mucous layer and epithelial interactions. 

Moreover, a thorough understanding of the behavior 
f MOFs inside the body, including their administration,
irculation, degradation, and elimination, is crucial. Factors 
uch as biodegradability, particle size, and controlled 

ubstance release during breakdown require careful planning 
nd detailed attention for effective oral delivery systems.
he ongoing evolution of oral MOF-based delivery systems is 
n exciting prospect. It spans from fundamental design and 

tructure formation to in vitro and in vivo transport dynamics,
esponsive actions, and ultimately, their application in clinical 
ettings ( Fig. 6 ). This journey demands a multidisciplinary 
pproach, combining innovative research with rigorous 
egulatory compliance to ensure the safe and effective use of 
OFs in medicine. 

. Concluding remarks and future perspective 

his review has illuminated the dynamic and promising 
eld of MOFs in advanced oral DDSs. With their unique 
lend of metal ions and organic linkers, MOFs offer 
roundbreaking approaches to overcoming challenges in 

ral drug delivery. Their capabilities in enhancing drug 
olubility, bioavailability, and controlled, targeted release 
ave showcased transformative potential in pharmaceutical 
ciences. MOFs have high drug-loading capacities, tunable 
tructures, and the ability to protect drugs from harsh 

I environments, marking a significant leap in medical 
herapeutics. The versatility of different MOFs, such as Zr, Fe,
n, Cu, Ti, Al, K and Mg-based frameworks, further enhances 
heir applicability across a wide spectrum of drugs and 

herapeutic needs. 
However, the journey of MOFs from laboratory research 

o clinical application is not without challenges. A 

omprehensive understanding of the complex in vivo 
ate of MOFs and their loaded passengers, including 
heir biodistribution and stability, is crucial. This 
nderstanding can be enhanced by surface modification and 

unctionalization. There is a scarcity of in vivo data on MOFs,
nd mimicking the degradation mechanism of MOF particles 

n vivo remains challenging due to the complex nature of body 
uids. Furthermore, most studies have primarily focused 

n the bioavailability and biodistribution of drugs after 
ral administration, with a notable lack of comprehensive 
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pharmacokinetic mechanisms covering the entire ADME
process. Future research should pay closer attention to
aspects such as enzymatic degradation ( e.g., CYP450) and
efflux transporters ( e.g., P-gp), which play a significant
role in the absorption and permeation of therapeutics.
Continued research is needed to fully understand and
mitigate potential toxicity concerns, focusing on developing
MOFs with optimal size, shape, surface chemistry, and
stability under physiological conditions. Optimizing the
route and dosage of administration is necessary, along with
identifying appropriate animal models for in vivo testing and
employing advanced 3D in vitro preclinical evaluations. 

Advancements in the synthesis of MOFs, particularly
in tailoring their pore sizes, surface functionalities, and
degradation rates, are essential. Future research should also
consider the scalability of MOF production and the regulatory
landscape, ensuring that lab successes can be translated
into commercially viable products. Establishing standardized
safety and efficacy guidelines for MOF-based DDSs will
require a collaborative approach among scientists, industry
stakeholders, and regulatory bodies. 

In conclusion, while the potential of MOFs in
revolutionizing oral drug delivery is undeniable, significant
research and development, coupled with regulatory
compliance, are essential for their successful clinical
translation. With continued research and innovation, MOFs
could significantly enhance the efficiency of drug delivery,
reduce side effects, and improve patient compliance, leading
to better health outcomes. 
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