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Abstract

Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS) induces the
activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs.
How IRF3 is recruited onto the STING signalosome remains unknown. We report here that
silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression
induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Inter-
estingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-
dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP inter-
acts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruit-
ing IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function.
Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling
pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses.

Author Summary

The stimulator of interferon genes (STING/MITA/ERIS/MPYYS) is characterized as the
converging point of the cytosolic DN As-triggered innate immune signaling, and its func-
tion has been well documented in mediating the production of type I interferon and other
pro-inflammatory cytokines. It remains intriguing to address how IRF3 is recruited onto
the STING signalosome. In this study, we have further identified and characterized the
SREBP cleavage-activating protein (SCAP) as the long-sought-after adaptor of the STING
signaling. Upon microbial DNA challenge, SCAP translocates from ER, via Golgi, to peri-
nuclear microsome in a STING-dependent manner. SCAP thus serves as a scaffold adap-
tor to recruit IRF3 and facilitate its integration into the perinuclear microsomes. Our
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study reveals an important missing link in innate immunity, further highlighting the phys-
ical and/or functional links between innate immunity and metabolism.

Introduction

Microbial infections represent an ever-present threat to host homeostasis and survival. The
extracellular and intracellular microbes are dynamically and rapidly sensed by specific Pattern
Recognition Receptors (PRRs), including TLRs, NLRs and RLRs [1-3]. Upon recognition of
the conserved Pathogen Associated Molecular Patterns (PAMPs), PRRs initiate a myriad of sig-
nal transduction pathways, triggering innate and adaptive immune responses to eliminate the
microbial pathogens [4,5].

DNAss derived from DNA viruses, bacteria or damaged host cells could activate the IRF3
and/or NF-kB signaling pathways, thus inducing the production of type I interferons (IFNs)
and other pro-inflammatory cytokines [6,7]. How cells sense and respond to RNA virus infec-
tion is well characterized in the past decade [8-10]. Our understanding of the DNA-triggered
signaling is relatively limited. TLR9 detects CpG DNA from endolysosome in the immune cells
[11]. Multiple cytosolic sensors are proposed to detect viral or microbial DNAs in cytosol,
including cGAS, RNA polymerase III, Mrell, DNA-PKcs, IFI16 and DDX41 [12-18]. Further
studies are needed to clarify the physiological relevance of some of the putative DNA sensors,
and to address the biochemical and functional interactions among these sensors.

Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS) is character-
ized as the converging point of the recently identified DNA sensors. STING is an Endoplasmic
Reticulum (ER)-associated membrane protein, indispensable for inducing the antiviral innate
responses triggered by microbial DNAs [19-22]. For examples, STING-deficient cells fail to
induce type I IFN production after stimulation of dsDNA or infection with herpes simplex
virus 1 (HSV-1) or Listeria monocytogenes [23]. STING knockout mice are highly susceptible
to lethal infection by HSV-1 [23]. STING can also bind directly to cyclic dinucleotide (CDNs),
including cGAMP, c-di-GMP and c-di-AMP [24,25].

CDNs and/or upstream DNA sensors could induce STING dimerization, causing its trans-
location from the ER, via Golgi, to perinuclear microsome [21,23,26]. Recently, we have identi-
fied the unexpected function of the autocrine motility factor receptor (AMFR, a.k.a GP78) and
the insulin induced gene 1 (INSIG1) in innate immunity [27]. AMFR and INSIG1 are ER-resi-
dent ubiquitin E3 ligase, responsible for catalyzing the K48-linked poly-ubiquitination of the
ER misfolded proteins, a process essential for the ER Associated Degradation (ERAD) [28]. We
characterize AMFR/INSIGL to interact specifically with STING, and to catalyze the K27-linked
poly-ubiquitination of STING. The K27-linked polyubiquitin chain on STING serves as an
anchoring platform for recruiting and activating TBK1, which then phosphorylates the tran-
scription factor IRF3 [27]. Notably, IRF3 could not bind to the K27- or K63- linked polyubiqui-
tin chain. How IRF3 is recruited onto the STING signalosome remains largely unknown.

SREBP cleavage-activating protein (SCAP) is a polytopic membrane protein on ER, harbor-
ing an N-terminal domain with eight transmembrane helices, and a C-terminal domain with
five WD-repeat [29]. It is well established that SCAP interacts with INSIG1 and modulates the
lipid homeostasis [30]. In this study, we demonstrate that SCAP interacts with STING inde-
pendent of INSIG1, and SCAP is indispensable for DN As-triggered host antiviral responses.
Upon HSV-1 infection, SCAP translocates from ER, via Golgi, to perinuclear microsome in a
STING-dependent manner. SCAP thus serves as a scaffold adaptor to recruit IRF3 onto the
STING signalosome, which reveals a critical missing link in innate immunity.
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Results
Identification of SCAP in the STING signalosome

Our recent study [27] identified INSIG1 to specifically interact with STING (Fig 1A). Given
that INSIG1 interacts with SCAP in lipid metabolism [30], we wondered whether SCAP was
also a component in the STING signalosome. We confirmed the association between INSIG1
and SCAP via the co-immunoprecipitation assay (Fig 1B). We observed that SCAP associated
with STING exogenously and endogenously (Fig 1C and 1D). This association was marginally
enhanced upon HSV-1 (Fig 1E left), Listeria monocytogenes (Fig 1E middle) or ISD (Fig 1E
right) stimulation. Unexpectedly, silencing of INSIG1 did not affect the association between
STING and SCAP (Fig 1C and 1D), indicating that STING associates with SCAP in an INSI-
Gl-independent manner. This suggests that the STING signalosome is physically and func-
tionally distinct from the Lipid Regulatory Complex.

The transmembrane region of STING (1-175 aa) was important for its interaction with
SCAP (Fig 1F). Likewise, the transmembrane region of SCAP (1-735 aa) was mapped to medi-
ate the same interaction (Fig 1G). Confocal microscope imaging confirmed that SCAP co-
localized with STING exogenously and endogenously (Fig 1H). HSV-1 and Listeria monocyto-
genes infections marginally induced the expression of SCAP (Fig 1I). Taken together, these
data suggest that SCAP is a new component in the STING protein complex.

Silencing of Scap attenuates cytosolic DNA-induced IRF3 activation

To probe the potential function of SCAP in innate immunity, we screened out the specific and
effective siRNAs against Scap (Scap siRNA 3060, Scap siRNA 3465 for mouse and SCAP siRNA
1302 for human), all of which could markedly diminish the expression of exogenous and
endogenous SCAP (Fig 2A and 2B). It was observed that knockdown of endogenous Scap
inhibited the DNA mimics poly(dA:dT)-triggered induction of Ifnb mRNA (Fig 2C). In con-
trast, poly(I:C)- or SeV-triggered RIG-I signaling was marginally affected in Scap knockdown
cells (Fig 2C). Knockdown of Scap had no inhibitory effects on the TLRs-mediated activation
of the Ifnb mRNA triggered by LPS or poly(I:C) added (Fig 2C). These data indicate that SCAP
specifically regulates the cytosolic DNA-triggered expression of IFN-f.

To substantiate, we explored the effect of Scap knockdown on the expression of IRF3-re-
sponsive genes induced by cytosolic DNA challenge, using qPCR (quantitative PCR). As
expected, silencing of Scap markedly attenuated the induction of the IRF3-responsive genes
(Ifnb, Ifna4 and Cxcl10) in MEF cells, stimulated by the DNA mimics [poly(dA:dT) or ISD]
(Fig 2D) treatment or the DNA pathogens (Listeria monocytogenes or HSV-1) (Fig 2E). How-
ever, silencing of SCAP apparently displayed no effect on the Thapsigargin-induced ER stress
(S1 Fig).

To make it more physiologically relevant, we further investigated the function of SCAP in
primary cells. BMDMs (bone marrow derived macrophage) were transfected with siRNAs
against Scap, followed by HSV-1 or Listeria monocytogenes stimulation. Consistently, silencing
of Scap markedly attenuated the expression of IRF3-responsive genes in BMDMs (Fig 2F and
2G). Collectively, these data indicate that SCAP is a positive modulator of the cytosolic DNA-
triggered STING signaling pathway.

SCAP functions downstream of STING and upstream of IRF3

We further delineated the topology of SCAP in the STING signaling pathway. Exogenous
expression of cGAS or STING could respectively activate the IFN-B-luciferase reporters, and
these activations were obviously impaired when knocking down Scap (Fig 3A and 3B). In
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Fig 1. Identification of SCAP in STING protein complex. (A and B) HEK293T cells were transfected with indicated plasmids. Twenty-four hours after
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transfection, cell lysates were immunoprecipitated with an anti-HA antibody (A, upper), an anti-Flag antibody (B, upper) or an anti-Myc antibody (A and B,

lower), and then immunoblotted with indicated antibodies. The normal IgG served as negative control. (C) MEF cells were transfected with nonspecific

control (N.C.) or Insig1 siRNA. Twenty-four hours later, STING-Flag and SCAP-Myc were transfected into the knockdown cells. Cell lysates were subjected
to immunoprecipitation with an anti-Myc antibody or normal IgG, and then immunoblotted with indicated antibodies. (D) MEF cells were transfected with N.C.

orInsig1 siRNA. Forty-eight hours later, cell lysates were subjected to immunoprecipitation with an anti-STING antibody or normal IgG, and then
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immunoblotted with indicated antibodies. (E) After stimulation with HSV-1 (left), Listeria monocytogenes (middle) or ISD (right) in indicated time periods,
lysates of MEF cells were immunoprecipitated with an anti-STING antibody or normal IgG, and then immunoblotted with indicated antibodies. (F) Schematic
diagram of STING and its truncation mutants (upper panel). HA-tagged STING or its mutants were individually transfected into HEK293T cells along with
Myc-tagged SCAP. The cell lysates were immunoprecipitated with an anti-Myc antibody (left) or an anti-HA antibody (right) and then immunoblotted with
indicated antibodies.(G) Schematic diagram of SCAP and its truncation mutants (upper panel). Myc-tagged SCAP or its mutants were individually transfected
into HEK293T cells along with Flag-tagged STING. The cell lysates were immunoprecipitated with an anti-Myc antibody and then immunoblotted with
indicated antibodies (lower panel). (H) Hela cells were transfected with HA-tagged STING and Flag-tagged SCAP, and then stained with indicated antibodies
before imaged by confocal microscopy (left). MEF cells were immunostained with indicated antibodies and imaged by confocal microscopy (right). Scale bars
represent 10um. (I) MEF cells were infected with HSV-1 (upper) or Listeria monocytogenes (lower) for the indicated time periods, and then the cell lysates
were immunoblotted with an anti-SCAP antibody. B-actin was served as loading control.

doi:10.1371/journal.ppat.1005462.9001

contrast, knockdown of Scap marginally affected the expression of IFN-B-luciferase reporter
when ectopically expressing TBK1 (Fig 3C). Likewise, Scap knockdown had no effect on the
activation of the IFN-B-luciferase reporter, when cells were stimulated with the exogenous
IRF3-5D (Fig 3D). Furthermore, ectopic expression of SCAP only or both SCAP and INSIG1
could not activate the IFN-f-luciferase reporter (S2A and S2B Fig). Given the hierarchical rela-
tionships among these signaling molecules, we reasoned that SCAP modulates the STING sig-
naling downstream of STING and upstream of IRF3.

Consistently, the expressions of PRDIII-I-luciferase reporters stimulated by cGAS, STING
or TBK1 were attenuated in Scap knockdown cells, whereas the expressions of PRDIII-I-lucif-
erase reporters stimulated by IRF3-5D remained intact in Scap knockdown cells (S3A Fig). The
ubiquitination of STING or the recruitment of TBK1 was not affected by endogenous SCAP
depletion (S3D to S3G Fig). Notably, knockdown of Scap led to an apparent decrease in the
phosphorylation of IRF3, but not that of TBK1, when stimulating cells with either poly(dA:dT)
(Fig 3E and S3B Fig) or ISD (Fig 3F and S3C Fig). Consistently, ISD-triggered dimerization
and nuclear translocation of IRF3 were markedly impaired when silencing SCAP. In contrast,
knockdown of Tom20 could not influence the dimerization and nuclear translocation of IRF3
(S4A and S4B Fig).

SCAP translocates to perinuclear microsome in a STING-dependent
manner

We confirmed via confocal microscopy that STING traffics from the ER to perinuclear/Golgi
foci (also called perinuclear microsome) upon HSV-1 infection (Fig 4A). We wondered
whether this translocation was modulated by SCAP. This possibility was ruled out by the obser-
vation that the STING translocation was intact when silencing Scap (Fig 4C). Unexpectedly,
HSV-1 infection also triggered SCAP to translocate from ER to the perinuclear microsome (Fig
4B). The Cell fractionation assay further revealed that HSV-1 infection induced both STING
and SCAP to be predominantly in the microsome fraction (S5C Fig). Notably, SCAP was co-
localized with STING both before and after the HSV-1 infection (Fig 1H and S5A Fig). We rea-
soned that the SCAP translocation is instead dependent on STING.

To test this hypothesis, we monitored the SCAP aggregation in wild-type and Sting”” MEFs
upon HSV-1 infection. As expected, SCAP congregated to perinuclear microsome in wild-type
MEFs upon HSV-1 infection (Fig 4D). Interestingly, STING deficiency dramatically reduced
the trafficking of SCAP to the perinuclear foci (Fig 4D). This translocation of SCAP was obvi-
ously rescued in the Sting”~ MEFs reconstituted with Flag-tagged STING (Fig 4D). In Mavs™”
or Thk1”~ MEFs, SCAP could also congregate to perinuclear microsome (Fig 4D). Taken
together, these data indicate that STING specifically facilitates the translocation of SCAP to the
perinuclear microsome.
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Fig 2. Silencing of Scap inhibits intracellular DNA-mediated IRF3 activation. (A) HEK293T cells were transfected with Myc-tagged mouse SCAP and

then treated with the nonspecific control (N.C.) or Scap siRNAs (left panel). MEF cells were transfected with the negative control (N.C.) or Scap siRNAs (right
panel). Cell lysates were immunoblotted with the indicated antibodies. (B) HEK293T cells were transfected with Myc-tagged human SCAP and then treated
with the nonspecific control (N.C.) or SCAP siRNA (left panel). HEK293T cells were transfected with the negative control (N.C.) or SCAP siRNA (right panel).
Cell lysates were immunoblotted with the indicated antibodies. (C) The nonspecific control (N.C.) or Scap siRNA were transfected into MEF cells. Forty-eight
hours after transfection, cells were stimulated with poly(dA:dT), SeV, poly(l:C) (transfected), poly(l:C) (added to the culture medium) or LPS. Induction of Ifnb
mRNA was measured by quantitative PCR. (D and E) The indicated siRNAs were transfected into MEF cells. Induction of /fna4, Ifnb, and Cxc/10 mRNAs was
measured by quantitative PCR after poly(dA:dT) (D, upper) or ISD (D, lower) stimulation, Listeria monocytogenes infection (E, upper) or HSV-1 invasion (E,
lower). (F and G) The indicated siRNAs were transfected into BMDMs. Induction of /fna4, Ifnb, and Cxc/10 mRNA was measured by quantitative PCR after

Listeria monocytogenes (F) or HSV-1 (G) infection. Data from (C-G) are presented as means + SD from three independent experiments. *p < 0.05;
* %
p<0.01.

doi:10.1371/journal.ppat.1005462.9002
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analyzed for IRF3 phosphorylation. Data from (A-D) are presented as means + SD from three independent experiments. *p < 0.05; **p < 0.01.

doi:10.1371/journal.ppat.1005462.9003

SCAP recruits IRF3 onto the STING signalosome

To explore the action of SCAP, we noticed that SCAP interacted strongly with both STING
and IRF3, but not with TBK1 and p65 (Fig 5A). The C-terminal cytosolic domain of SCAP
(736-1280 aa) was mapped to bind to IRF3 (201-357 aa) (S6A and S6B Fig), whereas the trans-
membrane region of SCAP (1-735 aa) was mediated to interact with STING (Fig 1G). So we
speculated that SCAP might serve as an adaptor for recruiting IRF3 onto STING. The associa-
tion of STING and IRF3 was enhanced in the presence of SCAP, whereas silencing of Scap
almost abolished this association. In contrast, SCAP did not affect the interaction between
STING and TBK1 (Fig 5B and 5C). In addition, ectopic-expression of SCAP promoted the
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microscopy. Scale bars represent 50pm.

doi:10.1371/journal.ppat.1005462.9004

endogenous association of STING and IRF3 in response to the HSV-1 stimulation (Fig 5D).
Notably, knockdown of SCAP impaired the endogenous association of STING and IRF3 (S6C
Fig). The endogenous interaction between SCAP and IRF3 was also confirmed, and this inter-
action was enhanced upon HSV-1 stimulation (Fig 5E). In sting-/- MEFs, the interaction of
SCAP and IRF3 is markedly attenuated (S6D Fig), which indicates that SCAP recruits IRF3
after its STING-dependent translocation to the microsomes.

Notably, IRF3 also congregated to the perinuclear microsome and co-localized with SCAP
upon HSV-1 infection (Fig 5F and S5B Fig). Importantly, silencing of Scap blocked the congre-
gation of IRF3 (Fig 5F), whereas TBK1 deficiency did not affect the trafficking of IRF3 to the
perinuclear foci (Fig 5F). Taken together, these data indicate that SCAP bridges STING to IRF3
in the perinuclear microsome.
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was infected with HSV-1, cell lysates were immunoprecipitated with an anti-IRF3 antibody and immunoblotted with indicated antibodies. (E) MEF cells were
infected with HSV-1, cell lysates were immunoprecipitated with an anti-IRF3 antibody and immunoblotted with indicated antibodies. (F) WT MEF cells
transfected with N.C. or Scap siRNA for forty-eight hours, or TBK1 deficient MEF cells were pretreated with the TBK1 kinase inhibitor BX795 and then
stimulated with HSV-1, then cells were immunostainned with an anti-IRF3 antibody and imaged by confocal microscopy. Scale bars represent 25um.

doi:10.1371/journal.ppat.1005462.9005

Mis-localization of SCAP impairs its antiviral function

To determine the importance of ER localization for SCAP function, we generated three mis-
localization mutants of SCAP. SCAP-ATM was constructed by deleting the N-terminal trans-
membrane domain of SCAP. SCAP-Mito was constructed by replacing the transmembrane
domain with the mitochondria targeting sequence from Tom?70 (translocase of outer mem-
brane 70, a mitochondria membrane protein). SCAP-NLS was constructed by replacing the
transmembrane domain with a nuclear localization sequence (Fig 6A). Confocal microscopy
analysis confirmed that SCAP-ATM, SCAP-Mito and SCAP-NLS were targeted to whole cell,
mitochondria and nucleus, respectively (Fig 6B). As expected, SCAP-ATM, SCAP-Mito and
SCAP-NLS failed to interact with STING (Fig 6C). SCAP-NLS also failed to interact with IRF3
(S7 Fig). Notably, SCAP mis-localization mutants could not enhance the association of STING
and IRF3 (Fig 6D).

We further performed rescue experiments to corroborate the functional consequences. MEF
cells were first transfected with control or Scap siRNAs, followed by transfection of the control
or the RNAi-resistant rSCAP plasmids, respectively. The induction of Ifnb or Ifna4 mRNA was
measured after ISD stimulation. Consistently, the induction of Ifnb or Ifna4 mRNA was
restored by wild type rSCAP, but not rescued by SCAP mis-localization mutants rSCAP-ATM,
rSCAP-Mito or rSCAP-NLS (Fig 6E). Taken together, these data indicate that the ER localiza-
tion of SCAP is essential for its action in the STING signaling.

SCAP is indispensable for innate antimicrobial responses

We went on to explore the antiviral function of SCAP in innate immunity. The induction of
IFN-B is a hallmark of host antiviral responses. Scap siRNA was transfected into MEF cells, fol-
lowed by HSV-1 (Fig 7A) or Listeria monocytogenes (Fig 7B) infection. The supernatants were
quantified by ELISA (enzyme-linked immunosorbent assay). As expected, knockdown of
endogenous Scap drastically impaired the IFN-f protein production (Fig 7A and 7B).

Since IFN-P protects host cells against virus infection, we assessed whether SCAP could
restrict HSV-1 infection. MEF cells were respectively pretreated with culture supernatants
from ISD-stimulated Scap knockdown cells or control cells, followed by HSV-1 (Fig 7C) or Lis-
teria monocytogenes (Fig 7D) infection. It was observed that, fresh cells pretreated with culture
supernatants from Scap knockdown MEFs were more permissive to HSV-1 or Listeria monocy-
togenes infection (Fig 7C and 7D).

In addition, we investigated whether SCAP attenuated microbial replications by challenging
cells with HSV-1-GFP or Listeria monocytogenes. Consistently, knockdown of Scap augmented
the levels of HSV-1-GFP-positive cells (Fig 7E), and also markedly enhanced the replication of
Listeria monocytogenes (Fig 7F). In contrast, the replication of NDV-GFP was unaffected by
depletion of Scap (S8 Fig).

Finally, we investigated the in vivo role of SCAP. We delivered into mice, via tail vein injec-
tion, the Scap specific or control shRNAs coated with polyethyleneimine (PEI). The efficiency
of in vivo ‘knockdown’ was confirmed (Fig 7G and 7H). Next, mice were infected intravenously
with HSV-1, and their survival rates were monitored. As expected, Scap-knockdown mice were
more susceptible to HSV-1 infection than control mice. All the Scap-knockdown mice died
within 3 days, whereas 50% of the control mice remained alive until 7 days after HSV-1
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SCAP or SCAP mutants, respectively. Cell lysates were subjected to immunoprecipitation with an anti-HA antibody, and then immunoblotted with the
indicated antibodies. (E) MEF cells were transfected with N.C. or Scap siRNA and then rescued with the indicated siRNA-resistant SCAP constructs. After
ISD stimulation, induction of /fnb and Ifna4 mRNA was measured by qPCR. Data are presented as means * SD from three independent experiments.

doi:10.1371/journal.ppat.1005462.9006

infection (Fig 7I). Notably, Scap knockdown mice displayed a severer defect in the production
of sera IFN-f upon HSV-1 invasion, as compared with the infected control mice (Fig 7]).
These data indicate that SCAP is indispensable for protecting mice against HSV-1 infection.

Discussion

Recent breakthroughs have characterized multiple cytosolic sensors that potentially monitor
the cytosolic DNAs (cGAS, IFI16, DDX41, Mrell and DNA-PKcs). STING is established
unambiguously as the converging point of the DNA sensors, to further relay the activation sig-
nals on ER [31,32]. Notably, STING is induced to dimerize and traffic from the ER, via Golgi,
to perinuclear microsome [6,23]. TBK1 is simultaneously recruited to the same compartment
in a STING dependent manner, which then activates the transcription factor IRF3 [23]. It is
intriguing to dissect the molecular mechanisms of the DNA-driven assembly of the STING sig-
nalosome on either ER or the perinuclear microsome.

Our recent study [27] has characterized the AMFR/INSIGI protein complex as a novel
component of the STING signalosome on ER. The E3 ubiquitin ligase AMFR, bridged by
INSIGI, catalyzes the K27-linked polyubiquitination of STING upon microbial DNA chal-
lenge. This unique polyubiquitin chain specifically recruits TBK1 and ferries the latter to the
perinuclear microsome, along with STING. Notably, IRF3 could bind neither the K27- nor
K63- linked polyubiquitin chain. This suggests that IRF3 is recruited onto the STING signalo-
some via another uncharacterized mechanism.

So we speculated that there might be unknown adaptor protein(s) on ER to perform this
function. An analogy drew our attention regarding the translocations of the STING and
SREBP. SREBP is a master transcription factor of the lipid and glucose metabolism on ER,
which also translocates from ER to Golgi in response to metabolic stimuli [33]. Notably, SCAP
is indispensable for chaperoning SREBP to Golgi, and INSIG1 specifically interacts with SCAP
to prevent this translocation [30,34]. This inspires us to explore the potential function of SCAP
in innate immunity.

Both STING and SCAP reside on ER via their N-terminal transmembrane domains. We
confirmed the interaction between SCAP and STING, and demonstrated the transmembrane
domains of both proteins to mediate this interaction. Unexpectedly, this interaction is indepen-
dent of INSIG1, suggesting that the STING signalosome might be physically and functionally
distinct from the Lipid Regulatory Complex. To substantiate, there is no obvious difference of
IRF3 activation upon HSV-1stimulation, with or without FBS in the cell culture medium (S9F
Fig). SREBP1 knockdown did not influence the exogenous DNA-induced IRF3 activation (S9B
and S9C Fig). Furthermore, HSV-1 infection could not trigger SREBP1 translocation (S9D
Fig). It was well established that the SREBP signaling was dramatically impaired respectively by
three SCAP mutants (SCAP-Y234A, SCAP-Y298C, SCAP-D443N) [35,36]. However, the
RNAi-resistant ISCAP-Y234A, rfSCAP-Y298C, rSCAP-D443N could rescue the induction of
IRF3-responsive genes in SCAP knockdown cells, like that of the wild type rSCAP (S9E Fig).
Taken together, these observations indicate that the STING signaling is functionally and physi-
cally uncoupled from the SREBP signaling.

During revising this manuscript, York et al reported that the cell metabolic reprogramming
could also induce the expression of IFNf and ISGs in a STING-dependent manner [37]. Inter-
estingly, some of the data in this paper suggested that SCAP was also important for this
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doi:10.1371/journal.ppat.1005462.9g007
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induction. However, they did not address how SCAP could potentially modulate the function
of STING.

Notably, there are some discrepancies between the two studies concerning the specific
effects of SCAP in regulating the induction of IFN and ISGs. York’s study was performed
mainly in the context of metabolic reprogramming, whereas our study only focused on the
microbe-induced activation of the STING signaling. In our experimental setting, we have sup-
plied enough FBS medium to ensure that the cells will not experience metabolic reprogram-
ming even when knocking down SCAP. In contrast, the indicated paper mainly addressed the
metabolic reprogramming-induced expression of IFN-f and ISGs, which broadly affects the
overall cell metabolism and dramatically influences the basal expression of IFN-f. Although
the observation is interesting, we wondered if this cell model directly or indirectly activates the
STING signaling, which needs further exploration in future experiments. For example, it is
intriguing to address whether perturbing metabolism will lead to the dimerization and translo-
cation of STING to the perinuclear microsome, whether this activation is dependent on cGAS,
whether SCAP and IRF3 will congregate in this scenery. We speculate that different stimulating
models could potentially lead to the observed discrepancies.

In addition, we extensively employed HSV-1 and Listeria Monocytogenes as effective stimuli
to address the activation of STING signaling, which are well characterized microbes in the rele-
vant fields. As far as we know, MHV-68 is scarcely employed in elucidating the STING signal-
ing pathway. We do not know why the indicated study did not use HSV-1 or Listeria
Monocytogenes. However, MHV-68 could potentially trigger the cGAS-STING signaling [38],
and it was recently reported that some RNA viruses could also activate IRF3 in a STING-
dependent manner [32]. We speculate that the different species of viruses might employ subtly
different mechanisms to engage the activation of the STING signaling.

Functional analyses firmly established the essential role of SCAP in mediating the STING
signaling. The phosphorylation of IRF3 stimulated by cytosolic DNAs is markedly impaired
when knocking down the endogenous SCAP. Silencing the endogenous SCAP resulted in the
impairment of the STING-mediated induction of IFNs and ISGs, and this effect is reversed by
exogenously expressing siRNA-resistant SCAP. Silencing of Scap also impairs IFN-f protein
production upon microbe infection, thus crippling the host antimicrobial responses against
HSV-1 and Listeria monocytogenes. In vivo ‘knockdown’ of Scap induces less interferons and
accelerates the death rate of the mice upon the HSV-1 infection.

We observed that HSV-1 infection triggers both SCAP and STING to traffic from the ER,
via Golgi, to perinuclear microsome. Given that SCAP chaperons SREBP from ER to Golgi via
the COP-II vesicle machinery, we had supposed that the translocation of STING is dependent
on SCAP. However, knockdown of Scap did not affect the translocation of STING. Instead, the
SCAP translocation is dependent on STING, but not on MAVS or TBKI1, as evidenced in the
corresponding knockout MEFs. The autophagy-related proteins (Atg9a and LC3) were impli-
cated to modulate STING translocation [26]. It remains to address whether the autophagy pro-
teins could modulate the action of SCAP.

Our study further provides a possible mechanism of regulating the STING signaling path-
way by SCAP, which York et al. did not address. SCAP interacts individually with either
STING or IRF3, via its N-terminal trans-membrane domains or C-terminal cytosolic domain
respectively. The association between STING and IRF3 was respectively enhanced or impaired
in response to HSV-1 stimulation, in the presence or absence of SCAP. Mis-targeting of SCAP,
to whole cell, mitochondria or nucleus, resulted in its failure to bridge STING to IRF3. Notably,
IRF3 also congregates to the perinuclear microsome after HSV-1 infection; and this congrega-
tion is dependent on SCAP, but not on TBK1. However, it is technologically challenging to
demonstrate whether SCAP recruits IRF3 on ER or on perinuclear microsome. Recently,
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Dobbs et al. [39] have suggested that STING is retained on ER by some unknown inhibitor(s)
in unstimulated cells. We think that such inhibitor(s) could not only block the translocation of
STING/SCAP but also mask the IRF3 binding site on SCAP. Microbial infection releases this
inhibition and triggers the translocation of STING and SCAP. Consequently, SCAP could
recruit IRF3 to the STING signalosome. It is conceptually possible that IRF3 is blocked access
to SCAP on ER by some “safe mechanism”, and SCAP on the perinuclear microsome is
exposed to IRF3.

We had proposed an evolutionary necessity for assembling the STING signalosome on ER
[27]. Arguably, the current characterization of SCAP further substantiates this perspective. We
speculate that SCAP was dedicated primarily to mediate the activation of SREBP. Host innate
immunity adapted it, along with AMFR and INSIGI, to integrate into the later-evolved STING
signalosome. We predict that future studies will uncover more proteins essential for innate
immunity that modulate the ERAD and/or Lipid/Glucose metabolism on ER. Deeper func-
tional links between innate immunity and metabolism are expected to be displayed on the
interface of ER.

Taken together, this study identified SCAP as the long-sought-after adaptor for recruiting
IRF3 onto the STING signalosome. All the evidence favors the STING as an assembly platform,
and the translocation of STING is the major cause of the other accompanying congregations. It
remains to address what drives the STING translocation and whether the COP-II vesicle is
required. The microenvironment of Golgi or microsome is probably favorable to the activation
of TBK1 and IRF3. The underlying mechanisms remain elusive.

Materials and Methods
Ethics statement

C57BL/6 mice 6-8 weeks old were purchased from the Shanghai SLAC Laboratory Animal
Company. The mice were maintained under specific pathogen-free (SPF) conditions at the
Shanghai Institute of Biochemistry and Cell Biology. Animal experiments were carried out in
strict accordance with the regulations in the Guide for the Care and Use of Laboratory Animals
issued by the Ministry of Science and Technology of the People’s Republic of China. The proto-
col and the procedures for mice study were approved by the Institutional Animal Care and Use
Committee of the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of
Sciences (Permit Number: IBCB0027 Rev2).

Plasmids

SCAP, STING, TBKI, IRF3, INSIG1, cGAS, p65 were obtained by PCR from the thymus
cDNA library and subsequently inserted into indicated mammalian expression vectors. The
reporter plasmids (IFN-f-luciferase, pTK-Renilla) have been described previously [40]. The
SCAP siRNA-resistant form was generated with silent mutations introduced into the siRNA
target sequence. All point mutations were introduced by using a QuickChange XL site-directed
mutagenesis method (Stratagene). All constructs were confirmed by sequencing.

Antibodies and reagents

The polyclonal antibody against STING was generated by immunizing rabbit with recombi-
nant human STING (221-379 aa). The goat polyclonal antibody against SCAP was from Santa
Cruz Biotechnology. The rabbit polyclonal antibody against SCAP was a gift from Dr. Xiongz-
hong Ruan (Chongqing medical university). hemagglutinin (HA), Myc, Ub, SREBP1/2 and
IRF3 antibody were purchased from Santa Cruz Biotechnology. TBK1 antibody was from
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abcam. Tom20 antibody was from BD Biosciences. Flag and B-actin antibodies were obtained
from Sigma-Aldrich. Phospho-IRF3 and Phospho-TBK1 antibody was from Cell Signaling
Technology.

Poly(dA:dT) and lipopolysaccharide (LPS) was obtained from Sigma-Aldrich. Poly(I:C) was
purchased from Invitrogen. Wild type HSV-1 and HSV-1-GFP were kindly provided by Dr.
Wentao Qiao (Nankai University) and Dr. Chunfu Zheng (Suzhou University), respectively.
Listeria monocytogenes (10403 serotype) was a gift from Dr. Youcun Qian (Institute of Health
Sciences). TBK1 kinase inhibitor BX795 was purchased from InvivoGen. ISD (Interferon stim-
ulatory DNA) was prepared by annealing equimolar amounts of sense and antisense DNA oli-
gonucleotides at 95°C for 10 min before cooling to room temperature. Oligonucleotides used
are as follows:

ISD(sense), 5'-TAC AGA TCT ACT AGT GAT CTA TGA CTG ATC TGT ACA TGA TCT
ACA-3;

ISD (antisense), 5-TGT AGA TCA TGT ACA GAT CAG TCA TAG ATC ACT AGT AGA
TCT GTA-3'.

Cell culture and transfection

HEK?293, HEK293T and MEEF cells were obtained from the American Type Culture Collection
(ATCC). The procedure for generating BMDM:s (bone marrow-derived macrophage) has been
described previously [41]. HEK293, HEK293T, Sting”” MEF, Tbk1”~ MEF and Mavs”’~ MEF
cells were cultured in DMEM medium (Invitrogen) plus 10% FBS and 1% penicillin-strepto-
mycin (Invitrogen). Transfection was performed with Lipofectamine 2000 (Invitrogen) accord-
ing to the manufacturer’s instructions.

siRNA

The siRNAs duplexes were synthesized from GenePharma. The sequences of siRNAs are
shown as follows:

SCAP siRNA1302, 5'-CCU ACC UUG UGG UGG UUA UTT-3;

Scap siRNA 3060, 5'-GCT TAG AGC TGC AAG GCA ATT-3;

Scap siRNA 3465, 5-GAC UCG UGU UGC CUC UUU ATT-3/;

Insigl, 5'-GCA GUG AGU UGG AGG AAG ATT-3;

Srebpl, 5'-GGU CUU CUA UCA AUG ACA ATT-3;

Tom20, 5-CAA GUU ACC UGA UUU AAA A-3

The nonspecific siRNA (N.C.), 5-UUC UCC GAA CGU GUC ACG UTT-3'.

Immunofluorescence and confocal microscopy

MEEF cells were grown on coverslips in 12-well plate. After treatment with or without HSV-1,
coverslips with the cells were fixed for 15 minutes with 4% formaldehyde in PBS and permeabi-
lized in 0.25% Triton X-100 in PBS for another 15 minutes, following by using 5% BSA in PBS
for 1 hour. Then, cells were stained with indicated primary antibodies followed by incubation
with fluorescent-conjugated secondary antibodies. The nuclei were counterstained with DAPI
(Sigma-Aldrich). For mitochondria staining, living cells were incubated with 300 nM Mito
Tracker Red (Invitrogen) for 30 min at 37°C. Slides were mounted with fluorescent mounting
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medium (Dako). Images were captured using a confocal microscope (TCS SP2 ACBS; Leica)
with a x63 (numerical aperture 1.4) oil objective.

Immunoprecipitation assay and immunoblot analysis

For immunoprecipitation assay, cells extracts were prepared by using lysis buffer (50 mM Tris-
HCI pH 7.4, 150 mM NaCl, 0.5% Triton X-100, 1mM EDTA) supplemented with a protease
inhibitor cocktail (Roche). Lysate were incubated with appropriate antibodies for 4 hours to
overnight at 4°C before adding protein A/G agarose beads for another 2 hours. The beads were
washed three times with the lysis buffer and eluted with SDS-loading buffer by boiling for 5
minutes.

For immunoblot analysis, the immunoprecipitates samples were subjected to SDS-PAGE.
The separated proteins were then electrically transferred to a PVDF membrane (Millipore).
Immunoblotting was probed with indicated primary and secondary antibodies. The protein
bands were visualized by using a SuperSignal West Pico chemiluminescence ECL kit (Pierce).

Luciferase reporter assays

Luciferase reporter assays were performed as described previously [42].

Real-time RT-PCR

Isolation of Total RNA from indicated cells was performed by using TRIzol reagent (Invitrogen)
according to the manufacturer’s instructions. Reverse transcription of purified RNA was per-
formed using oligo (dT) primers. The quantification of indicated gene transcripts were performed
by real-time PCR with using FastStart Universal SYBR GREEN MASTER MIX (Roche), and
Gapdh served as an internal control. PCR primers of indicated target genes are shown as below:

Gapdh: sense (5'-GAA GGG CTC ATG ACC ACA GT-3),
antisense (5'-GGA TGC AGG GAT GAT GTT CT-3');
Ifnb: sense (5'- AGA TCA ACC TCA CCT ACA GG-3'),
antisense (5'-TCA GAA ACA CTG TCT GCT GG-3');
Ifna4: sense (5'- ACC CAC AGC CCA GAG AGT GAC C-3),
antisense (5'-AGG CCC TCT TGT TCC CGA GGT-3');
Cxcl10: sense (5'- CGA TGA CGG GCC AGT GAG AAT G-3/),
antisense (5'- TCA ACA CGT GGG CAG GAT AGG CT -3');
Scap: sense (5'-TGC TGA AGC TCC CCT TGC CT-3),
antisense (5'-CAG AAG ATT TCT GTG CCA GG-3');
Chop: sense (5'-CTG GAA GCC TGG TAT GAG GAT-3),
antisense (5'-CAG GGT CAA GAG TAG TGA AGG T-3');
Erdj4: sense (5'-ATA AAA GCC CTG ATG CTG AAG C-3'),
antisense (5'-GCC ATT GGT AAA AGC ACT GTGT -3');
sXbp-1: sense (5- CTG AGT CCG AAT CAG GTG CAG-3'),
antisense (5'- GTC CAT GGG AAG ATG TTC TGG -3);
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tXbp-1: sense (5'- TGG CCG GGT CTG CTG AGT CCG -3'),
antisense (5'- GTC CAT GGG AAG ATG TTC TGG -3').

Cell fractionation

Cell fraction was performed as described previously [23]. Cells were harvested by centrifuga-
tion at 1,000g for 10 min. The pellet was resuspended in sucrose homogenization buffer (0.25
M sucrose, 10 mM HEPES, pH 7.4), and cells were lysed by using a dounce homogenizer.
Lysed cells were centrifuged at 500g for 10 min, and the supernatant was collected. The super-
natant was then centrifuged at 10,300g for 10 min. The supernatant was crude microsomal
(microsome and cytosol), and the pellet was crude mitochondrial (MAM and mitochondria).
The crude microsomal fraction was subjected to ultracentrifugation at 100,000g for 60 min.
The pellet was microsome fraction.

Measurement of cytokines

Concentrations of the cytokines in culture supernatants were measured by ELISA kit (PBL Bio-
medical Laboratories) according to the manufacturer’s instructions.

In vivo shRNA transfection and viral infection

The shRNA was delivered into C57BL/6 mice with JetPEI transfection reagent (PolyPlus
Transfection, San Marcos, CA) according to the manufacturer’s instructions [43,44]. The
shRNA plasmid and JetPEI was each diluted into 100ml of 5% glucose, then mixed and incu-
bated for fifteen minutes at room temperature at a final N/P ratio of 8. Finally, the mixture
(200ml) was injected into each mouse via tail vein.

For analysis of in vivo ‘knockdown’ efficiency, mice were euthanized after forty-eight hours
of in vivo shRNA transfection. The mRNA or protein of SCAP was respectively checked in leu-
kocyte from blood or extracts from livers.

The control or Scap ‘knockdown’ mice were infected intravenously with HSV-1. The viabil-
ity of the infected mice was monitored for 7 days. The mouse serum was collected at six hours
after infection to measure cytokine IFN production by ELISA.

The shRNA was designed targeting mouse Scap 5'- GCT TAG AGC TGC AAG GCA A -3/
sequence.

Statistics

Student’s t-test was used for statistical analysis of two independent treatments. Mouse survival
curve and statistics were analyzed with log-rank (Mantel-Cox) test. P values of less than 0.05
were considered to be statistically significant.

Accession numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession numbers for the genes and
gene products discussed in this paper are:

SCAP (NM_012235.2, NP_036367.2); STING (NM_198282.3, NP_938023.1); TBK1
(NM_013254.3, NP_037386.1); IRF3 (NM_001197122.1, NP_001184051.1); INSIG1
(NM_005542.4, NP_005533.2); cGAS (NM_138441.2, NP_612450.2); p65 (NM_021975.3,
NP_068810.3).
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Supporting Information

S1 Fig. Silencing of SCAP displayed no effect on the ER stress signaling. The nonspecific
control (N.C.) or Scap siRNA were transfected into MEF cells. Induction of Chop, Erdj4, spliced
(s) and total (t) Xbp-1 mRNAs was measured by quantitative PCR after TG (thapsigargin)
treatment. Data are presented as means + SD from three independent experiments. *p < 0.05;
“*p <001

(TIF)

S2 Fig. Ectopic expression of SCAP could not activate IFN-B-luciferase reporters. (A and B)
The indicated plasmids were transfected into HEK293 cells (A) or MEF cells (B) together with
IFN-B-luciferase and pTK-Renilla reporter plasmids. Twenty-four hours after transfection,
luciferase assays were performed.

(TIF)

S3 Fig. SCAP modulates IRF3 activation. (A) The indicated siRNA were transfected into
HEK293 cells together with pRDIII-I-luciferase and pTK-Renilla reporter plasmids. Twenty-
four hours after transfection, cells were transfected again with cGAS, STING, TBK1 or IRF3-
5D for twenty-four hours before luciferase assays were performed. (B and C) The nonspecific
control (N.C.) or Scap siRNA were transfected into MEF cells. Forty-eight hours after transfec-
tion, cells were stimulated with poly(dA:dT) (B) or ISD (C) for indicated time periods, and cell
extracts were analyzed for TBK1 phosphorylation. (D) HEK293T cells were transfected with N.
C. or SCAP siRNA. Twenty-four hours later, Flag-tagged STING and Myc-tagged AMFR along
with Ub were transfected into the knockdown cells. Cell lysates were subjected to immunopre-
cipitation with an anti-Flag antibody and immunoblotted with indicated antibodies.(E and F)
MEF cells were transfected with N.C. or Scap siRNA. After stimulation with HSV-1, cell lysates
were immunoprecipitated with an anti-STING antibody or normal 1gG and immunoblotted
with indicated antibodies.(G) MEEF cells were transfected with N.C. or Scap siRNA. After stim-
ulation with HSV-1, MEF cells were immunostained with an anti-TBK1 antibody and imaged
by confocal microscopy. Scale bars represent 25um. Data from (A) are presented as

means * SD from three independent experiments. *p < 0.05; **p < 0.01.

(TTF)

S4 Fig. Silencing of SCAP markedly impaired the dimerization and nuclear translocation
of IRF3. (A) The nonspecific control (N.C.), Scap siRNA or Tom20 siRNA were transfected
into MEF cells. Forty-eight hours after transfection, cells were stimulated with ISD, and cell
extracts were analyzed for IRF3 dimerization by native PAGE. (B) The nonspecific control (N.
C.), Scap siRNA or Tom20 siRNA were transfected into MEF cells. Forty-eight hours after
transfection, cells treated with ISD, were stained with the antibody against IRF3, and imaged
by confocal microscopy. Scale bars represent 50 pm.

(TIF)

S5 Fig. SCAP co-localized with STING and IRF3 upon HSV-1 infection. (A and B) MEF
cells were infected with HSV-1 and then immunostained with indicated antibodies and imaged
by confocal microscopy. Scale bars represent 25um. (C) Immunoblot analysis of fractionation
experiments of uninfected or HSV-linfected MEFs. MAM, mitochondria-associated ER mem-
brane.

(TIF)

S6 Fig. SCAP promotes IRF3 binding to STING. (A) Schematic diagram of SCAP and its
truncation mutants (upper panel). SCAP-Myc or its mutants were individually transfected into
HEK293T cells along with Flag-IRF3. The cell lysates were immunoprecipitated with an anti-
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Myc antibody and then immunoblotted with the indicated antibodies (lower panel). (B) Sche-
matic diagram of IRF3 and its truncation mutants (upper panel). Flag-IRF3 or its mutants
were individually transfected into HEK293T cells along with SCAP-Myc. The cell lysates were
immunoprecipitated with an anti-Myc antibody and then immunoblotted with indicated anti-
bodies (lower panel). (C) MEF cells were transfected with N.C. or Scap siRNA. After stimula-
tion with HSV-1, cell lysates were immunoprecipitated with an anti-STING antibody or
normal IgG and immunoblotted with indicated antibodies. (D) WT or sting-/- MEF were
infected with HSV-1, and the cell lysate were immunoprecipitated with an anti-IRF3 antibody
or normal IgG and immunoblotted with indicated antibodies.

(TTF)

S7 Fig. NLS-SCAP failed to interact with IRF3. Myc-tagged SCAP or its mutants was trans-
tected into HEK293T cells along with Flag-tagged IRF3. Twenty-four hours after transfection,
cell lysates were immunoprecipitated with an anti-Myc antibody, and then immunoblotted
with the indicated antibodies.

(TIF)

S8 Fig. Loss of SCAP has no effect on the replication of NDV-GFP. NDV-GFP replication in
HEK?293 cells transfected with N.C. or SCAP siRNA was visualized by fluorescence microscopy.
(TIF)

S9 Fig. STING signaling is physically and functionally distinct from SREBP signaling. (A)
HEK293T cells were transfected with the negative control (N.C.) or Srebp1 siRNA. Cell lysates
were immunoblotted with the indicated antibodies. (B and C) The nonspecific control (N.C.) or
Srebp1 siRNA were transfected into MEF cells. Forty-eight hours after transfection, cells were
stimulated with ISD (B) or infected with HSV-1 (C). Induction of Ifnb and Ifna4 mRNA was
measured by quantitative PCR. (D) Immunofluorescence microscopy of SREBP1 in MEFs
infected with or without HSV-1. Scale bars represent 25um. (E) MEF cells were transfected with
N.C. or Scap siRNA and then rescued with the indicated siRNA-resistant SCAP constructs. After
ISD stimulation, induction of Ifnb and Ifna4 mRNA was measured by gPCR. (F) MEF cells were
grown in DMEM with or without FBS for 8 hours, and stimulated with or without HSV-1, respec-
tively. Induction of Ifnb mRNA was measured by quantitative PCR. Data from (B), (C), (E) and
(F) are presented as means * SD from three independent experiments. *p < 0.05; **p < 0.01.
(TIF)
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