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A deep siamese neural network improves
metagenome-assembled genomes in microbiome
datasets across different environments

Shaojun Pan® 2, Chengkai Zhu'23, Xing-Ming Zhao® 24> & Luis Pedro Coelho® "2*

Metagenomic binning is the step in building metagenome-assembled genomes (MAGs)
when sequences predicted to originate from the same genome are automatically grouped
together. The most widely-used methods for binning are reference-independent, operating de
novo and enable the recovery of genomes from previously unsampled clades. However, they
do not leverage the knowledge in existing databases. Here, we introduce SemiBin, an open
source tool that uses deep siamese neural networks to implement a semi-supervised
approach, i.e. SemiBin exploits the information in reference genomes, while retaining the
capability of reconstructing high-quality bins that are outside the reference dataset. Using
simulated and real microbiome datasets from several different habitats from GMGCv1
(Global Microbial Gene Catalog), including the human gut, non-human guts, and environ-
mental habitats (ocean and soil), we show that SemiBin outperforms existing state-of-the-art
binning methods. In particular, compared to other methods, SemiBin returns more high-
quality bins with larger taxonomic diversity, including more distinct genera and species.
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ARTICLE

etagenomic sequencing is commonly used to study

microorganisms in the environment without a need for

culturing! 4. Computational analysis of metagenomic
data has enabled the construction of large compendia of
metagenome-assembled genomes (MAGs) from human-
associated®~’, animal-associated®, and environmental®!? sam-
ples. These have been used to discover thousands of new human
microbiome species spanning different human body sites>7,
provide a genomic catalog from several habitats!!, and recon-
struct thousands of nucleocytoplasmic large DNA viruses!2.

The standard approach, which we follow here, is to assemble
quality-controlled short reads into longer contigs, followed by
binning, i.e., grouping the contigs into “bins" such that each bin is
predicted to contain only contigs from the same genome. An
alternative pipeline consists of building a gene catalog!3, followed
by grouping the genes in the catalog using co-abundance!*. This
results in collections of genes representing a metagenomic species
and methods have been extended to recover both core and
accessory genes'®. In this work, we focus on binning contigs
which have been assembled from short reads.

Binning methods can be divided into two categories, depending
on whether they rely on pre-existing genomes (reference-depen-
dent) or operate de novo (reference-independent). Reference-
dependent methods are limited to discovering novel genomes
from previously-known species, while reference-independent
ones can recover completely novel species and even novel
phylal6:17.

Most reference-independent methods are completely unsu-
pervised, such as Canopy!4, Metabat2!8, Maxbin2!?, VAMB?20,
and COCACOLA?!, relying on sequence features (e.g., k-mer
frequencies) and co-abundance (coverage of the reads mapping to
the contig!4), which are assumed to vary more between than
within genomes. One exception is SolidBin?2, which uses a semi-
supervised approach?3. In particular, SolidBin takes advantage of
must-link and cannot-link constraints between pairs of contigs: a
must-link constraint indicates that two contigs should be binned
together, while a cannot-link one indicates that they should not
(despite their name, these constraints are not strictly followed by
the algorithm). SolidBin generates these constraints by alignment
to existing genomes, marking pairs of contigs that align to the
same species as must-link, while pairs that align to different
genera are considered as cannot-link. Generating these con-
straints by alignment to reference genomes is, however, subject to
both noise (from annotation error) and sampling bias in genome
databases (see Supplementary Text).

Here, we introduce SemiBin (Semi-supervised metagenomic
Binning), a binning method based on contrastive learning with
deep siamese neural networks to take advantage of must-link and
cannot-link constraints®* (see Fig. 1). We first used simulated
data from the Critical Assessment of Metagenome Interpretation
(CAMI)2>:26, to evaluate SemiBin in a setting where the expected
genomes are known. Additionally, we used metagenomes from
four different habitats (human gut, dog gut, marine, and soil
microbiomes) where we relied on automated tools to estimate the
quality of the results. Although the downstream use of the bins
may determine the level of quality that is optimal for each par-
ticular study, as SemiBin can be generically applied, we focused
on the number of high-quality bins that may be considered
MAGs?7. Overall, SemiBin outperformed other tools in all con-
ditions tested.

Results

SemiBin is a binning tool based on deep learning. SemiBin is a
tool for metagenomic binning at contig level which uses deep
contrastive learning (see Fig. 1, Supplementary Figs. 1 and 2). It

relies on the use of must-link and cannot-link constraints
between contigs. Cannot-link constraints are derived from contig
annotations to the Genome Taxonomy Database (GTDB)?8 as we
observed that this could be performed robustly (see Supplemen-
tary Text and Supplementary Table 2). Must-link constraints,
however, are generated by breaking up longer contigs artificially.
For each contig, SemiBin computes k-mer frequencies or k-mer
frequencies and abundance (depending on the number of samples
used, see Methods). A deep siamese neural network?* (ie., a
network consisting of two identical subnetworks, so that pairs of
inputs are processed in parallel) is then used to transform the
original k-mer and abundance features into a transformed space
(the embedded features, see Methods). SemiBin then generates a
sparse graph from these embedded features and groups the
contigs into bins with the Infomap?® community detection
algorithm. After that, SemiBin reclusters bins whose number of
single-copy genes is greater than one using the weighted k-means
algorithm to get the final binning results (see Methods).

Studies often collect multiple related metagenomes, and there
have been different proposals on how to handle binning in this
context: single-sample (where each metagenome is handled
independently), co-assembly (where different metagenomes are
pooled together), or multi-sample (where resulting bins are
sample-specific, but abundance information is aggregated across
samples)?0. All three modes are supported by SemiBin.

Semi-supervised learning improves binning results. To show
the impact of semi-supervised learning in SemiBin, we compared
the proposed method to the same pipeline without the deep
learning feature embedding step, an approach we termed as
NoSemi (see Methods). We evaluated the performance on five
simulated datasets from CAMI I and CAMI 112526 (the Critical
Assessment of Metagenome Interpretation). The CAMI I datasets
comprise different numbers of organisms including strain varia-
tion with low (40 genomes, 1 sample), medium (132 genomes,
2 samples), and high (596 genomes, 5 samples) complexity and
were used to evaluate single-sample (low complexity) and co-
assembly (medium and high complexity) binning. CAMI II
datasets mimic different human body sites and contain multiple
simulated metagenomes from the same environments, thus
allowing us to test multi-sample binning.

SemiBin could reconstruct 6.7-65.0% more distinct, high-
quality bins compared to this non-embedding version in the five
datasets, and the improvement was especially pronounced in
complex environments (see Supplementary Figs. 3 and 4).

To evaluate the learning ability of the siamese neural network,
namely that it has the ability to learn the underlying genome
structure from the must-link and cannot-link constraints, not just
reproduce its inputs, we compared the full pipeline to NoSemi
(no constraints are used) as well as SemiBin_m, SemiBin_c, and
SemiBin_mc which directly use the must-link and cannot-link
constraints to generate the graph without the semi-supervised
learning step (see Methods). The complete SemiBin pipeline
performed similarly or better (average 12.4% more high-quality
bins) in the low and medium complexity datasets and showed
large improvements (average 34.6% more high-quality bins) in
the high complexity dataset (see Supplementary Fig. 5) compared
to versions that directly use the must-link and cannot-link
constraints. SemiBin could also reconstruct an average 7.0% and
16.0% more distinct high-quality strains in Skin and Oral
datasets, respectively (see Supplementary Fig. 4).

These results showed that the siamese neural network had the
ability to learn the underlying structure of the environment from
the must-link and cannot-link constraints and could improve the
binning results.
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Fig. 1 Overview of the SemiBin pipeline. a generate must-link constraints by breaking up contigs artificially and cannot-link constraints based on contig
taxonomic annotations (i.e. GTDB reference genomes). b calculate abundance estimates (average and variance of the number of reads per base) and k-mer
frequency of every contig. ¢ train siamese neural network using the cannot-link and must-link constraints as inputs (k-mer frequencies and abundance
features). The learned embedding will be the features from the output layer of the neural network and be used in step e for binning. d Based on the
assumption that the number of reads per base obeys a normal distribution, calculate the Kullback-Leibler divergence of the normal distributions of two
contigs. SemiBin uses this value as the abundance similarity when the number of samples used is smaller than 5. e generate a sparse graph with the
embedded distance and abundance similarity between contigs and uses the Infomap algorithm to obtain the preliminary bins. f SemiBin uses weighted k-
means to recluster contigs in the bins whose mean number of single-copy genes is greater than one to get the final bins.

SemiBin outperforms existing binners in simulated data sets.
To compare SemiBin to existing binners, we benchmarked
SemiBin, Metabat2!8, Maxbin2!®, VAMB?), SolidBin?2, and
COCACOLA?! on five simulated datasets from CAMI I and
CAMI I1%>26 (see Methods) with single-sample, co-assembly,
and multi-sample binning (see Methods).

In the CAMI I datasets, SemiBin was able to reconstruct the
highest number of high-quality bins (completeness >90% and
contamination <5%?27) and achieved the best Fl-score (see Fig. 2a,
Supplementary Figs. 6 and 7). SemiBin reconstructed 17.4%, 11.4%
and 11.4% more high-quality bins compared to the second-highest
result in the low, medium, and high complexity datasets respectively.
Since metagenomic binning is particularly challenging when multiple
strains from the same species are present’), we evaluated the
performance of the methods on common strains (defined as genomes
for which another genome with at least 95% average nucleotide
identity (ANTI) is present?®) in the three datasets. SemiBin was able to
reconstruct 11.1%, 18.5%, and 35.3% more high-quality common
strains than the second-best alternative (see Supplementary Fig. 7).

In the CAMI 1II datasets, we compared SemiBin to VAMB and
Metabat2 on the Skin (610 genomes, 10 samples) and Oral (799
genomes, 10 samples) datasets, as previous benchmarking studies
had indicated their best performance on these?). We bench-
marked the original Metabat2 and an adapted version that
implements multi-sample binning (see Methods). This adapta-
tion, however, led only to modest improvements (see Supple-
mentary Fig. 8a). Compared to VAMB (the second-best binner),
SemiBin could reconstruct 44.3% and 24.8% more distinct high-
quality strains, 34.9% and 22.7% more distinct species, and 23.7%
and 14.3% more distinct genera in the Skin and Oral datasets
respectively (see Fig. 2b). We evaluated the behavior of the
methods on multi-strain species and observed that SemiBin could
reconstruct more high-quality distinct strains across almost all
ANI intervals, even when very similar genomes (ANI >99.5%) are
present (see Supplementary Fig. 9).

SemiBin outperforms existing binners in real datasets. To test
SemiBin on real data, we applied it to datasets from four different
environments: human gut (n=82)3!, non-human animal-asso-
ciated (dog gut, n = 129)32, ocean surface samples from the Tara
Oceans project®> (n=109), and soil** (n=101). In large-scale
metagenomic analyses, single-sample binning is widely used (see
Supplementary Table 3) because samples can be trivially pro-
cessed in parallel. Here, we compared SemiBin to Maxbin2,
VAMB, and Metabat2 with single-sample binning. Additionally,
because Nissen et al.20 have demonstrated the effectiveness of
multi-sample binning in real projects, we compared SemiBin with
VAMB in this mode.

Because the actual genomes are unknown in real data, we relied
on CheckM3> and GUNC3® to evaluate the quality of the
recovered bins (see Methods). In all cases, SemiBin recovered
more high-quality bins than the alternatives considered (see
Fig. 3b and Supplementary Fig. 10). In the human gut, dog gut,
ocean, and soil datasets, SemiBin reconstructed 1497, 2415, 446,
and 95 high-quality bins with single-sample binning, significantly
outperforming Metabat2 with an increase of 437 (41.2%), 1011
(72.0%), 146 (48.7%), and 36 (61.0%), respectively. For multi-
sample binning, SemiBin could reconstruct 17.5%, 11.0%, 30.7%,
and 171.4% more high-quality bins than VAMB. In the human
gut, ocean, and soil datasets, SemiBin with single-sample binning
performed better than VAMB with multi-sample binning, which
requires more computational time for short-read mapping and
cannot be performed in parallel. We annotated these high-quality
bins from multi-sample binning with GTDB-Tk?”. SemiBin could
reconstruct more distinct taxa when compared to VAMB in the
human gut, ocean, and soil datasets, performing similarly in the
dog gut dataset (see Supplementary Fig. 11).

Generating the cannot-link constraints and training the models
comes at a substantial computational cost. For the human gut, an
average sample required ca. 276 minutes on a CPU (a graphical
unit, GPU, can reduce the time to 129 minutes), with RAM usage
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Fig. 2 SemiBin outperformed other binners in simulated datasets with single-sample, co-assembly, and multi-sample binning. a In CAMI | simulated
datasets, SemiBin returned more high-quality bins. Shown are the numbers of reconstructed genomes per method with varying completeness and
contamination <5% (methods shown, top to bottom: SemiBin, Metabat2, Maxbin2, SolidBin-coalign, VAMB, SolidBin-naive, SolidBin-CL, SolidBin-SFS-CL,
and COCACOLA). b SemiBin reconstructed a larger number of distinct high-quality genera, species, and strains in the CAMI Il Skin and Oral datasets
compared to either Metabat2 or VAMB. A high-quality strain is considered to have been reconstructed if any bin contains the strain with completeness
>90% and contamination <5% (see Methods). If at least one high-quality strain is reconstructed for a particular genus or species, then those are
considered to have been reconstructed. € Semi-supervised embedding separates contigs from different genomes. Shown is a two-dimensional visualization
of embedding of the low complexity dataset from CAMI |, with contigs colored by their original genome (using t-SNE, as implemented in scikit-learn,
parameters: perplexity = 50, init = "pca"’’). Source data are provided as a Source Data file.

peaking at 38 GB (see Supplementary Tables 5 and 6). By default,
SemiBin learns a new embedding model for each sample, which
can require a large computational expenditure for large projects.
Therefore, for single-sample binning, the possibility of reusing a
learned model from one sample to another (model transfer) was
tested with encouraging results (see Supplementary Fig. 12 and
Supplementary Text). However, there was still a loss in the
number of high-quality bins recovered compared to learning a
new model for every sample. To overcome this, we built models
from multiple samples, an approach we termed SemiBin(pre-
train). Using a pretrained model, again in the human gut, reduces
the per-sample time to 7.2 minutes and peak memory to 4.4 GB
(see Supplementary Tables 5 and 6).

Furthermore, if a large enough number of samples is used in
pretraining (see Methods), SemiBin(pretrain) can reconstruct
more high-quality bins and outperformed Metabat2 in all cases
(see Fig. 3a). In the human gut and dog gut datasets,
SemiBin(pretrain) trained on more than three samples out-
performed the original SemiBin and performed at a similar level
in the ocean and soil datasets. As pretraining is performed only
once and applying the model to other samples is computationally
fast, SemiBin(pretrain) can be used in large-scale metagenomic
analyses (see Supplementary Tables 5 and 6).

For every environment, we chose the pretrained model that
performed best to include in the benchmark (for human gut,
dog gut and ocean datasets, a model trained from 20 samples;

for soil dataset, a model trained from 15 samples; see Fig. 3).
Compared to the original SemiBin, SemiBin(pretrain) could
reconstruct 203 (13.6%), 382 (15.8%), and 8 (8.4%) more high-
quality bins in human, dog gut and soil datasets and achieved
similar results in the ocean dataset. When compared to
Metabat2, SemiBin(pretrain) could reconstruct 640 (60.4%),
1393 (99.2%), 144 (48.0%) and 44 (74.6%) more high-quality
bins. SemiBin (pretrain) also performed significantly better
than Metabat2 when comparing high-quality bins on a sample-
by-sample basis (Wilcoxon signed-rank test, two-sided,
P=3687x10"15 (n=82), P=5987x10"23 (n=129),
P=7.232x10"12 (n=109), P=4.434%x 10797 (n=101); see
Fig. 3b).

We used Mash38 to identify instances when SemiBin(pretrain)
and Metabat2 reconstructed the same genome. Most Metabat2-
generated high-quality bins corresponded to high-quality bins
generated by SemiBin(pretrain). SemiBin(pretrain) results further
contained many high-quality bins which corresponded to lower-
quality (or absent) bins in the Metabat2 results, the inverse case
(Metabat2 generating a higher-quality version of a SemiBin(pre-
train) bin) being relatively rare. For genomes that were recovered
at high-quality by both binners, the SemiBin(pretrain) bins had,
on average, higher completeness and Fl-score, with only a
minimal increase in contamination in the human gut, dog gut,
and ocean datasets (not statistically significant in the human and
dog gut datasets, see Fig. 4 and Supplementary Fig. 13).
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Fig. 3 SemiBin outperformed other binners in real datasets. a Number of high-quality bins (automatically evaluated using CheckM and GUNC, see
Methods) using a pretrained model with different numbers of samples (per-sample SemiBin and Metabat2 shown for comparison). Data are presented as
mean and range (the maximum datapoint minus the minimum) from the five runs. b SemiBin(pretrain) produced more high-quality bins compared to
Maxbin2, VAMB and Metabat?2 in the human gut (n =82 samples), dog gut (n =129 samples), ocean (n =109 samples) and soil (n =101 samples) data
sets (left). When considering the results in each sample (right), SemiBin(pretrain) outperformed other single-sample binners in almost every sample. In the
dog gut dataset, SemiBin(pretrain) always produced more high-quality bins than any other per-sample method. In the human gut, ocean, and soil data sets,
other methods occasionally outperformed SemiBin(pretrain) (observed for two human gut samples, nine ocean samples, and five soil samples), but the
difference is never large (at most, two extra high-quality bins were produced). Results of VAMB in multi-sample binning mode are compared to
SemiBin(multi), with SemiBin(multi) producing more high-quality bins overall (although not in every sample). P-values shown are from a Wilcoxon signed-
rank test (two-sided) on the counts for each sample. Source data are provided as a Source Data file.

We annotated the high-quality bins generated by SemiBin(pre-
train) and Metabat2 with GTDB-Tk3’. Bins from SemiBin(pre-
train) represented a larger taxonomic diversity at all levels (see
Supplementary Fig. 14). Additionally, SemiBin(pretrain) was able
to recover more genomes from both known and unknown species
(see Supplementary Fig. 15), validating the ability of the deep
learning model to extract information from the background data
while being capable of going beyond it.

To further test the generalization ability of the learned model, we
applied the pretrained model from the human gut dataset to two
human gut datasets not used for model training (hold-out datasets),
a setting we termed SemiBin(pretrain; external). As the human gut
dataset considered so far is from a German population (where
individuals are assumed to consume a Western-style diet), we tested
both on another dataset from a German population?, and on a
dataset from a non-Westernized African human population’.
SemiBin(pretrain; external) significantly outperformed Metabat2
(Wilcoxon signed-rank test, two-sided, P =3.050 x 10712 (n =92),
P=1.014x 1077 (n=>50); see Supplementary Fig. 16), showing
that the pretrained model could be used on hold-out data sets.

Besides these four environments, we also provide pretrained
model for six other environments (cat gut, human oral, mouse gut,

pig gut, built environment, and wastewater; the environments from
GMGCv11? which contain enough deeply sequenced samples for
building a model). For every environment, except wastewater (both
tools extract very few bins from this environment, see Fig. 5),
SemiBin(pretrain) could generate 11.8-240.4% more high-quality
bins than Metabat2 (see Fig. 5). We also measured the effects
of model transfer between environments. In most of the
environments, the pretrained model from the same environment
returned the best results (with only small differences otherwise).
Even transferring from different environments, however, Semi-
Bin(pretrain) was still able to outperform Metabat2 in most cases.

Finally, we trained a model using samples from all environ-
ments and termed it as SemiBin(global) (see Supplementary
Text). SemiBin(global) outperformed Metabat2 in all environ-
ments. Compared to SemiBin(pretrain), SemiBin(global) per-
formed similarly or slightly worse in most of the environments
(SemiBin(pretrain) much better in the human and dog gut
environments, see Fig. 5).

SemiBin can discover differences in Bacteriodes vulgatus
strains from human and dog gut samples. Amongst species
shared between the human and dog gut microbiomes in our
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Fig. 4 SemiBin(pretrain) reconstructed more and better high-quality bins compared to Metabat2 in human gut dataset. \We identified the overlap
between the bins in the human gut from Metabat2 and SemiBin(pretrain) using Mash (see Methods). Within bins that are present at high-quality in the
output of both binners, SemiBin(pretrain) achieved higher completeness (recall) (P =2.236 x 1067 (n = 82)) without a statistically significant increase in
contamination (1—precision) (P=0.167 (n=82)). The overall Fi-score is significantly better (P =9.287 x 10-67 (n = 82); all P values were computed
using the Wilcoxon signed-rank test, two-sided null hypothesis). Similar results were obtained in the dog gut and ocean datasets (see Supplementary
Fig. 13). For the box plots, the centerline is the median of all values, the lower and upper bounds of the box correspond to 25th and 75th percentiles and the
lower and upper of the whiskers are the minimum and maximum values. Source data are provided as a Source Data file.
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Fig. 5 Habitat-specific models outperform SemiBin(global) which outperforms Metabat2 across 10 environments. \We tested every model on the 10
environments (10 testing samples, no overlap with the training samples). We also trained a model from all environments (training from all samples used to
generate the pre-trained model for the 10 environments). We termed this model as SemiBin(global). Shown in each cell is the number of high-quality bins
obtained from the testing samples, while the color indicates the performance relative to using the model trained in the same environment (a pseudo-count
of 10 was added to the raw numbers to smooth the estimates). In most environments, the pre-trained model from the same environment as the testing
environment returns the best results. When transferring a model to a different environment, the model can also get good results, and in most situations, it
still performs better than Metabat2. In particular, in dog gut, cat gut, and human oral, SemiBin(pretrain) performed better than Metabat2 when training
from any environment.
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Origin
M Dog gut

B Human gut

Reference strain
(ATCC 8482)

Genes

W Presence
Absence

Fig. 6 Strains of B. vulgatus recovered from the human and dog gut microbiomes and the type strain B. vulgatus ATCC 8482 cluster according to their
host. a Shown is the maximum-likelihood phylogenetic tree based on core genes; branches with bootstrap values higher than 70 were marked pink in the
nodes. Clustering based on ANI or gene presence also showed a separation between the hosts (see Supplementary Fig. 17). b The gene content of the
strains was also statistically different between the two hosts (P < 0.05, n =50, using Fisher's exact test after FDR correction using the Benjamini-Hochberg
method, see Methods). In particular, the presence of different TonB-dependent receptors (TBDR) and their interaction partner btuB, which are involved in
nutrient uptake, differs (see Supplementary Text). Source data are provided as a Source Data file.

study, B. vulgatus had the largest number of recovered strains in
both. Namely, 17 dog gut and 32 human gut B. vulgatus bins were
obtained with SemiBin(pretrain) (compared to four and five
obtained with Metabat2). Based on either sequence similarity or
gene content, the bins from the dog gut clustered separately from
those of the human gut (see Fig. 6, Supplementary Fig. 17). These
also correspond to different gene presence patterns for genes
encoding TonB-dependent receptors, ten of which showed sta-
tistically significant differences (after multiple hypothesis cor-
rection; see Fig. 6, Supplementary Data 1). We also found that the
three btuB genes in dog and human gut microbiomes (see Fig. 6
and Supplementary Data 1) encoding a protein that interacts with
TonB*? belong to different orthologous groups. As different btuB-
TonB complexes may affect the transport of essential micro-
nutrients such as vitamin B124!, B. vulgatus in human and dog
gut microbiomes might have different degrees of ability to
transport vitamin B12.

Discussion

Compared to SolidBin, an existing semi-supervised binning tool,
SemiBin uses a better way to generate must-link constraints,
namely breaking up contigs artificially. This is an approach that
fits into the framework of self-supervised learning as it exploits
the structure of the problem without the need for external

labels*2. As chimeric contigs are rare®3, this results in a very low
rate of must-link false positives. In the future, we will explore the
possibility of extending self-supervision to other components of
the pipeline.

Cannot-link constraints are generated in a reference-dependent
manner using taxonomic annotation of contigs. We explored two
tools for taxonomic annotation: CAT4* (using the NCBI tax-
onomy) and MMseqs24>46 (using the GTDB). Interestingly, on
simulated data, using CAT resulted in more high-quality bins
recovered (although the difference was small); on real data,
however, using MMseqs2 returned better results (see Supple-
mentary Text and Supplementary Fig. 18). This illustrates the
perils of over-reliance on simulated benchmarks, which do not
capture all the complexity of real data.

One limitation of the default SemiBin approach of training a
new model per sample is that generating contig annotation and
training the model is computationally costly (see Supplementary
Table 5). However, we also showed that when multiple samples
are available, training a model from a subset of samples and
applying it to the remaining ones can result in more high-quality
genomes at minimal marginal computational cost per sample.

Models learned from samples from the same habitat are
recommended, although transferring between habitats still results
in a good performance. Generally speaking, transferring between
similar habitats!?, such as between the guts of different mammals,
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resulted in better performance than transfers between dissimilar
ones. Learning a generic model resulted in a loss of performance
compared to a specialized model, but as it still outperformed
Metabat2, we recommend its use for applying SemiBin to new
habitats if training a habitat-specific model is not feasible (e.g.,
too few samples are available or the computational costs are
too high).

In summary, we showed superior results of SemiBin when
compared to other state-of-the-art binning methods, demon-
strating the advantages of using background knowledge in
metagenomic binning. Looking forward, we expect that reference
genome databases will continue to improve in quality along with
taxonomic prediction methods. This should make the use of this
information even more valuable and further widen the gap with
respect to purely de novo methods.

Methods

SemiBin pipeline. SemiBin is developed with Python. The input to SemiBin
consists of a set of contigs and mapped short reads (in the form of BAM files) from
one or multiple samples. The output consists of a collection of bins with the
original contigs clustered.

Preprocessing. Prior to binning, contigs are filtered to remove short contigs, with
the default minimal length for binning being 2500 bp. If the contigs in the range
1000-2500 bp represent <5% of the total number of basepairs (this parameter can
be changed by the user), then the threshold is reduced to 1000 bp.

After filtering, every contig is represented by k-mer relative frequencies K and
abundance distribution A. SemiBin uses k=4 (also used in other tools!8-22), so the
dimension of K is 136 (k-mers that are the reverse complement of each other are
considered equivalent). K-mer vectors are normalized by the lengths of each contig
after the addition of a small pseudo-count, namely:

k;+107°
k; = 1316 (1)
-5
i1 kj + 10

The abundance a is defined as the average number of reads per base mapping to
the contig. We calculated the abundance with BEDTools (version 2.29.1,
genomecov command)?¥”. If the number of samples N used in the binning is greater
than or equal to 5, SemiBin scales the abundance features from the N samples to a
similar order of magnitude as the k-mer frequencies (which are restricted to the
0-1 range, by construction). In particular, the constant s used to scale was defined
as 100 [“a]. After the processing, the input to the semi-supervised model is the
vector Z = [k}, K)...Ky56 5, ¢ . ] Otherwise, when the number of samples used
is smaller than 5, the input to the semi-supervised model is the vector

Z = [, Ky o)

Generating must-link and cannot-link constraints. SemiBin uses taxonomic anno-
tation results to generate cannot-link constraints and breaks up contigs to build
must-link constraints. By default, MMseqs24>4® (version 13.45111, default para-
meters) is used to annotate contigs with GTDB2® reference genomes. We defined
contigs pairs with different annotations at species level (with scores both above
0.95) or at genus level (with scores both above 0.80) as containing a cannot-link
constraint between them. If the number of cannot-link constraints is too large
(default is four million), they are randomly sampled to speed up the training
process. SemiBin also employs the same method as Maxbin2!? with FragGeneScan
(version 1.30)*8 and HMMER (version 3.1.b1)%° to predict seed contigs for dif-
ferent species using single-copy marker genes and generates cannot-link con-
straints between them.

To generate must-link constraints, SemiBin breaks up long contigs into two
fragments with equal length artificially and generates must-link constraints
between the two shorter contigs. By default, SemiBin uses a heuristic method to
automatically determine the minimum size of contigs to break up (alternatively, the
user can specify the threshold): SemiBin selects a minimum size that makes contigs
as long as or longer than this threshold can contain most (98%) basepairs of the
input contigs. If this minimum size is smaller than 4000 bp, the minimum will be
set to 4000 bp.

Semi-supervised deep siamese neural network architecture. We used a semi-
supervised siamese neural network (see Supplementary Figs. 1 and 2)?* for dealing
with the must-link and cannot-link constraints. The network has two siamese
neural networks with shared weights.

As it is semi-supervised, this neural network is trained with two loss functions.
The supervised loss is a contrastive loss that is used to classify pairs of inputs as
must-link or cannot-link (in the contrastive loss function, we termed the must-link

constraints as positive labels and cannot-link constraints as negative labels):

1
Con _ Z d(x X )Z
M, UG, v 072 )

+ (1 —y)max{l —al(xl,xz),O}Z

where My denotes the must-link pairs and C, the cannot-link pairs in the training
set, d(x;, x,) is the Euclidean distance of the embedding of (x;,x,), and y is an
indicator variable for the (x),x,) pair (with the value 1 if (x,x,) € My, and 0 if
(1, x2) € Cy).

The goal of the supervised embedding is to transform the input space so that
contigs have a smaller distance if they are in the same genome, compared to pairs
of contigs from different genomes. To ensure that the embedding learns structure is
shared by all genomes, we also used an autoencoder®® to reconstruct the original
input from the embedding representation with an unsupervised mean square error
(MSE) loss function:

I ®3)
X xex
where x is the original input, X is the reconstructed input, and X are all contigs in
the dataset.

The model used here is a dense deep neural network (see Supplementary Fig. 2).
The dimension of the input features, F depends on the number of samples used in
the binning (see “Preprocessing” Section). The first two layers of the encoding and
the decoding network are followed by batch normalization!, a leaky rectified linear
unit®?, and a dropout layer>? (the dropout rate used was 0.2). The purpose of the
training is to optimize the contrastive loss and the MSE loss at the same time with
the Adam>* optimization algorithm. The model was implemented in Pytorch>>.

Similarity between contigs. The similarity between two contigs is defined as

min(d(x,, %,), 1)
min(d(%,,%,) - a(x;,x,),1) otherwise;

if =5 samples
Sy %) =1 — { (O]
where d(%;,%,) is the Euclidean distance of the semi-supervised embedding. The
embedding of the contig is the features (100 dimensions) from the output layer of
the encoder of the semi-supervised siamese neural network (see Supplementary
Fig. 19). When there are fewer than five samples, the embedding distance only
contains k-mer information. In this case, we modeled the number of reads per base
of one contig as a normal distribution®®, and used the Kullback-Leibler
divergence®’ to measure the divergence between the normal distributions from
contigs, denoted as a(x;, x,) above.

Clustering the contigs. The binning problem is modeled as clustering on a graph.
First, SemiBin considers the fully connected graph with contigs as nodes and
similarity between contigs as the weight of edges. To convert the community
detection task to an easier task, the fully connected graph is converted to a sparse
graph. A parameter (max_edges, defaulting to 200) is used to control the sparsity of
the graph. For each node, only the max_edges edges with the highest weights are
kept. To remove any potentially artefactual edges introduced by the embedding
procedure, SemiBin builds another graph with the same procedure using the ori-
ginal features (k-mer frequencies and abundance features). The edges in the graph
built from embedding that does not exist in the graph from original features are
also removed.

After building the sparse graph, Infomap (python-igraph package®$, version
0.9.7), an information-theory-based algorithm to reveal community structure in
weighted graphs?, is used to reconstruct bins from the graph. If the user requests
it, SemiBin can use single-copy genes of the reconstructed bins to independently re-
bin bins whose mean number of single-copy genes is greater than one!®. For this,
SemiBin uses the weighted k-means algorithm to recluster bins according to the
embedded and the abundance features. Finally, SemiBin outputs the final binning
results, removing bins smaller than a user-definable threshold (which defaults to
200 kbp).

SemiBin(pretrain). The default pipeline of SemiBin is to (1) generate must-link/
cannot-link constraints, (2) train the siamese neural network model for this
sample, (3) bin based on the embeddings. To address the issue that contig anno-
tations and model training requires significant computational time and considering
that the trained models can be transferred between samples or even projects, we
propose to (1) train a model with constraints from one sample or several samples
and (2) apply this model to other samples without further learning. This approach
is termed SemiBin(pretrain). To use SemiBin(pretrain) in the tool, users can train a
model from their datasets or use one of our 10 built-in pretrained models.

Binning modes. We have evaluated SemiBin in three binning modes: single-sample,
co-assembly, and multi-sample binning?’. Single-sample binning means binning
each sample into inferred genomes after independent assembly. This mode allows
for parallel binning of samples, but it does not use information across samples.
Co-assembly binning means that samples are co-assembled first and then
binning contigs with abundance information across samples. This mode can
generate longer contigs and use co-abundance information, but co-assembly may
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lead to inter-sample chimeric contigs' and binning based on co-assembly cannot
retain sample-specific variation0.

Multi-sample binning means that the resulting bins are sample-specific (as in
single-sample binning), but the information is aggregated across samples (in our
case, abundance information). This mode requires more computational resources
as it requires mapping reads back to a database consisting of contigs from all the
samples.

In single-sample and co-assembly binning, we calculate the k-mer frequencies
and abundance for every sample and bin contigs from every sample independently.
For multi-sample binning, we first concatenate contigs from every sample into a
single database to which short reads are mapped to generate abundance profiles.
Unlike what is used in VAMB (which introduced the multi-sample binning
concept), this concatenated database is then re-split and contigs from each sample
are binned separately.

Data used. For the benchmarking of binners, we used five simulated datasets from
the CAMI challenges (CAMI I and CAMI 1II) and six real metagenomic datasets.
Five simulated datasets from CAMI I and CAMI II were downloaded from the
CAMI challenge?>26, CAMI I includes three datasets: low complexity, medium
complexity, and high complexity datasets. The low complexity dataset has 40
genomes with a single simulated sample. The medium complexity dataset has 132
genomes with two simulated samples with different insert sizes. Here, we used
samples with 150 bp insert size. The high complexity dataset has 596 genomes with
5 samples. We also used the skin and oral cavity datasets from the toy Human
Microbiome Project data in CAMI II. The Skin dataset contains 10 samples with
610 genomes, while the Oral dataset contains 10 samples with 799 genomes. We
used the low complexity dataset to evaluate the single-sample binning mode of our
method, the medium and high complexity datasets to evaluate the co-assembly
binning mode, and the Skin and Oral datasets to evaluate the multi-sample binning
mode. We used fastANI®® (version 1.32, default parameters) to calculate the ANI
value between genomes for every sample from the CAMI II datasets.

We also used six real microbiome projects from different environments:

1. a German human gut dataset with 82 samples’!

PRJEB27928),

2. a dog gut dataset with 129 samples?? (study accession PRJEB20308),

3. a marine dataset from the Tara Oceans project with 109 ocean surface
samples?> (study accessions PRJEB1787, PRJEB1788, PRJEB4352, and
PRJEB4419),

4. asoil dataset with 101 samples®* (for accessions, see Supplementary Data 2),

5. a second German human gut dataset with 92 samples® (study accession
PRINA290729),

6. a non-Westernized African human gut dataset with 50 samples’ (study
accession PRINA504891).

We used the first four datasets to evaluate single-sample and multi-sample
binning mode and the last two human gut projects as hold-out datasets to evaluate
transferring with a pretrained model in SemiBin. We also used samples of cat gut
(n=30)%, human oral (n = 30)°!, mouse gut (n = 30)%2, pig gut (n = 30)°3, built
environment (n = 30)%4 and wastewater (1 = 17)%° environments from GMGCv110
to generate pretrained models. There are four other habitats in GMGCv1, but they
did not contain enough deeply sequenced samples for training and testing. For the
human oral dataset, we removed repeated samples from the same individual to
ensure that samples are independent. For every environment, we used 20 samples
for training the model (except for the case of wastewater, where seven were used)
and 10 samples for testing the results (no overlap between the training and testing
samples). We additionally trained a model from all environments (training from all
samples used to generate the pretrained model for the 10 environments considered
here). We termed this model SemiBin(global).

For simulated datasets, we used the gold standard contigs provided as part of
the challenge. For real datasets (except PRINA504891), short reads were first
filtered with NGLess®® (version 1.0.1, default parameters) to remove low-quality
reads and host-matching reads (human reads for human gut datasets, dog reads for
dog gut datasets). These preprocessed reads were then assembled using Megahit®”
(version 1.2.4, default parameters) to assemble reads to contigs. For PRINA504891,
we used Megahit®’ (version 1.2.8, default parameters) to assemble reads to contigs.
We mapped reads to the contigs with Bowtie2%8 (version 2.4.1, default parameters)
to generate the BAM files used in the binning. For multi-sample binning mode,
contigs from all samples were collated together into a single FASTA file. Then reads
from every sample were mapped to the concatenated database to obtain a BAM file
for each sample.

(study accession

Methods included in the benchmarking. We compared SemiBin to other
methods in three binning modes. For single-sample and co-assembly binning of
CAMI I datasets, we compared our method to the following methods: Maxbin2
(version 2.2.6)1%, Metabat2 (version 2)!8, VAMB (version 3.0.2)2°, COCACOLA
(git version 707¢284a74b929257bec6dfe08205939a210ea31)2!, SolidBin (version
1.3)22. SolidBin is the only existing semi-supervised binning method and it has
different modes. Here, we focused on the comparison to modes that use infor-
mation from reference genomes: SolidBin-coalign (which generates must-link
constraints from reference genomes), SolidBin-CL (which generates cannot-link

constraints from reference genomes), and SolidBin-SFS-CL (which generates must-
link constraints from feature similarity and reference genomes). We also added
SolidBin-naive (without additional information) to show the influence of different
semi-supervised modes.

For multi-sample binning of CAMI II datasets, we compared to the existing multi-
sample binning tool VAMB, which clusters concatenated contigs based on co-
abundance across samples and then splits the clusters according to the original
samples and default Metabat2. For more comprehensive benchmarking, we converted
Metabat2 to multi-sample mode. We used jgi_summarize_bam_contig_depths (with
default parameters) to calculate depth values using the BAM files from every sample
mapped to the concatenated contig database. Then, we ran Metabat2 to bin contigs
for every sample with abundance information across samples, which is a similar idea
to the multi-sample mode in SemiBin. This adaptation, however, led only to modest
improvements (see Supplementary Fig. 8a)

We also benchmarked single-sample and multi-sample binning modes in real
datasets. For single-sample binning, we compared the performance of SemiBin to
Maxbin2, Metabat2, and VAMB; and, for multi-sample binning, we compared to
VAMB. These tools have been shown to perform well in real metagenomic projects
(see Supplementary Table 3). For VAMB, we set the minimum contig length to
2000 bp. For SolidBin, we ran SolidBin with constraints generated from annotation
results with MMseqs24540 and we used the binning results after postprocessing
with CheckM. For SemiBin, we ran the whole pipeline described in the Methods
(with default parameters). For other methods, we ran tools with default parameters.

To evaluate the effectiveness of the semi-supervised learning in SemiBin, we
also benchmarked modified versions of SemiBin:

1. NoSemi, where we removed the semi-supervised learning step in the
SemiBin pipeline, and clustered based on the original inputs.

2. SemiBin_m, where we removed the semi-supervised learning step, but
directly used the must-link constraints in the sparse graph (by adding a link
between must-link contigs).

3. SemiBin_c was analogous to SemiBin_m, but we used cannot-link
constraints by removing links in the sparse graph between cannot-link
contigs.

4. SemiBin_mc combines the operations of SemiBin_m and SemiBin_c.

By default, SemiBin is trained on each sample to obtain the embeddings that are
used for extracting the final bins. For SemiBin(pretrain), we trained the model from
several samples and applied the pretrained model to the whole project (see Fig. 3).
We also used two hold-out projects to show the generalization of the pretrained
model (see Supplementary Fig. 16). For other benchmarking which used
10 samples as the testing set to evaluate the pretrained model, there was no overlap
between the training and testing samples (see Figs. 3a, 5 and Supplementary
Fig. 12).

Computational resource usage. For evaluating computational resource usage in a
standardized condition, we used two Amazon Web Services (AWS) virtual
machines. We used the machine type g4ad.4xlarge with 1 CPU (2nd generation
AMD EPYC processors) containing 8 physical cores, 16 logical cores, and 64 GB
RAM memory to run Maxbin2, Metabat2, VAMB, and SemiBin in CPU-mode.
Additionally, we used the type g4dn.4xlarge to run VAMB and SemiBin in GPU-
mode. This machine contains an NVIDIA Tesla T4 GPU.

Evaluation metrics. For simulated datasets in CAMI, we used AMBER (version
2.0.1)% to calculate the completeness (recall), purity (precision), and Fl-score to
evaluate the performance of different methods.

In the real datasets, as ground truth is not available, we evaluated the
completeness and contamination of the predicted bins with CheckM3> (version
1.1.3, using lineage_wf workflow with default parameters). We defined high-quality
bins as those with completeness >90%, contamination <5%2’ and also passing the
chimeric detection implemented in GUNC3® (version 0.1.1, with default
parameters). Medium-quality bins are defined as completeness 250% and
contamination <10% and low-quality bins are defined as completeness <50% and
contamination <10%27.

Model transfer between environments. To evaluate the generalization of the
learned models, we selected three models as training sets from the human gut, dog
gut, and ocean microbiome datasets. In each dataset, we selected a model from the
sample that could generate the highest number, median number, and lowest
number of high-quality bins. For the human gut dataset, we termed them
human_high, human_median, and human_low, with models from the other
environments named analogously. For every environment, we also randomly
selected 10 samples from the rest of the samples as testing sets (no overlap between
the training sets and testing sets). Then, we transferred these models to the testing
sets from the same environment or different environments and used the embed-
dings from these models to bin the contigs.

To evaluate the effect of training with different numbers of samples, for every
environment, we also randomly chose 10 samples as testing sets and trained the
model on different numbers of training samples (randomly chosen 1, 3, 5, 10, 15,
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and 20 samples; no overlap between the training sets and testing sets). For each
number of samples, we randomly chose samples and trained the model 5 times.

To evaluate the pretraining approach, we used another two human gut datasets.
We termed SemiBin with a pretrained model from the human gut dataset used before
as SemiBin(pretrain; external). We also trained a model from 20 randomly chosen
samples from the hold-out datasets and applied it to the same dataset; an approach we
termed SemiBin(pretrain; internal). We benchmarked SemiBin(pretrain; external),
Metabat2, original SemiBin, and SemiBin(pretrain; internal).

MAG analyses. To identify the overlap between the bins from SemiBin and
Metabat2 with single-sample binning, we used Mash (version 2.2, with default
parameters)38 to calculate the distance between bins from the two methods. Then,
we assigned corresponding bins with Mash distance <0.01 and we considered these
two bins as the same genome in subsequent comparisons. After obtaining the
overlap of bins sets, we classified the high-quality bins from each method into 4
classes: HQ-HQ: also high-quality in the other method; HQ-MQ: medium-quality
in the other; HQ-LQ: low-quality or worse in the other; and HQ-Miss: could not be
found in the other. We calculated the recall, precision, and Fl-score for the HQ-
HQ component. Recall and precision are completeness and 1—contamination are
estimated from CheckM. F1-score is 2 x (recall x precision)/(recall + precision). To
evaluate the species diversity of different methods, we annotated high-quality bins
with GTDB-Tk (version 1.4.1, using classify_wf workflow with default
parameters)3’.

For the analysis of B. vulgatus bins, average nucleotide identity (ANI)
comparisons were calculated using fastANI>® (version 1.32, -fragLen 1000). B.
vulgatus bins were annotated with Prokka (version 1.14.5, with default
parameters)’’. Pan-genome analyses were carried out using Roary (version 3.13.0,
-i 95 -cd 100)7!. We used Scoary (version 1.6.16, -c BH)7? to identify genes with
significant differences in the human and dog gut microbiome datasets. Phylogeny
reconstructions of core genes were performed with IQTREE using 1000 bootstrap
pseudoreplicates for model selection (version 1.6.9, -m MFP -bb 1000 -alrt 1000)7,
and visualized with ggtree package (version 1.8.154)74. Principal component
analysis was done using the prcomp function from the stats’> package.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The sequence data used in the study are publicly available in the ENA with study
accessions PRJEB27928, PRJEB20308, PRJEB1787, PRJEB1788, PRJEB4352, PRJEB4419,
PRJNA504891, PRJNA290729, PRJEB4391, PRJEB6997, PRJEB7759, PRJEB11755,
PRJNA271013, and PRJNA300541. The study accessions the soil dataset see
Supplementary Data 2. The simulated CAMI I (low, medium, and high complexity) and
CAMI 1I datasets (skin and oral cavity from Toy Human Microbiome Project Dataset)
can be downloaded from https://data.cami-challenge.org/participate. The MAGs
generated from real metagenomes in the benchmarking can be obtained from Zenodo:
https://doi.org/10.5281/zenodo.5181237 (human gut microbiome MAGs), https://doi.
org/10.5281/zenodo.5181385 (dog gut microbiome MAGs), https://doi.org/10.5281/
zenodo.5181391(marine microbiome MAGs) and https://doi.org/10.5281/zenodo.
5861178 (soil microbiome MAGs). All intermediate results of benchmarking can be
found on Github at https://github.com/BigDataBiology/SemiBin_benchmark. Source
data are provided with this paper.

Code availability

Code for the tool”® can be found on GitHub at https:/github.com/BigDataBiology/
SemiBin/ and is freely available under the MIT license. The code is also archived on
Zenodo at https://doi.org/10.5281/zenodo.4649670 with the version benchmarked in this
work being found under https://doi.org/10.5281/zenodo.6006707. The analysis code and
intermediate results can be found on Github at https:/github.com/BigDataBiology/
SemiBin_benchmark (archived on Zenodo under https://doi.org/10.5281/zenodo.
6363509).
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