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ABSTRACT: In this work, we present a general method for
predicting phosphorescence rates and spectra for molecules
using time-dependent density functional theory (TD-DFT)
and a path integral approach for the dynamics that relies on
the harmonic oscillator approximation for the nuclear
movement. We first discuss the theory involved in including
spin−orbit coupling (SOC) among singlet and triplet excited
states and then how to compute the corrected transition
dipole moments and phosphorescence rates. We investigate
the dependence of these rates on some TD-DFT parameters,
such as the nature of the functional, the number of roots, and the Tamm−Dancoff approximation. After that, we evaluate the
effect of different SOC integral schemes and show that our best method is applicable to a large number of systems with different
excited state characters.

1. INTRODUCTION

Phosphorescent materials have been a major focus of research
during the past few years, with applications in organic light-
emitting diodes (OLEDs),1−6 light-emitting electrochemical
cells,7,8 photovoltaic cells,9,10 chemical sensors,11−14 and
bioimaging.15−19 Because most molecular materials presenting
this kind of long-lived emission contain heavy metals to
increase spin−orbit coupling (SOC), the interest in purely
organic molecules presenting triplet emission has also grown
recently,20,21 for economical and ecological reasons.
As they exhibit weak SOC, light organic molecules usually

have rather slow phosphorescence rates, between 10−3 and 103

s−1, and nonradiative pathways prevail at room temper-
ature.22,23 Usually, these compounds become phosphorescent
only at about 77 K, in organic glasses or as pure materials,
when the intersystem crossing back to the ground state slows
down, and the emission quantum yield then gets higher. Yet,
some molecules do present high phosphorescence rates, even
at room temperature, and these are currently under study for
various applications.24−26

The theoretical prediction of these rates is rather challenging
since it must account for relativity to allow for singlet and
triplet mixing. The rate for a radiative transition between an
initial state Ψi and a final state Ψf can be calculated from
Fermi’s Golden Rule as27
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where ω is the frequency of the photon, n is the refractive
index of the medium, ℏ is the planck constant divided by 2π, c
is the speed of light, μ̂ is the dipole moment operator, and E is
the energy of a given state. The rate thus depends on the
transition dipole matrix element, and because nonrelativistic
operators do not couple spin eigenstates, ⟨ΨT|μ̂|ΨS⟩ = 0 after
spin integration and there can only be transitions between
states of same multiplicity.
However, the rate is, in practice, nonzero due to the

relativistic mixing of singlets and triplets. In nonrelativistic
quantum mechanics, the SOC operator (ĤSOC) coupling states
with different multiplicity can be added to the nonrelativistic
Hamiltonian in an ad hoc manner. The SOC effects are usually
accounted for in the literature by using first-order perturbation
theory, with the perturbed triplet |ΨT1

SOC⟩ given by28
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so that phosphorescence rates can be obtained from eq 1 under
the Franck−Condon assumption that the transition dipole
moment is independent of nuclear coordinates. As there are
three spin sublevels for the triplets, the final observed rate kP

obs

is calculated considering the Boltzmann population of each
state29

Received: August 13, 2018
Published: February 5, 2019

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2019, 15, 1896−1904

© 2019 American Chemical Society 1896 DOI: 10.1021/acs.jctc.8b00841
J. Chem. Theory Comput. 2019, 15, 1896−1904

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b00841
http://dx.doi.org/10.1021/acs.jctc.8b00841
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


k
k k e k e

e e1

E k T E k T

E k T E k TP
obs 1 2

/
3

/

/ /

12 B 13 B

12 B 13 B
=

+ +
+ +

Δ Δ

Δ Δ (3)

where ΔE12 is the energy difference between states 1 and 2
with the three sublevels labeled from 1 to 3 and k1, k2, and k3
correspond to the individual rate from each level.
This simple approach works in some cases for molecules

with heavy atoms, where the SOC is large enough to induce a
strong mixing and a large transition dipole moment,4,29,30 but it
fails when these matrix elements are small and vibronic
coupling must be accounted for.28 Also, the use of eq 2
neglects the mixture of excited triplets with the ground singlet
and the effects of triplet−triplet coupling.
In this work, we present a combination of methods to

overcome these issues which is both fast and applicable to large
systems. We suggest using Quasi-Degenerate Perturbation
Theory (QDPT)31 to calculate the mixing between singlets
and triplets obtained from time-dependent density functional
theory (TD-DFT),32,33 with or without the Tamm−Dancoff
approximation (TDA),34 to get a more complete picture of the
SOC mixing. The Golden Rule rate equation is then solved in
the time domain by using the path integral solution for the
multidimensional harmonic oscillator. In contrast to full wave
packet propagation schemes like multiconfiguration time-
dependent Hartree (MCTDH),35,36 the time evolution of a
correlation function can be solved analytically if the harmonic
approximation holds. In particular, we propose to use our
recently published implementation of the path integral
approach37 (often called time-dependent or semiclassical
approach38−42) to predict the rate from eq 1, since it accounts
for temperature effects, vibronic coupling, and the Duschinsky
rotation between modes in an efficient way.
We first analyze the effect of some parameters from TD-

DFT and the SOC integrals on a small subset of molecules and
then show that this method can be applied to a larger number
of molecules with different excited state characters, including
solvent effects.

2. THEORY
2.1. SOC Matrix Elements and Coupled States. In

QDPT, the mixed ground and excited states can be obtained
by diagonalizing the approximate relativistic Hamiltonian,

H H HREL BO SOC
̂ = ̂ + ̂ (4)

in the basis of the unmixed states.31 Here, ĤBO is the Born−
Oppenheimer Hamiltonian and ĤSOC can be written in a
second quantized form as43
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The second quantized spin operators read as follows44
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where a and b are the creation operators for an alpha electron
and a beta electron, respectively, and p and q denote arbitrary

molecular orbitals. In eq 5, the SOC integrals in the spherical
basis are given by
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These SOC matrix elements can be calculated using the
Wigner−Eckart theorem for spherical tensor operators43,44 of
rank 1,
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The Clebsch−Gordan coefficients (CGC) in the brackets only
couple states for which |S′ − S| is at most 1 and M′ + m = M.
The reduced matrix element can be calculated as
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where |l| is at most one, depending on the states coupled, and
Cl is a simple constant depending on S and determined as the
inverse CGC for S = M and S′ = M′ = S − l. Thus, it is only
necessary to compute the SOC integrals z and the transition
spin density matrices on the right-hand side of the above
equation.
In TD-DFT, assuming a closed shell reference, the spin

adapted singlet and triplet state vectors can be calculated as
single excitations
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with X̂pq being a general notation for the normalized versions
of eqs 6, 7, and 8 for triplet excitations as well as for the singlet
excitation operator obtained from

E a a b bpq p q p q
̂ = +† †

(13)

after normalization so that ⟨0|X̂pq
† X̂pq|0⟩ = 1. In effect, the

operators in eqs 6, 7, and 8 are multiplied by 2 , while the one
in eq 13 is divided by 2 . Here and in the following, the labels
i, j, ... refer to occupied molecular orbitals and the labels a, b, ...,
to virtual molecular orbitals, as opposed to the general labels p,
q, ..., which may refer to either of these. The symbol xia

n in eq
12 is a generic notation for the amplitude corresponding to the
excitation operator X̂ai. For singlets, we will use the notation xia

n

= sia
n while for triplets the convention xia

n = tia
n will be preferred.

Technically, the triplet equations are solved only once in TD-
DFT/TDA since the three sublevels yield identical results so
long as the Hamiltonian does not affect the spin functions.
This result is then used to compute the reduced matrix
elements from eq 11. Since only singlet and triplet states will
be considered in the following, a new notation is introduced in
which |0⟩ ≡ |Ψ0

0,0⟩ denotes the ground state and |Sn⟩ ≡ |Ψn
0,0⟩

and |Tk
M⟩ ≡ |Ψk

1,M⟩ denote the singlets and triplets, with sia
n and

tia
k being the corresponding excitation amplitudes. Since the
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SOC operator is Hermitian, it is enough to compute the matrix
elements for which S′ ≤ S. Then, the surviving transition
densities can be written as
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The delta symbols in the above equations merely indicate
which contributions survive for a specific choice of the generic
labels p and q. The only necessary coefficients Cl in eq 11 are
then C+1 = 1 and C 20 = . In full TD-DFT, the SOC matrix
elements are computed from the renormalized |X + Y⟩ vectors
(such that ⟨X + Y|X + Y⟩ = 1), which are not necessarily
normalized if hybrid functionals are used.45 Note that it is also
possible to handle singly excited open shell systems in a spin
adapted manner, as discussed elsewhere.31

After the matrix for ĤREL is built and diagonalized, we obtain
the mixed singlet−triplet SOC states:
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with the complex eigenvector coefficients Cn
I for singlets and

Dk,M
I for triplets. If solvent effects are to be included, one can

use the linear response conductor-like polarizable continuum
model (LR-CPCM)46,47 to approximately correct the energies
of the TD-DFT states before constructing the ĤREL matrix.
Finally, the transition dipole matrix elements can be

computed. As the ground state only couples through SOC
with the triplets, its SOC-corrected wave function is given by
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and the transition dipoles from ground to excited states can be
obtained from

Tr( )I
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where μpq denotes the dipole intergrals, while the SOC one
body reduced density matrix Γpq is given by
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This in turn contains contributions from unmixed quantities,
including the ground state density

2pq
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the ground state to excited singlet transition density
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and the triplet−triplet transition density
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keeping in mind that only transition densities between triplet
states of the same M value will survive after spin integration
and that these yield identical results independent of M.

2.2. Path Integral Approach for the Rates. In order to
compute the rates of phosphorescence, we solve eq 1 for the
first three mixed (triplet dominated) excited states, according
to our previously described method.37 This is based on the
idea first explored by Lin41,48 in the 1970s that one can use the
Fourier Transform (FT) representation of the delta function
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π
= ω
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(24)

to switch the problem from the energy to the time domain.
The formulation was explored further by Tannor and Heller in
the 80s, see refs 36 and 42 and references therein, and was
recently revisited by Tatchen and Pollak38 and began to be
applied in different contexts.39,40 Using this formulation, it is
possible to calculate kP from the FT of a correlation function
χ(t) that is computed from the path integral of the
multidimensional harmonic oscillator:

k t t( ) 2 ( )e di t
P

0
∫ω α χ= ω

∞
−

with α being a collection of parameters. As we have shown, this
formulation can be implemented very efficiently and yields as a
result both the rate and the emission spectrum.37

The correlation function itself depends on the electronic
transition dipole μe, which in the present case is calculated
from eq 20 and its derivatives,
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as well as on the functions

t Tr( ) (e e )iH iHFCρ = τ τ− ̂ − ̅ ̅̂ (26)

t Tr Q( ) ( e e )k k
iH iHHT/FCρ = ̅ τ τ− ̂ − ̅ ̅̂ (27)

t Tr Q Q( ) ( e e )kl k
iH

l
iHHTρ = ̅ ̅τ τ− ̂ − ̅ ̅̂ (28)

which contain information on the vibrational coupling at the
Franck−Condon (FC) and Herzberg−Teller (HT) levels.
Here Ĥ is the vibrational Hamiltonian, Qk is a normal
coordinate, and the bar denotes the coordinates of the final
state. The derivatives in eq 25 are calculated numerically, while
the functions ρ are evaluated as discussed in our earlier work.
These functions depend on the Dushinsky rotation and
displacement matrices that connect initial and final normal
coordinates, and they also account for temperature depend-
ence which is introduced by summing over all initial states
weighed by a Boltzmann factor.
Using this method to solve eq 1 together with the SOC-

corrected transition dipole moment matrix elements, we can
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now predict phosphorescence rates (and intrinsic lifetimes)
including the solvent, Duschinsky, and the Herzberg−Teller
effects.

3. COMPUTATIONAL DETAILS

All calculations were carried out using the development verison
of the ORCA software package.49 Structures were optimized
using the B3LYP,50,51 BP86,52 or WB97X-D353,54 functionals
and the def2-TZVP(-F) basis set.55 For ground states, the
optimization followed the restricted Kohn−Sham (KS) DFT
process, while for excited state singlets, TD-DFT optimizations
were carried out using the restricted KS determinant as
reference. For triplet states, unrestricted KS ground state
calculations were performed rather than computing the triplet
excited states from TD-DFT with a restricted KS reference. In
order to accelerate the computation of two electron integrals,
the resolution of identity approximation was used for the
Coulomb part (RIJ) and the chain of spheres algorithm for the
exchange part (COSX), with the corresponding auxiliary basis
and grid settings.56,57 The DFT grid was set to GRID5, and the
COSX grid was GRIDX5, with all the other parameters chosen
as default unless otherwise stated. When LR-CPCM was used,
the solvent of choice was ethanol to be consistent with the
reference data.58 Unless otherwise mentioned, the spin−orbit
integrals were calculated using the RI-SOMF(1X)59 approx-
imation.
For the excited states, TD-DFT with or without TDA was

employed.60 The convergence criteria for both the SCF and
geometry optimizations was set to TIGHT, with a convergence
threshold of 10−8 Hartree in the former and 10−6 Hartree in
the latter case. No optimized structure presented negative
frequencies. It was assumed that the geometries and Hessians
of the triplet spin sublevels were the same and, to calculate the
rates, eq 3 was used although no significant zero-field splitting
was encountered. During the calculation of SOC integrals
using mean-field approaches, the KS ground state density was
used when necessary.
The individual rates were calculated using the ORCA_ESD

module recently developed, using default settings and
Duschinsky mixing, including our automatic selection of
parameters for the FT step and normal modes described in
terms of internal coordinates,37 but with the temperature set to
77 K according to the reference data.58 For calculating the
numerical derivatives, it had to be ensured that the phases of
the quantities involved correspond to each other in each single
point calculation on the perturbed molecular geometries. In
order to fix the phases of the MOs and the excited state
eigenvectors, the largest element of each vector was set to be
always positive. Similarly, the ĤSOC eigenvectors were multi-
plied by a phase such that the element with the largest absolute
value was always real and positive. After each displacement, the
vectors were adjusted in such a way that the same element
remained positive and, in the SOC case, real and thus
comparable to the reference.
To further accelerate the numerical calculation of the

transition dipole moment derivatives and avoid using central
differences in all displacements, we now calculate the
difference between the norm of the matrix element after one
step and the reference norm. If it is smaller than 5δq|μ⃗ref|,
where δq is the step size (0.01 by default), the derivative is
taken to be less relevant and it is calculated from a simple
difference. Our testing shows that the results are virtually the

same in all cases and one can avoid most of the necessary
single point calculations.

4. RESULTS AND DISCUSSION
For initial testing, a set of well studied molecules were chosen,
which have different excited state characters, from purely π−π*
to n−π* states. This set consists of anthracene (ANT),
naphtalene (NAP), phenanthrene (PHE), carbazole (CAR),
benzofuran (BFUR), quinoxaline (QNX), biacetyl (BIA),
benzophenone (BZP), and anthrone (ATQ), all shown in
Figure 1.

These molecules present experimental rates varying from
0.01 to 340 s−1 58 and are thus suitable for evaluating the range
of applicability of our method. However, since the range is
large and so are the errors in the predictions, we found that the
ratio between the experimental and the theoretical rate was the
most suitable quantity for comparison. Here, we define this
ratio as R = max(ktheo,kexp)/min(ktheo,kexp) and will use the
average of this ratio within a test set (R̅) as a measure of
accuracy. This measure is equally sensitive to underestimating
and overestimating the rate constant; e.g., the estimates 0.01
and 100 for the value 1 are both 2 orders of magnitude off, and
hence, R = 100 for both. Note that the unsigned relative errors
would be 0.99 and 99, respectively.

4.1. Dependence on TD-DFT Parameters. All geo-
metries for the S0 and T1 states of the test set were optimized
using BP86, B3LYP, and WB97X-D3 functionals, and its rates
were calculated using TD-DFT excited states with LR-CPCM
energy corrections for the solvent. At first, the number of TD-
DFT roots were varied from 10 to 25, in order to evaluate the
effect of both the nature of the functionals and the number of
roots necessary to converge the results. It was found that in all
cases they converged after coupling the 20 lowest energy
excited singlets and the 20 lowest energy triplets, so we
decided to include the 25 lowest energy roots for each
multiplicity as the default to ensure convergence. Thus, the
final SOC matrix involves 101 states, including the ground
state, 25 singlet states, and 75 triplet states (25 for each
sublevel).
When comparing the effect of different functionals, we found

that B3LYP was the one with the smallest error, with R̅ = 1.98.
For BP86, the error was determined to be R̅ = 5.69 while R̅ =
6.97 was found for the range-corrected WB97X-D3. In Figure

Figure 1. Set of molecules chosen for testing the proposed method.
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2, a comparison between the experimental and the calculated
rates is presented, indicating the amount of the Herzberg−
Teller effect for each molecule.

These rates are typically obtained from the experimental
lifetimes of the triplets (τT) and the quantum yields for
phosphorescence and intersystem crossing (ΦP and ΦISC)
as22,58

kP
P

ISC Tτ
=

Φ
Φ (29)

There is a significant amount of error in the determination of
all three, making it difficult to find even a well-defined
experimental value. It is clear from Figure 2 that, on average,
B3LYP gives the best predictions, although all three functionals
are well within the acceptable error range, with BP86
overestimating and WB97X-D3 underestimating the results.
These rates are mostly due to the Herzberg−Teller (vibronic
coupling) effect and would not be obtained if only the FC
approximation was used. Temperature effects are also
accounted for without any approximation here.
The effect of TDA and the solvent were also considered

using B3LYP as the functional of choice; see Table 1. As can

be seen, the solvent effect was not important for these
molecules, since there were almost no charge-transfer states
involved and the CPCM correction was small. On the other
hand, the effect of TDA was more dramatic. This was due in
particular to large deviations for CAR and QNX with RCAR =
13.7 and RQNX = 17.5. Looking closely at these results, it is
possible to determine that the differences are caused by large
derivatives of transition dipole moments over certain modes

that are not encountered when using full TD-DFT. It is known
that TDA yields triplet energies closer to the experiment,61

while full TD-DFT is better for properties such as transition
dipole moments62,63 and it is the latter which makes a
difference here. If one considers only the other molecules in
this set, where there was no such error, the TDA
approximation is actually the best, with an R̅ = 1.65. Even
so, full TD-DFT seems to be more robust in general and will
be used from here on.

4.2. Effect of Different Schemes for SOC Integrals.
Since there are different approaches to compute the SOC
integrals, we also investigated the effect of these on the overall
rates. The SOC operator ĤSOC can be included in non-
relativistic quantum mechanics using the Breit−Pauli (BP)
approximation59

H H HSOC SOC
(1)

SOC
(2)̂ = ̂ + ̂ (30)

where the SOC operator is composed of one electron terms
(ĤSOC

(1) ) and two electron terms (ĤSOC
(2) ). In constructing a

second quantized representation for these operators, it should
be kept in mind that we are aiming for a one body description
of the form shown in eq 5. Thus, the matrix elements zpq

(−m)

consist of a sum, zpq
(−m) = hpq

(−m) + gpq
(−m), of a true one electron

term hpq
(−m) and an effective one body term gpq

(−m) arising from
ĤSOC

(2) under the mean field approximation. The explicit forms
of these matrix elements are
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where the complex integrals are labeled as (1*1|g(1,2)|2*2)
and h(−m) and g(−m) can be obtained following the recipe in eq
9 from the components of the Cartesian vector operators
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Here, α is the fine structure constant, 1 and 2 denote electronic
spatial coordinates, r1A = |r1A| and r12 = |r12| denote the distance
between electron 1 and nucleus A and between electron 1 and
2, respectively. The angular momentum operators l are given as
l1A = r1A × p1 and l12 = r12 × p1, where p1 is the momentum
operator belonging to electron 1. As we will treat SOC as a one
electron property, the question remains in what precise form
the two electron effects can be treated.
The simplest approximation for the BP SOC Hamiltonian is

to use the one electron part and account for the other electrons
through a shielding on the effective nuclear charge (i.e., replace
ZA with some effective charges ZA

eff). Here, we use the charges
from Koseki et al.64 and will refer to this approach as ZEFF. It
is also possible to include the two electron terms
approximately, using mean field approaches as in Hartree−
Fock theory. We use the efficient mean field approach called
RI-SOMF59 that makes use of the RI scheme to accelerate
Coulomb integrals and another mean field approach named
AMFI-A,43 by Schimmelpfennig, that uses precomputed
atomic densities and only accounts for one-center integrals.
A fourth option is to compute the BP SOC integrals similarly
to the SOMF but including local DFT exchange and
correlation, here named VEFF-2X,59 which we will simply

Figure 2. Comparison between different functionals, coupling the first
25 roots obtained from TD-DFT. The values under the labels are the
relative Herzberg−Teller contributions for B3LYP using the RI-
SOMF approach to obtain the SOC integrals.

Table 1. Average Errors Obtained from Full TD-DFT, TDA,
and Gas Phase Calculations for the Test Set Shown in
Figure 1a

R̅ MSRE MURE

TD-DFT 1.98 68.7 91.2
vacuum 2.15 71.9 103
TDA 4.76 362 374

aMean signed relative errors (MSRE) and mean unsigned relative
errors (MURE) are given as percentages.
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refer to as VEFF in this study. The results for the test set are
presented in Figure 3.

As it can be seen directly from Figure 3, the RI-SOMF and
VEFF approaches as well as the simplest ZEFF approach yield
results which agree well with each other and with experiment.
The comparatively mild variation in the rates predicted by
these three methods can be attributed to differences in the
quality of the SOC matrix elements and their derivatives. For
PHE and NAP, VEFF and RISOMF differ quite substantially,
both as far as the transition dipoles and their derivatives are
concerned. However, both methods yield results in the same
order of magnitude. The relatively large deviation of the
AMFI-A values from the other results is connected to the one-
center approach, which should be avoided for the present
purposes. In fact, if the RI-SOMF calculations are carried out
using the one-center approximation, the results are very close
to the AMFI-A values.
A well-balanced method should produce both accurate SOC

matrix elements and reliable SOC derivatives, since the quality
of the latter has a significant impact on the calculated
phosphorescence rates. It seems that ZEFF, although only
containing one electron terms, produces quite accurate rates,
being even slightly more accurate than RI-SOMF with an R̅ZEFF

= 1.56. Even so, the mean field RI-SOMF approach should be
more reliable if heavier atoms are also present and a better
treatment of the two electron terms becomes necessary. In this
sense, it is more general and it does not depend on the choice
of the exchange-correlation functional or other empirical
parameters either. We thus recommend RI-SOMF as the
default approach, while retaining VEFF as a possibility and
ZEFF as a cheaper alternative for weak coupling.
4.3. Results for a Larger Test Set. Finally, having defined

a suitable set of default choices for our method, B3LYP
functional, full TD-TDF with LR-CPCM corrections, and RI-
SOMF SOC integrals, we investigate the accuracy of this
method on a larger set. In addition to the ones portrayed in
Figure 1, we add the well-known molecules presented in Figure
4, which are pyrene (PYR), biphenyl (BIP), benzonitrile
(BNT), adenine (ADE), xanthone (XAN), and anthraquinone
(ATQ).58

From these 15 molecules, 5 have only π−π* excited states
with very weak SOC, 5 have well-defined n−π* states that give
rise to larger SOC matrix elements, and 5 have some sort of
mixed states. It can be seen in Figure 5 that these differences

give rise to phosphorescence rates that are up to 4 orders apart,
e.g., between anthracene (ATQ) and anthraquinone (ATQ), as
expected from the usual theoretical background of molecular
photophysics.22,23 Again, as in the previous case, most of these
rates are due to vibronic coupling between the triplet and the
ground state and would not be correct under the simpler FC
assumption.
As explained in our previous work regarding fluorescence,37

the emission rates can be also related to the experimental
spectrum, and in Figure 6, we show the comparison between
the experimental and theoretical phosphorescence spectra of
biacetyl. As can be seen, there is a good correspondence in
both the intensity and the position of the bands. In this case,
about 50% of the intensity is due to the HT effect and the
associated theoretical rate is in excellent agreement with the
experiment.

5. CONCLUSIONS
In this work, we have provided a derivation of the spin−orbit
coupling between TD-DFT ground and excited states and the
application of the corrected transition dipole moment matrix

Figure 3. Comparison between different approaches to compute the
BP SOC integrals and their effect on the predicted phosphorescence
rates using B3LYP.

Figure 4. Molecules added to those in Figure 1 to form the final
evaluation set.

Figure 5. Predicted phosphorescence rates for all molecules presented
in Figures 1 and 4 using our best methods. Due to lack of complete
data, for pyrene, we assumed that ΦISC = 1 − ΦF and, for adenine, ΦP
= ΦISC when using eq 29 (here, ΦF is the fluorescence quantum
yield).
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elements for the computation of phosphorescence rates and
spectra. In order to solve the relevant rate equations, we use
our previously developed approach for fluorescence, based on
the path integral solution of the multidimensional harmonic
oscillator model, and investigated the effects of different
parameters on the predicted rates.
From our results, we conclude that the functional B3LYP

yielded the best predictions, when using the full TD-DFT
equations, at least when compared with BP86 and WB97X.
The results obtained using the TDA approximation were also
very good but had a large deviation for two test cases and are
thus less robust. For simple organic molecules such as those
explored here, spin−orbit coupling is weak and the Franck−
Condon approximation is not sufficient to give qualitatively
correct predictions. To achieve this, the Herzberg−Teller
effects must be accounted for; otherwise, the results deviate
enormously from the experiment. In terms of the spin−orbit
integrals, we conclude that the effective nuclear charges as
developed by Koseki et al.64 and the mean-field integrals with
or without local DFT contributions59 compare well to the
experiment, at least for light organic molecules. We
recommend the RI-SOMF method in particular and advise
against using the one-center approximation for calculating
phosphorescence rates.
We finally show that, under the use of these optimal

parameters, phosphorescence rates can be predicted for a series
of diverse molecules that span almost 4 orders of magnitude in
terms of the phosphorescence rates. Using these results,
emission spectra can also be predicted in good agreement with
the experiment.
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