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Harmonic trap resonance enhanced 
synthetic atomic spin-orbit 
coupling
Ling-Na Wu1, Xin-Yu Luo1, Zhi-Fang Xu2,3, Masahito Ueda2, Ruquan Wang4,5 & L. You1,5

Spin-orbit coupling (SOC) plays an essential role in many exotic and interesting phenomena in 
condensed matter physics. In neutral-atom-based quantum simulations, synthetic SOC constitutes a 
key enabling element. The strength of SOC realized so far is limited by various reasons or constraints. 
This work reports tunable SOC synthesized with a gradient magnetic field (GMF) for atoms in a harmonic 
trap. Nearly ten-fold enhancement is observed when the GMF is modulated near the harmonic-trap 
resonance in comparison with the free-space situation. A theory is developed that well explains the 
experimental results. Our work offers a clear physical insight into and analytical understanding of how 
to tune the strength of atomic SOC synthesized with GMF using harmonic trap resonance.

Resonance phenomena1 frequently occur in Nature. When the frequency of a time-periodic external drive 
matches a system’s resonance, the response is dramatic. A folklore wisdom warns that soldiers crossing a bridge 
should not march in unison to prevent its collapsing from accidentally stepping onto the resonance. Even at 
multiple resonant frequencies, such as parametric resonance when the driving frequency is twice the system’s 
characteristic frequency, the response can still be quite substantial. In quantum mechanics, resonances become 
ubiquitous as a result of quantization, where stationary states of a system feature definite eigenenergies. A tran-
sition between two eigenstates is resonantly enhanced when the frequency of an external coupling matches their 
energy difference2,3.

This article reports our experimental observation and theoretical vindication of an enhanced atomic spin-orbit 
coupling (SOC) synthesized with a modulated gradient magnetic field (GMF) applied to atoms in a harmonic 
trap. SOC, which couples a particle’s spin to its orbital motion, constitutes one of the most important interac-
tions in condensed matter physics. In the strong coupling regime, SOC gives rise to nontrivial topological bands, 
which support many exotic states and phenomena, including topological band/Mott insulator, quantum-number 
fractionalization and magneto-electric effects4,5. In recent years, atomic quantum gases have emerged as powerful 
quantum simulators for condensed matter systems6,7. Strong atomic SOC often plays crucial roles in the increas-
ing list of desired ingredients for artificial gauge fields8–20.

The breakthrough on synthetic SOC came in 201113, when Spielman’s group observed a special type of 
one-dimensional (1D) SOC: an equal-weighted sum of Rashba21 and Dresselhaus22 types of SOC created by 
the momentum-sensitive Raman coupling between two internal states of 87Rb atoms. Since then, the Raman 
scheme has become the prototype for studies involving 1D atomic SOC23–27. Recently, the observations of 
two-dimensional (2D) SOC relying on atom-photon interactions have been reported28–30. In the Raman scheme, 
the strength of synthesized SOC is limited by photon momentum transfer and constrained by Raman laser beam 
geometry. A protocol for tuning the strength of SOC including switching its sign through periodically modulating 
effective Rabi frequency31 in the Raman scheme has also been realized32.

An alternative method of creating synthetic atomic SOC is to use pulsed or time-periodic GMF33–39, which 
can be implemented free from atomic spontaneous emission. Its underlying mechanism is the Stern-Gerlach 
effect, whereby the periodic GMF imparts a spin-dependent momentum impulse to the atomic center-of-mass 
motion. This spin-dependent impulse can be described in terms of the same linear coupling between the spin (or 
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pseudo-spin) with the atomic orbital (center-of-mass) motion as in the Raman scheme. Through concatenating 
GMF pulses along two orthogonal directions, genuine Rashba, Dresselhaus, or even arbitrary types of SOC in 2D 
can be synthesized for atoms with arbitrary hyperfine spins33–35. Very recently, essential features demonstrating 
1D tunable SOC synthesized with a periodic modulated GMF have been reported38.

This work presents a different method for controlling the strength of atomic SOC synthesized with GMF 
by making use of harmonic trap resonance for atomic center-of-mass motion. It is beyond the straightforward 
scheme of tuning the strength of momentum impulse as demonstrated recently38. Furthermore, it differs from 
the reported tuning scheme32 based on the amplitude-modulated Raman coupling31, which can only decrease the 
strength of SOC. The harmonic trap resonance scheme we report here opens a different avenue for reaching the 
strong SOC regime.

Results
The experiment is inspired by the success of synthesizing atomic SOC from a time-periodic GMF34,38. Specifically, 
under a periodically modulated 1D GMF, atomic center-of-mass experiences a spin-dependent force, whose over-
all effect is simply to shift the momentum from px to −p m kx F x

(min) for the atomic spin component mF, where 
kx

(min)  denotes the minimum of the modified dispersion curve. The momentum of the equilibrium state is thus 
translated by a spin-dependent amount m kF x

(min) , which is equivalent to a synthetic SOC with strength kx
(min). 

Experimentally, this effective strength of SOC is determined from the measured displacement of the atomic 
cloud.

A typical experiment starts with a 87Rb condensate of 1.2 ×  105 atoms in the state = = −F m1, 1F  confined 
inside a crossed dipole trap whose minimum potential region is approximately harmonic with frequencies (ωx, ωy, 
ωz) =  2π ×  (77, 136, 77) Hz along three orthogonal spatial directions x, y, and z. The 1D GMF is implemented by 
a combination of a 3D quadrupole magnetic field = ′ − ′ − ′ˆ ˆ ˆB xx B y y B zzB /2 /2q  and a 5.7 Gauss bias field 
= ˆB xBb 0  [Fig. 1(a)], whose linear and quadratic Zeeman shifts correspond to (2π)4 MHz and (2π)2.34 kHz, 

respectively. More details about the magnetic field control is as described in ref. 38. The amplitude for the GMF is 
sinusoidally modulated as B′ (t) =  ω′B tsin( )max , which translates into a 1D SOC strength µ ω= ′ħk g B /F Bso max , 
where gF denotes the Landé g-factor and μB the Bohr magneton, provided the modulation frequency ω is far away 
from trap resonance, as confirmed in a recent experiment38.

As shown in Fig. 1(b), the |mF =  − 1〉  condensate is loaded into the momentum-shifted equilibrium state by 
adiabatically ramping up the GMF modulation amplitude to a value corresponding to the SOC strength of 

Figure 1. Harmonic-trap-resonance enhanced SOC. (a) Schematic illustration of the experimental setup, 
consisting of the bias (gray) and gradient (blue) magnetic coils. The condensate (red football shape) is produced 
at the center of a crossed optical dipole trap formed from laser beams in pink. Its location coincides with the 
center of the gradient coil configuration. (b) Time sequence of our experiments. The modulation amplitude 
(delimited by the blue dashed envelop) of the gradient magnetic field B′ (t) (shown in red) is adiabatically 
ramped up to an effective value corresponding to kso =  1.25 μm−1 within T1 and held on for T2, followed by the 
Stern-Gerlach (S-G) separation before absorption imaging. To ensure adiabaticity during the ramp, T1 =  250 ms 
and T2 =  50 ms are chosen for the modulation frequency ω >  (2π)100 Hz and T1 =  25τ and T2 =  5τ, with 
τ =  2π/ω being the modulation period, for ω <  (2π)100 Hz. (c) Absorption images for the momentum-shifted 
atomic clouds in the |mF =  − 1〉  state at different values of ω. Darker red denotes higher optical density. The 
abscissa is not to scale. Each measured off-set atomic cloud corresponds to a data point shown in (d) in the same 
order of increasing modulation frequency from left to right. The dashed line denotes kx =  0 for without GMF 
or SOC. (d) The measured values of the scaled SOC strength ζ (black open circles) as a function of ω, which 
agree perfectly with Eq. (8) shown in the blue dotted curve. In the shaded band region surrounding the trap 
resonance, the driven atomic cloud fails to adiabatically reach the momentum-shifted equilibrium state after T2.
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kso =  1.25 μm−1 within 250 ms (or 25 modulation periods for ω <  (2π)100 Hz), and then held on for another 50 ms 
(or 5 modulation periods for ω <  (2π)100 Hz). At integer multiples of the modulation period τ =  2π/ω, the 
crossed dipole trap is turned off in less than 10 μs. Subsequently, the condensate expands for about 24 ms, during 
which different Zeeman components are Stern-Gerlach separated by an inhomogeneous magnetic field along the 
vertical direction. A bimodal fit to the atomic cloud density profile measured through the standard absorption 
imaging, as shown in Fig. 1(c), yields the shifted center-of-mass position for the condensate. The spatial displace-
ment from that without SOC is used to derive the momentum shift kx

(min), from which the scaled SOC strength 
ζ =  kx

(min)/kso is computed.
A clear resonance behavior is observed for ζ, as shown in Fig. 1(c) and (d), for its dependence on the modula-

tion frequency ω relative to the trap frequency ω0 =  ωx =  (2π)77 Hz. Above the trap frequency ω0, ζ increases with 
decreasing ω, from ζ =  1 for ω far above the resonance to a peak when ω approaches ω0. Below the trap frequency, 
ζ changes its sign, with its magnitude growing from ζ =  0 for ω far below the resonance to a peak around the 
resonance. The enhanced response on the opposite sides of the resonance is out of phase as a result of the π phase 
shift across a resonance. Limited by our present setup, we operate in the regime of small momentum impulse 
and observe nearly ten-fold enhancement for ζ at ω/ω0 =  1.03, where heating remains insignificant. The effect of 
heating-induced damping becomes noticeable in the immediate vicinity of resonance.

Discussion
The dramatic resonance enhancement of SOC due to the harmonic trap cannot be explained by the previous 
theory for atoms in free space34, which neglects the influence of the trapping potential on atomic motion. One 
might have naively concluded that an analogous calculation that incorporates the effect of the trap potential into 
the previously studied free-space model would find the agreement with the observed resonance. Unfortunately, 
this is easily said than done. To demonstrate it, we briefly recapitulate the basic idea of the previous theory34. For 
an atom of mass m in free space and in the presence of a sinusoidally modulated GMF along the x-direction, the 
effective 1D Hamiltonian is given by

β= +H t
p
m

t k xF( )
2

( ) , (1)
x

x0

2

so

where px is the momentum of an atom, Fx is the x-component of its spin F, and β(t) =  ωsin(ωt) is the temporal 
profile for the coupling strength between the time-dependent GMF and atomic magnetic dipole moment meas-
ured in units of modulation amplitude ħkso. The Schrödinger equation for H0(t) of Eq. (1) can be more easily 
handled if we introduce a unitary transformation ψ ψ=

∼R t( )  with = −R t ixA t( ) exp[ ( )/ ]x  , which corresponds 
to a momentum translation by the spin-dependent impulse  ∫ β ω= ′ ′ = −A t k F t dt k t F( ) ( ) [1 cos( )]x x

t
xso 0 so  

from the GMF. The wave function ψ∼ in the rotating frame is then governed by the momentum shifted Hamiltonian 
= = −

∼ †H t R t p R t p A t m( ) ( ) ( ) [ ( )] /2
m x x x0
1

2
2 2 , which commutes with itself at different times, ′ =

∼ ∼H t H t[ ( ), ( )] 00 0 . 
The corresponding time evolution operator takes a simple form ∫= 


− 


∼ ∼U t i H t dt( ) exp ( ) /t

0 0 0 1 1  . After one period 
of evolution τ =  2π/ω, we obtain Ax(τ) =  0, or R(τ) =  1. Hence, the wavefunctions in the two frames coincide, 
ψ τ ψ τ=

∼( ) ( ), and the effective Hamiltonian for the whole period is given by

 
∫τ= =

−
+

∼τH H t dt
p k F

m
k
m

F1 ( )
( )

2 4
, (2)

x x
xeff

(0)

0
0

so
2 2

so
2

2

where the first term describes the SOC of strength ħkso and the second term acts like a quadratic Zeeman shift.
In the presence of a 1D harmonic trap Vtrap =  mω0

2x2/2, the Hamiltonian changes into

ω= +H t H t m x( ) ( ) 1
2

, (3)0 0
2 2

which in the rotating frame becomes

ω=
−

+ .
∼H t

p A t
m

m x( )
[ ( )]

2
1
2 (4)

x x
2

0
2 2

Unlike the case of a free atom discussed above, the two ∼H t( )’s in Eq. (4) at different times do not always com-
mute due to the presence of Vtrap. The corresponding unitary evolution operator then takes a more general form 

T �∫= 

− 


∼ ∼U t i H t dt( ) exp ( ) /t

0 1 1 , where   denotes time ordering. This unitary evolution operator takes such a 
complicated form that it is difficult to derive the effective Hamiltonian in a straightforward manner. Therefore, we 
have to resort to other means for a compact solution capable of explaining the resonant behavior observed.

We note that Hamiltonian (3) also describes a sinusoidally driven harmonic oscillator, whose 
quantum-mechanical propagator can be obtained in the explicit analytic form. Hence, we can get the effective 
Hamiltonian of the system by making use of the propagator. For Hamiltonian (3), its propagator is given by (see 
Methods).
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The effective Hamiltonian of the system should give the same propagator as Eq. (5). Without loss of generality, 
it is reasonable to infer that the effective Hamiltonian will not be much different from that in free space in Eq. (2). 
We therefore assume

ζ
ω=

−
+ +H

p k F
m

m x s k
m

F
( )

2
1
2 2

, (6)
x x

xeff
so

2

0
2 2

2
so
2

2 

where ζ and s denote modifications to the strength of SOC and the quadratic Zeeman shift, respectively, when the 
trap potential Vtrap is present. The corresponding propagator in this case is found to be (see Methods)
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The equivalence between the two propagators of Eqs. (5) and (7) thus gives

ζ
ω ω

=
−

1
1 /

,
(8)0

2 2

and ζ=s 1
2

. In other words, the effective Hamiltonian for atoms in a harmonic trap driven by a sinusoidally mod-
ulated GMF is found to be given by Eq. (6), which is similar in form to the case of a free atom except for ζ and s in 
Eq. (8).

The factor ζ in Eq. (8) is plotted as the blue dotted curve in Fig. 1(d), which is found to agree well with the 
measured data except in the immediate vicinity of the trap resonance [shaded band region in Fig. 1(d)], where 
the finite lifetime of the condensate makes it difficult to reach equilibrium. It clearly shows that as the modulation 
frequency ω approaches the trap frequency ω0, the SOC becomes enhanced. More specifically, when approach-
ing the resonance from above, the effective SOC is increasingly enhanced. Upon crossing the resonance ω0, the 
effective SOC reverses its sign, and the factor ζ gradually decreases and eventually tails off to zero at frequencies 
much smaller than ω0. This dependence of ζ on the modulation frequency highlights the tunability discussed in 
this work. In the immediate vicinity of the resonance, the amplitude of atomic micro-motion due to periodic 
modulation is so large that the Gaussian-shaped optical trap cannot be well approximated by a harmonic trap 
anymore, and as a result of the large amplitude oscillations the condensate collapses.

The observed enhancement of SOC is reminiscent of the resonance phenomenon in a driven harmonic oscil-
lator. The factor ζ shown in Eq. (8) can be directly verified as well by comparing the equations of motion for the 
periodically-driven Hamiltonian (3) with the effective Hamiltonian form of (6) (see supplementary material). 
While the factor s cannot be derived in such a way. When the atomic spin is prepared into a superposition state, 
the seemingly classical driven equation of motion becomes spin dependent, a situation without a classical analog. 
For the 1D case considered here, the synthesized SOC can be gauged away by making the transformation 
  †Hx xeff  with  = ζ−ex

i k x F xso . However, when tracking the dynamics for the different atomic spin components, 
the accumulated phase from the SOC term, is real as confirmed in the recent experiment38. Thus, although the 
effective SOC we describe can be gauged away, the observation gives gauge dependent results which implicate the 
presence of synthetic SOC. Furthermore, in the presence of a uniform bias magnetic field, which gives rise to an 
interaction ∝  Fz, or when any other non-commuting interactions are present, the synthesized SOC discussed 
above persists and cannot be gauged away even in 1D system38,40.

In conclusion, for the atomic SOC synthesized from a time-periodic GMF, we observed a resonant behavior 
which highlights nearly ten-fold enhanced SOC when the modulation frequency is close to but higher than the 
trap frequency. This resonance is accompanied by a progression towards vanishing SOC on the lower modulation 
frequency side and a reduction to the value for a free atom in the higher modulation frequency side. We develop 
a theory that well explains the experimentally observed resonant behavior. Compared with atoms in free space 
under a sinusoidally modulated GMF, we find that an effective SOC Hamiltonian for atoms confined inside a 
harmonic trap takes an analogous form, except for a frequency-dependent prefactor. This prefactor reveals the 
resonant behaviour as the periodic drive hits the motional resonance of the harmonic trap.

Methods
Propagator of a forced 1D harmonic oscillator. The quantum-mechanical propagator K(x″ , t″ ; x′ , t′ ) 
describes the transition amplitude from one space-time position (x′ , t′ ) to another (x″ , t″ ). For a time-dependent 
driven harmonic oscillator described by Hamiltonian
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For the example considered in the main text, we have J(t) =  − β(t)ħksoFx and β π= π
τ τ( )t( ) sin 2 t2 , and there-

fore we find
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Thus, the propagator for a sinusoidally driven harmonic oscillator is given by Eq. (5) in the main text.

Propagator for the momentum-shifted 1D harmonic oscillator. To obtain the propagator for 
a momentum-shifted harmonic oscillator described by the effective Hamiltonian (6) in the main text, we first 
derive the propagator Kt for the unitary transformed Hamiltonian
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with  ζ= − i k xFexp( )x xso . Based on the propagator for the harmonic oscillator,
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which is easily reproduced if we put = 0  in Eq. (10) and making use of the properties for the propagators, we 
find that
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Therefore, by making inverse unitary transformation, we obtain the propagator for the effective Hamiltonian 
(6) as
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or Eq. (7) in the main text.
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