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Abstract: Cow’s milk allergy (CMA) is one of the most common food allergies in infancy,
capable of triggering severe allergic reactions. Alterations in gut microbial composition
and function may be closely related to the development of CMA. Probiotics, as a means
to modulate the gut microbial composition, demonstrate potential in controlling allergic
reactions by enhancing gut barrier functions, promoting immune responses in the intestinal
mucosa, and degrading potential allergens. Therefore, probiotics are increasingly consid-
ered a promising strategy for managing CMA. This review summarizes the major allergens
in cow’s milk, their mechanisms of allergenicity, and the role and mechanisms of probiotics
in alleviating CMA. It aims to provide a deeper understanding and fresh perspectives to
support the use of probiotics as an effective approach for the prevention and treatment of
CMA, encouraging broader clinical application and research.

Keywords: probiotics; cow’s milk allergy; gut microbiota; oral tolerance

1. Introduction
Food allergy is a specific immune response that is harmful to health and occurs re-

peatedly after ingesting certain foods, which has become a major global public health
concern [1–3]. Among the eight major food allergens identified by the Food and Agri-
culture Organization (FAO), milk and dairy products (including lactose) are classified as
significant allergens [4]. Cow’s milk is the third most prevalent food allergen in pediatric
and mixed-age populations, following peanut and tree nut allergies [5]. Correspondingly,
cow’s milk allergy (CMA) ranks among the most prevalent food allergies in infancy and
is one of the top three causes of severe allergic reactions in children, with reported preva-
lence rates of 8–15% [6–8]. CMA is an abnormal immune response triggered by allergens
in cow’s milk, typically manifesting as eczema, respiratory symptoms, gastrointestinal
disturbances, and other related conditions. It is closely related to immunoglobulin E (IgE)-
and immunoglobulin G (IgG)-mediated hypersensitivity reactions [9].

Probiotics, as defined by the FAO and World Health Organization (WHO) in 2001, are
live microorganisms that confer health benefits to the host when administered in adequate
amounts [10–12]. A key characteristic of probiotics is their ability to promote health,
which must be demonstrated through scientifically validated strains with specific functions
and efficacy [13–15]. Various probiotic species and strains have been reported to exhibit
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beneficial effects, including Saccharomyces boulardii, Lacticaseibacillus casei, Bifidobacterium
animalis subsp. lactis, Lacticaseibacillus rhamnosus, Bifidobacterium infantis, Lactiplantibacillus
plantarum, Lactobacillus acidophilus, and Lacticaseibacillus paracasei [16–22]. Many studies
have indicated that probiotics can alleviate allergic reactions by modulating T helper
1 cells (Th1)/T helper 2 cells (Th2) and T helper 17 cells (Th17)/regulatory T cell (Treg)
immune balance, restoring gut microbiota homeostasis, antagonizing pathogens, enhancing
intestinal mucosal barrier integrity, and regulating immune function through enzymatic
activity and beneficial metabolites [23–26].

Herein, this review aims to summarize the major allergens in cow’s milk, their allergic
mechanisms, and the effects and mechanisms of probiotics in alleviating CMA, providing a
theoretical foundation for precision nutrition using probiotics.

2. Major Allergens in Cow’s Milk
Food allergens are components in food that selectively activate immune cells and trig-

ger abnormal immune responses, with most being proteins. Cow’s milk proteins constitute
3–5% of total milk content, with caseins comprising 80–85% and whey proteins 15–20% [27].
Some milk proteins contain linear or conformational antigenic epitopes recognized by the
human immune system. Upon ingestion, these proteins may be identified as “harmful”
substances, stimulating immune cells to produce antibodies, primarily IgE [28]. Excessive
IgE binds to mast cells and other receptor-bearing cells. Upon re-exposure to the anti-
gen, these cells release histamines and other mediators, leading to allergic reactions. The
most common allergenic proteins in cow’s milk are caseins, β-lactoglobulin (β-LG), and
α-lactalbumin (α-LA) [29], which differ significantly in composition and concentration
from those in human milk.

2.1. Caseins

Caseins are a family of calcium-binding phosphoproteins found in milk in micellar
form, accounting for 80–85% of total milk protein [30]. They are encoded by different
genes located on the same chromosome and classified into αs1-, αs2-, β-, and κ-caseins.
Differences in structure and content between human and bovine caseins contribute to
their allergenicity.

A study indicated that approximately 65% of individuals with milk allergy react to
caseins [31]. Bernard et al. isolated and purified four types of caseins and conducted
antigen-antibody reactions by immobilizing these antigens with sera from 58 children
allergic to total casein [32]. Their findings revealed that 85% of these children exhibited
specific IgE reactivity to all four caseins. The amino acid composition of these four ca-
seins has been extensively studied. Thus, the identification of IgE-binding epitopes has
become a key strategy in the investigation of milk protein allergy. Numerous studies
have mapped IgE-binding regions within milk protein amino acid sequences and further
identified key residues involved in IgE binding. Spuergin et al., using synthetic peptide
methodologies, identified three IgE-binding regions in the αs1-casein sequence that trig-
gered allergic responses in sensitized individuals: positions 19–30, 93–98, and 141–150 [33].
These sequences were located within the hydrophobic region of casein, suggesting that
denaturation or degradation of casein in the human body could enhance its allergenicity.
Chatchatee et al. employed cellulose-derivative membrane synthesis and identified six
major IgE-binding epitopes on αs1-casein [34], including the three sequences previously
identified by Spuergin et al. Their study also highlighted differences in epitope recognition
between individuals with persistent and transient CMA. Similarly, Jarvinen et al. synthe-
sized known IgE-binding peptides from milk proteins on cellulose membranes and found
that five casein-derived peptides were recognized by sera from milk-allergic patients [35].
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Furthermore, Cerecedo et al., using peptide chip immunoassays, studied the specificity
of IgE and IgG antibodies binding to milk proteins and identified eight highly allergenic
peptide fragments among the four caseins [36]. Their findings indicated that the recognition
patterns of these milk proteins differed between allergic patients and healthy individuals.
Cong et al. applied serological methods to determine IgE and IgG epitopes in αs1-casein
and employed alanine-scanning mutagenesis to pinpoint critical allergenic residues at
positions 22 and 23 of αs1-casein [37].

Although these studies employed different methodologies and thus identified varying
allergenic fragments, several key antigenic epitopes have been consistently confirmed
across multiple studies. These include residues 69–178 and 173–194 in αs1-casein, residues
171–180 and 191–200 in αs2-casein, residues 45–50, 55–70, and 173–194 in β-casein, and
residues 13–22, 34–44, and 155–164 in κ-casein.

2.2. Whey Proteins

α-LA and β-LG are the main sensitizing components of whey proteins [38]. Compared
to caseins, whey proteins have a higher degree of secondary and tertiary structures, and
β-LG also exhibits a quaternary structure [39,40]. These proteins are resistant to acid and
enzymatic hydrolysis due to their lack of phosphorylation and the presence of intramolec-
ular disulfide bonds, allowing them to retain structural integrity during digestion and
trigger immune responses [41]. Studies have shown that among individuals with CMA,
approximately 27.6–62.8% exhibit sensitivity to α-LA, while approximately 82% are allergic
to β-LG [36,42,43]. In a study conducted by Shi et al. on the antibody specificity of major
milk allergens in the sera of milk-allergic children in China, the IgE positivity rates for
α-LA and β-LG were found to be 44.3% and 39.3%, respectively [44].

Regarding the allergenic peptide segments of whey proteins, Jarvinen et al. utilized a
cellulose-derived membrane synthesis method to analyze the recognition patterns of α-LA
and β-LG in the sera of 11 CMA patients [35]. Their findings identified four IgE-binding
regions and three IgG-binding regions on α-LA, as well as seven IgE-binding regions
and six IgG-binding regions on β-LG. Hochwarner et al. reported that among 66 CMA
patients, 57.6% exhibited IgE reactivity to α-LA, and they identified six IgE-binding regions
on α-LA [45], three of which overlapped with those previously identified by Jarvinen
et al. Similarly, Li et al. identified six linear IgE-binding epitopes on α-LA, two of which
were consistent with the findings of prior studies [46]. Furthermore, Cong et al., using
immunolabeling techniques combined with alanine-scanning mutagenesis, pinpointed
key IgE-binding amino acids at positions 20, 23, and 27 on β-LG, while positions 26 and
31 were identified as critical IgG-binding residues [47]. Subsequent studies by the same
group further identified six key IgE-binding amino acids and five IgG-binding amino acids
on α-LA.

Comparative analysis of these studies has confirmed the major allergenic regions
within whey proteins. Specifically, the primary IgE-binding regions of α-LA are located
at amino acid positions 1–16, 15–26, 62–72, and 93–109, whereas the primary IgE-binding
regions of β-LG are found at positions 58–77, 72–78, and 121–134. The identification and
characterization of these antigenic epitopes provide valuable insights for assessing the
allergenicity of milk proteins and serve as a foundation for developing targeted and efficient
strategies to reduce milk protein allergenicity.

3. Mechanisms of Cow’s Milk Allergy
CMA is primarily mediated by non-IgE pathways, though IgE-mediated pathways

have been more extensively studied. In the EuroPrevall birth cohort study conducted
across nine European countries, a total of 9336 infants were prospectively followed. Among
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them, 358 children presenting with symptoms suggestive of CMA underwent standardized
clinical evaluation. Of the 55 children who were subsequently confirmed to have cow’s milk
allergy, approximately 56.3% were classified as having non-IgE-mediated allergy, while
43.7% exhibited IgE-mediated mechanisms [48]. A study in China reported that only 27%
of CMA patients exhibit IgE-mediated immune responses [49]. The mechanisms of IgE-
and non-IgE-mediated cow’s milk allergy are shown in Figure 1.

 

Figure 1. The mechanism of CMA. APC: antigen-presenting cell; IL-2: interleukin-2; IL-4: interleukin-
4; IL-13:interleukin-13; IL-5: interleukin-5; Th1: T helper 1 cell;Th2: T helper 2 cell; TNF-γ: -tumor
necrosis factor-γ; TNF-α:tumor necrosis factor-α; CMA: cow’s milk allergy; FcεRI: high-affinity
immunoglobulin E receptor.

3.1. IgE-Mediated CMA

IgE-mediated CMA is a rapid-onset hypersensitivity reaction that progresses through
two distinct phases. The first phase is the sensitization stage. Upon initial exposure to milk
allergens, antigen-presenting cells (APCs) process and present the allergens, leading to the
activation of naive T cells (Th0). This results in the differentiation of a limited number of
Th1 cells and a predominant expansion of Th2 cells [50]. Th2 cells secrete cytokines such
as interleukin-4 (IL-4) and interleukin-13 (IL-13), which induce B cells to undergo class
switching and differentiate into plasma cells, thereby producing IgE antibodies [51]. The
Fc region of IgE binds to high-affinity IgE receptors (FcεRI) expressed on mast cells and
basophils in the bloodstream, rendering the individual sensitized [52]. If further exposure
to the allergen is avoided over time, this sensitized state may gradually diminish. The
second phase is the effector stage. Upon re-exposure to the same milk allergen, cross-linking
of IgE on the surface of mast cells and basophils triggers a signaling cascade, leading to
cellular degranulation [53]. This results in the rapid release of bioactive mediators such as
histamine and leukotrienes, which provoke local or systemic allergic reactions (Figure 1).
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3.2. Non-IgE-Mediated CMA

Non-IgE-mediated cow’s milk allergy typically manifests as a delayed hypersensi-
tivity reaction, occurring several hours to days after milk protein ingestion. This process
involves the participation of both Th1 and Th2 immune pathways [54]. Upon exposure to
milk allergens, APCs process and present the antigens, leading to the activation of Th0.
Subsequently, Th1 cells produce interleukin-2 (IL-2) and tumor necrosis factor-γ (TNF-γ),
which activate macrophages and elicit an immune response [55] (Figure 1).

4. Gut Microbiota Alterations in CMA Patients
The term “gut microbiota” includes all microorganisms, not only bacteria, but also

fungi, protists, archaea, and viruses that live in the gastrointestinal tract [56]. Dysbiosis
is commonly defined as a decrease in microbial diversity, an absence of beneficial mi-
crobes, or the presence of potentially harmful microorganisms [57]. Significant differences
in gut microbial composition have been observed between individuals with CMA and
healthy controls, particularly in infants and young children. Bunyavanich et al. found that
children who outgrew CMA by age eight had gut microbiota enriched in Firmicutes and
Clostridiales at 3–6 months, whereas persistent CMA was associated with Bacteroidetes
and Enterobacteriaceae dominance [58].

Similarly, Canani et al. found that gut dysbiosis in CMA patients was driven by an
overrepresentation of Bacteroides and Ruminococcus species [59]. Furthermore, dysbiosis
associated with both IgE- and non-IgE-mediated CMA exhibited overlapping characteris-
tics, with a significant enrichment of Bacteroides. Another study suggested that the ratio
of Enterobacteriaceae to Bacteroidaceae (E/B ratio) could serve as a marker of gut microbiota
maturity [60]. In healthy infants, the E/B ratio gradually decreases with age, indicating
progressive gut microbiota maturation. However, in CMA infants, an elevated E/B ratio
suggests delayed gut microbiota development, which may be a critical predictor of milk
allergy. Mauras et al. demonstrated that infants with CMA exhibit lower Bifidobacterium
and higher Lachnospiraceae levels at birth [61]. When the gut microbiota from CMA infants
was transplanted into germ-free mice, the lower Bifidobacterium/Lachnospiraceae ratio in
the infant microbiome promoted a Th2-skewed immune response and aggravated allergic
symptoms [61]. Wang et al. further demonstrated that gut microbial dysbiosis associated
with non-IgE-mediated cow’s milk protein allergy impairs both the abundance and function
of intestinal Treg, thereby disrupting immune tolerance and intestinal homeostasis [62].

These findings highlight a strong correlation between the development of CMA and
gut microbiota dysbiosis. Common characteristics of the gut microbiota in CMA patients
include an increased ratio of Enterobacteriaceae to Bacteroidaceae, an enrichment of Firmicutes,
and a depletion of Bifidobacterium. Such dysbiotic changes in the gut microbiota are thought
to disrupt immune homeostasis, thereby contributing to the persistence and exacerbation
of allergic responses. Therefore, monitoring gut microbiota composition may serve as a
valuable approach for predicting and preventing CMA.

5. Mechanisms of Probiotic Alleviation of CMA
5.1. Application of Probiotics in CMA

Extensive animal studies and clinical research have demonstrated that probiotics
supplementation can effectively mitigate the onset and progression of CMA (as shown in
Table 1). The application of probiotics in alleviating CMA primarily focuses on maintaining
gut microbiota balance, enhancing intestinal barrier function, and regulating the Th1/Th2
immune equilibrium. By administering probiotic therapies and supplements to individuals
with CMA, allergic symptoms can be effectively alleviated, contributing to improved
immune tolerance and overall management of the condition.
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Table 1. Application of probiotics in alleviation of CMA.

Species Allergen Probiotics Treatment Results Reference

Infant Cow’s milk
Lacticaseibacillus
rhamnosus GG

(LGG)

Infants aged 0–12 months
with CMA were
administered an

extensively hydrolyzed
casein formula (EHCF)

supplemented with LGG,
and were followed up for a

period of 36 months.

Reduce the incidence of
other allergic

manifestations and
accelerate the

development of
oral tolerance.

[63]

Infant Cow’s milk LGG

Infants aged 0–12 months
with CMA were

administered an EHCF
supplemented with LGG
for a period of 36 months.

Improving infant gut
microbial composition,

diversity, and metabolites
to promote tolerance

[64]

Infant Cow’s milk
protein LGG

Infants aged 0–12 months
with cow’s milk protein

allergy were administered
LGG alongside a milk-free

diet for a period of
4 weeks.

Improving bloody stools,
diarrhoea, restlessness,

and bloating.
[65]

Infant Cow’s milk
protein Bifidobacteria

Infants aged 6–12 months
with cow’s milk protein

allergy were administered
Bifidobacteria alongside a

milk-free diet for a period
of 45 days.

Reduce naive and
activated CD4+ T cells as

well as degranulated
basophilic granulocytes.

[66]

Infant Cow’s milk
protein

Bifidobacterium
bifidum TMC3115

Infants aged 0–12 months
with cow’s milk protein

allergy were administered
Bifidobacterium bifidum

TMC3115 for a period of
6 months.

Reduce allergy scores,
enhance

anti-inflammatory
responses, decrease

serum IgE levels, increase
IgG2 levels, and regulate

the gut microbiota.

[67]

Mice β-LG

Lactobacillus
delbrueckii subsp
bulgaricus CRL

656 (H656)

After hydrolysis of β-LG
with H656, BALB/c mice

were gavaged.

After hydrolyzing β-LG
with H656, the allergic
response induced by

β-LG was suppressed by
increasing the secretion

of IL-6, IL-10, and IFN-γ,
reducing IL-4 levels,
improving intestinal

mucosal damage, and
decreasing

leukocyte infiltration.

[68]

Mice α-Caseins
and β-LG

yogurt beverage
(Lactiplantibacil-

lus plantarum and
Bifidobacterium

animalis
subsp. lactis)

Administer the yogurt
beverage to BALB/c mice
via gavage for a period of

4 weeks

Enhanced the secretion of
IL-10, TGF-β, and IgA,

while reducing the levels
of IL-4, IgE, and IgG1.

[69]
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Table 1. Cont.

Species Allergen Probiotics Treatment Results Reference

Mice β-LG

Lactobacillus
salivarius LA307,
Bifidobacterium
longum subsp.
infantis LA308,

Lacticaseibacillus
rhamnosus LA305

Administer probiotics to
BALB/c mice via gavage
for a period of 6 weeks.

Lactobacillus salivarius
LA307 blocked Th1 and

Th2 responses;
Bifidobacterium longum
subsp. infantis LA308

induced a pro-Th1
response;

Lacticaseibacillus
rhamnosus LA305

induced both a pro-Th1
and an

immunoregulatory
response.

[70]

Mice Cow’s milk Lacticaseibacillus
casei BL23

Administer
Lacticaseibacillus casei BL23

to BALB/cJ mice via
gavage continuously for

5 days.

Induces both local and
systemic Foxp3+ RORγt+

type 3 regulatory T
cells (Tr3).

[71]

Mice α-Caseins
and β-LG

Fermented whey
(Streptococcus

salivarius subsp.
thermophilus 2 K,

Lactobacillus
delbrueckii subsp.

bulgaricus
BK—FW whey, S.
thermophilus 2 K,
L. bulgaricus BK,
Lactiplantibacillus
plantarum W42,

and
Bifidobacterium

animalis ssp.
lactis

Bi30—FW-LB)

Administer the fermented
whey to BALB/c mice via

gavage for a period of
4 weeks

Altered the Th1/Th2
balance towards a Th1
response, enhanced the
secretion of IL-10 and

TGF-β, and reduced the
levels of allergy markers.

[72]

Mice skimmed
milk

Fermented milk
beverage (L.
plantarum

DPUL-F20, L.
paracasei

DPUL-F29, L.
bulgaricus

DPUL-F36 and S.
thermophilus

BD0453)

Administer the Fermented
milk beverage to BALB/c

mice via gavage for a
period of 7 weeks

Regulated the Th1/Th2
and Th17/Treg immune

balance, reduced the
levels of total IgG, total

IgG1, and total IgE
antibodies, serum mast

cell protease, and plasma
histamine levels, and

modulated the
composition of the

gut microbiota.

[73]

Mice β-LG
Clostridium
butyricum

CGMCC0313-1

Administer Clostridium
butyricum CGMCC0313-1

to BALB/cJ mice via
gavage for a period of

3 weeks.

Improved intestinal
allergic reaction

symptoms. Increased
levels of sIgA and CD4+

CD25+ Foxp3+ Treg cells.
Reversed the imbalance
between Th1/Th2 and

Th17/Treg.

[74]
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Table 1. Cont.

Species Allergen Probiotics Treatment Results Reference

Rat Whey protein
Lactiplantibacillus

plantarum
DPUL-F232

Administer
Lactiplantibacillus plantarum

DPUL-F232 to SD rat via
gavage.

Alleviated allergic
symptoms, reduced

intestinal inflammation,
and lowered serum

antibody and histamine
levels in rats; regulated
the Th1/Th2 balance,

promoted the secretion of
IL-10, and inhibited mast

cell degranulation.
Upregulated the

expression of tight
junction proteins to

restore the integrity of
the intestinal barrier;
modulated the gut
microbiota and its

metabolic products to
alleviate allergies.

[75,76]

In Vitro Cow’s milk
protein

Lacticaseibacillus
paracasei XJ-003 Fermented

Significantly reduced the
antigenicity of
milk proteins.

[77]

In Vitro
Cow’s milk
and butter

milk

Lactic acid
bacteria and

Bifidobacterium
Fermented

Fermentation with L.
casei LcY bacteria

significantly reduced the
immunoreactivity of

BLG, α-CN, β-CN, κ-CN,
and raw milk by 98%,

96%, 89%, 75%, and 93%,
respectively. Similarly,
fermentation with L.

delbrueckii ssp. bulgaricus
151 resulted in reductions
in the immunoreactivity
of the same proteins by

98%, 95%, 90%, 71%, and
89%. A significant
reduction in IgE

reactivity was only
observed in the products

fermented by both
bacterial strains together.

[78]

In Vitro α-LA and
β-LG

Lactic acid
bacteria Fermented

Reduced the allergenic
potential of α-LA

and β-LG
[79]

In Vitro α-LA and
β-LG

Lactobacillus
helveticus and
Streptococcus
thermophilus

Fermented
Reduced the allergenic

potential of α-LA
and β-LG

[80]

In Vitro α-LA and
β-LG

Streptococcus
thermophilus and

Lactobacillus
delbrueckii subsp.

bulgaricus.

Fermented

Block allergenic epitopes,
produce bioactive

peptides; modulate the
immune system.

[81]



Foods 2025, 14, 1879 9 of 17

5.2. Mechanism of Action of Probiotics in Modulating Cow’s Milk Allergy
5.2.1. Regulation of Intestinal Microbiota

Given the significant differences in the composition and abundance of gut microbiota
between allergic and healthy individuals, modulating the gut microbiota represents an
effective strategy for managing CMA. Under conditions of nutrient limitation, probiotics
compete with harmful bacteria in the intestinal wall for colonization sites and essential
nutrients [82]. Additionally, probiotics can utilize their own digestive enzymes to break
down and metabolize incompletely hydrolyzed dietary components in the gastrointestinal
tract [83]. Under normal physiological conditions, Lacticaseibacillus species are predominant
in the distal small intestine and proximal colon, while Bifidobacterium species dominate
the distal colon. Therefore, supplementation with Lacticaseibacillus or Bifidobacterium can
effectively reduce microbial competition for nutrients [84]. Moreover, Bifidobacterium
has been shown to enhance mucin secretion by intestinal epithelial cells and regulate gas-
trointestinal hormone levels. The adhesion of probiotics to mucus and intestinal epithelial
cells not only provides a competitive advantage but also prevents pathogenic bacteria
from adhering to intestinal epithelial cells [85]. For instance, Bifidobacterium, through its
adhesion to teichoic acid in the bacterial cell wall, facilitates the synthesis of extracellular
glycosidases within intestinal epithelial cells, thereby degrading potential pathogens and
forming a protective intestinal barrier, effectively preventing pathogenic invasion, adhesion,
and colonization [86,87].

Numerous clinical studies have demonstrated that probiotic supplementation is one
of the most direct methods for regulating host gut microbiota, playing a significant role in
alleviating CMA symptoms. One trial using EHCF supplemented with LGG in 19 CMA
infants showed increased butyrate levels and enrichment of beneficial genera such as Blautia
and Roseburia in tolerant individuals, indicating improved oral tolerance [59]. Mennini et al.
found that long-term colonization of Bifidobacterium longum subsp. infantis M-63 increased
the abundance of Akkermansia and Ruminococcus in the gut of CMA infants, promoting
beneficial gut microbiota regulation. The biological rationale for using Bifidobacterium
longum subsp. infantis M-63 in the treatment of CMA is therefore well-supported [88].
Another intervention using Bifidobacterium TMC3115 reduced allergy scores and enhanced
anti-inflammatory responses in CMA infants, altering microbial composition toward ben-
eficial phyla [67]. A study involving CMA infants aged 0–12 months demonstrated that
daily administration of LGG for four consecutive weeks significantly improved allergic
symptoms such as hematochezia, diarrhea, and bloating [65]. However, its effects on
abdominal pain, constipation, and skin inflammation were less pronounced.

In summary, probiotic intake positively regulates gut microbiota composition, en-
hances immune tolerance, and improves allergic symptoms in CMA infants. While many
probiotics have demonstrated anti-allergic properties, the increasing availability of multi-
strain probiotic formulations necessitates rigorous clinical evaluation of their colonization
capacity and persistence within the gut before widespread clinical application. A deeper
understanding of strain-specific effects will be critical for optimizing therapeutic outcomes
in CMA management.

5.2.2. Enhancement of the Intestinal Barrier

The intestinal barrier is a dynamic system composed of four interrelated components:
the mechanical, chemical, immune, and microbial barriers. These barriers work synergisti-
cally to defend against pathogens and prevent the penetration and absorption of allergens.
The mechanical barrier consists of intestinal epithelial cells and their tight junctions, which
selectively regulate the transport of substances, preventing allergens and inflammatory
mediators from infiltrating the intestinal mucosa [89]. Probiotics can enhance the integrity
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of the mucosal barrier by upregulating the expression of tight junction proteins in intestinal
epithelial cells [90]. The chemical barrier primarily comprises digestive secretions from
intestinal goblet cells and antimicrobial compounds produced by probiotics. Studies have
shown that Clostridium species and other commensal bacteria interact with group 3 innate
lymphoid cells (ILC3s) to stimulate the production of interleukin-22 (IL-22), which in
turn induces Paneth cells to release antimicrobial peptides and promotes goblet cells to
secrete mucus [91] (Figure 2). This process helps regulate the uptake of milk allergens. The
microbial barrier is formed by the gut microbiota, which constitutes a self-regulating and
interdependent ecosystem. The balance of this microbial community plays a crucial role
in maintaining the intestinal barrier. Probiotics, through competitive exclusion and the
secretion of metabolic byproducts, contribute to gut barrier function, not only enhancing
immune responses but also further degrading allergenic proteins [92,93]. In infants, limited
enzymatic capacity and an underdeveloped intestinal barrier allow partially digested milk
proteins to enter the systemic circulation more easily [94,95]. Gut dysbiosis further com-
promises barrier integrity, enabling greater allergen translocation and intensifying allergic
responses [96].

Figure 2. Potential mechanisms of probiotics to alleviate CMA. DC: dendritic cell; SCFA: short-
chain fatty acid; AMPs: antimicrobial peptides; Treg: regulatory T cell; Th2: T helper 2 cell, IL-18:
interleukin-18; IL-22: interleukin-22; TJs: tight Junctions; TGF-β: transforming growth factor-β; CMA:
cow’s milk allergy; ↑, up-regulated; ↓, down-regulated.

Probiotic colonization can form a protective layer on the intestinal mucosa, restoring
and reinforcing barrier function while simultaneously promoting microbial homeostasis.
This, in turn, strengthens the immune barrier and enhances oral tolerance. Therefore, the
ability of probiotics to modulate intestinal barrier function may be a key mechanism in
preventing the entry of milk allergens and mitigating allergic reactions.

5.2.3. Promotion of Intestinal Mucosal Immunity

Studies have shown that CMA in infants is closely linked to the immaturity of the
intestinal mucosal immune system, particularly the low secretion of secretory IgA (SIgA),
which weakens the defense against milk allergens [97,98]. Probiotics can enhance mucosal
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immunity by stimulating immune cells and promoting SIgA production. SIgA binds to
allergens in the intestinal mucus layer, limiting their absorption and preventing systemic
sensitization [99]. Lactobacillus acidophilus LaVK2 and Bifidobacterium BbVK3 increased
Th1 cytokines while reducing Th2 cytokine IL-4 in whey-allergic mice, suggesting that
probiotics alleviate allergic responses by enhancing Th1-type immunity and suppressing
excessive Th2-mediated reactions, thereby restoring the Th1/Th2 immune balance [83].
Neau et al. investigated the effects of Lacticaseibacillus salivarius LA307, Bifidobacterium
longum subsp. infantis LA308, and Lacticaseibacillus rhamnosus LA305 in mice allergic to
β-lactoglobulin. The study found that Lacticaseibacillus salivarius LA307 exhibited strong
immunosuppressive effects by inhibiting both Th1 and Th2 responses and potentially
inducing regulatory T (Treg) cells. Bifidobacterium. longum subsp. infantis LA308 promoted
Th1 cytokine production while inhibiting Th2 cell proliferation, whereas Lacticaseibacillus
rhamnosus LA305 modulated and enhanced Th1 responses [70]. These findings indicate
that these probiotic strains contribute to the restoration of Th1/Th2 immune balance and
alleviate CMA symptoms. Further research has demonstrated that the gut microbiota
induces a specific subset of CD4+ FoxP3+ Treg cells that also express RORγt+, the key
transcription factor of Th17 cells. This novel subset of Treg, referred to as Tr3 cells, plays
a crucial role in immune modulation [100]. To further explore their function, researchers
administered Lacticaseibacillus casei BL23 to CMA-induced mice and found that it induced
both local and systemic FoxP3+ RORγt+ Tr3 cells, which contributed to the immune-
enhancing effects of Lacticaseibacillus casei BL23 against CMA [71]. Sardecka-Milewska et al.
reported that increased FoxP3 mRNA expression accelerates the acquisition of tolerance in
CMA infants. Moreover, FoxP3+ Treg cells promote the secretion of IgA and IgG by B cells
while inhibiting Th2 cells and IgE production, ultimately alleviating allergic responses to
cow’s milk proteins [101] (Figure 2).

In addition, probiotic metabolites, particularly short-chain fatty acids (SCFAs), can
directly interact with host cells and pathogens, transmitting immunomodulatory signals.
SCFAs activate dendritic cells (DCs) through G-protein-coupled receptors, leading to the
production of interleukin-18 (IL-18), which not only repairs epithelial damage but also
promotes the proliferation of FoxP3+ Treg cells [102]. FoxP3+ Tregs exert anti-inflammatory
effects by secreting interleukin-10 (IL-10), interleukin-35 (IL-35), and transforming growth
factor-β (TGF-β), thereby maintaining oral tolerance to cow’s milk proteins [103]. Probiotics
and their metabolic products alleviate symptoms of CMA by inducing the production of
Treg, regulating the Th1/Th2 balance, and directing the class-switch recombination of B
cells (Figure 2).

5.2.4. Decomposition of Cow’s Milk Allergenic Proteins

Probiotics can reduce the allergenicity of cow’s milk proteins by enzymatically degrad-
ing milk allergens. Zhao et al. reported that Clostridium butyricum strain Z816 exhibited
exceptional degradation capabilities against the major milk allergen β-LG, significantly
reducing its allergenicity and alleviating CMA symptoms [104]. The degradation of β-
LG was attributed to protease production by Clostridium tyrobutyricum Z816, as well as
enhanced cell permeability, which facilitated improved substrate-protease interactions,
thereby increasing degradation efficiency. Micael et al. simulated gastrointestinal digestion
in vitro and found that pre-hydrolysis of β-LG by Lacticaseibacillus salivarius LA307 and
Lactobacillus delbrueckii subsp. bulgaricus CRL 454 significantly enhanced its digestibility,
thereby mitigating allergic responses [105]. Additionally, probiotics can degrade large
allergenic proteins through fermentation, disrupting their antigenic epitopes and reducing
their immunogenicity [106]. For instance, fermentation with Lacticaseibacillus casei LcY
alone effectively reduced the immunoreactivity of α-LA and β-LG, and their allergenicity
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was further diminished after simulated digestion [107]. Similarly, co-fermentation with
Lactobacillus helveticus and Streptococcus thermophilus significantly decreased the anti-
genicity of α-LA and β-LG, with observed synergistic effects between the strains [80,108].
Regarding caseins, Biscola et al. demonstrated that during the fermentation of ultra-high
temperature (UHT)-treated skim milk, Enterococcus faecium VB63F produced proteases
capable of effectively hydrolyzing the major milk allergens αs1-casein, αs2-casein, and
β-casein, thereby reducing their allergenicity [107].

6. Conclusions and Prospects
The application of probiotics in modulating the gut microbiota–immune axis to al-

leviate CMA has emerged as a significant research focus. Current studies indicate that
probiotics contribute to restoring gut microbial balance, enhancing intestinal barrier func-
tion, and regulating immune responses, thereby playing a crucial role in alleviating allergic
reactions. However, the precise mechanisms by which probiotics exert their anti-allergic
effects remain under investigation, necessitating further in vitro and in vivo studies to
establish their efficacy and safety.

One promising area of research involves the incorporation of probiotics into hypoal-
lergenic infant formula to enhance immune tolerance in CMA patients. While hydrolyzed
infant formulas—either casein-based or whey-based—are widely used to manage CMA,
residual allergenic epitopes in some formulations may still trigger allergic responses. Recent
advancements have explored the combination of enzymatic hydrolysis with probiotic sup-
plementation to create hypoallergenic milk protein hydrolysates with broader applications.
Notably, the addition of LGG to extensively hydrolyzed casein EHCF has demonstrated
potential in accelerating immune tolerance acquisition, reducing the incidence of allergic
dermatitis, and mitigating intestinal inflammation. Nonetheless, concerns remain regarding
the long-term safety and effectiveness of probiotic-enhanced formulas. Current challenges
include variability in probiotic strain specificity, dosage, and treatment duration, which
hinder the development of standardized clinical protocols. Future studies should clar-
ify strain-specific immunomodulatory mechanisms, optimize supplementation regimens,
and assess the long-term impact on immune development. Additionally, a more refined
understanding of how different probiotic strains interact with casein and whey protein
hydrolysates is needed to optimize hypoallergenic formula formulations.

In conclusion, probiotics hold significant promise as a complementary approach for
managing CMA, yet their application requires deeper mechanistic insights and robust clini-
cal validation. Future research should focus on optimizing probiotic-based interventions,
determining individualized treatment strategies based on genetic and microbiota profiles,
and ensuring the long-term safety of probiotic-enriched hypoallergenic formulas. Estab-
lishing standardized protocols for probiotic supplementation will be critical for integrating
these promising microbial therapies into mainstream CMA management.
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