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Abstract

Background: In the developing brain, the death of immature oligodendrocytes (OLs) has 

been proposed to explain a developmental window for vulnerability to white matter injury 

(WMI). However, in neonatal mice, chronic sub-lethal intermittent hypoxia (IH) recapitulates the 

phenotype of diffuse WMI without affecting cellular viability. This work determines whether, in 

neonatal mice, a developmental window of WMI vulnerability exists in the absence of OLs lineage 

cellular death.

Methods: Neonatal mice were exposed to cell-nonlethal early or late IH stress. The presence or 

absence of WMI phenotype in their adulthood was defined by the extent of sensorimotor deficit 

and diffuse cerebral hypomyelination. A separate cohort of mice was examined for markers of 

cellular degeneration and OLs maturation.

Results: Compared to normoxic littermates, only mice exposed to early IH-stress demonstrated 

arrested OLs maturation, diffuse cerebral hypomyelination and sensorimotor deficit. No cellular 

death associated with IH was detected.

Conclusion: Neonatal sub-lethal IH recapitulates the phenotype of diffuse WMI only when IH-

stress coincides with the developmental stage of primary white matter myelination. This signifies a 
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contribution of cell-nonlethal mechanisms in defining the developmental window of vulnerability 

to diffuse WMI.

Introduction

Clinical advances in neonatal intensive care have improved the survival of very low 

birth weight and extremely low birth weight infants. However, these survival gains come 

with increased risk for certain complications associated with preterm birth. White matter 

injury (WMI) and associated neurologic disability represent significant morbidities and 

have increased in incidence with the survival of smaller and sicker premature infants 

[1]. The neuropathological spectrum of WMI ranges from extensive white matter loss 

defined as cystic periventricular leukomalacia (PVL) to focal microscopic gliosis and diffuse 

cerebral hypomyelination [2]. Recently, non-cystic diffuse WMI has become a predominant 

neuropathological lesion in premature infants with brain injury [2, 3]. Preterm birth is the 

primary risk factor for the development of WMI, with delivery at 23 – 29 weeks conferring 

the highest risk. This gestational age corresponds to the onset and initiation of primary 

myelination in the developing brain [4, 5]. It has been proposed that excessive and selective 

death of oligodendrocyte precursors (OPCs) and immature pre-oligodendrocytes (pre-OLs) 

prior to primary myelination disrupts oligodendrocyte (OL) maturation leading to cerebral 

myelination failure [6]. This hypothesis implies that a lethal cellular insult (i.e., an oxidative 

stress or ischemia) results in permanent depletion of pre-myelinating and myelinating OLs 

leading to global cerebral hypomyelination.

Recently, we have reported a mouse model of neonatal chronic IH stress, in which diffuse 

cerebral hypomyelination and sensorimotor neurological deficit were reproduced in the 

absence of excessive cellular death in the brain [7, 8]. The fact that the phenotype of diffuse 

WMI can be replicated in the absence of OPCs and pre-OLs degeneration [8] suggests that 

the death/loss of immature OLs prior to and during active primary myelination is not an 

exclusive mechanism of the developmental window of vulnerability to WMI.

Sub-lethal chronic IH stress is one of the most common clinical manifestations of 

prematurity [9]. In extremely premature infants IH stress has been associated with a 

significantly increased probability of neurodevelopmental impairment or late death [9]. It 

has also been reported that, in human infants, the frequency of daily IH events peaks during 

the initial six to eight weeks following a premature birth [10]. This time frame coincides 

with the period of the most active OL differentiation.

This study was undertaken to determine if there is a critical time interval (developmental 

window) when the brain is highly vulnerable to IH that causes WMI. We have shown that 

IH during the first 10 days of life results in diffuse WMI due to arrested OL/s differentiation 

without cellular death in the brain.
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Methods

The model of diffuse WMI and experimental design.

All experiments were approved by the Columbia University Institutional Animal Care and 

Use Committee in accordance with AAALAC guidelines. The murine model of IH-induced 

WMI has been described previously [7]. Briefly, C57BL/6J newborn mice were exposed to 

30 IH events daily. Each hypoxic event consisted of three minutes of exposure to 8% O2, 

followed by five minutes of reoxygenation in room air at the ambient temperature of 34°C. 

Experimental design and study groups are shown in Fig. 1A. There were two experimental 

groups: early exposure to IH (EIH) from postnatal day one (P1, day of birth was defined 

as P0) until P10 and late exposure to IH (LIH) - from P10 until P20. These ages for IH 

exposure were selected because primary white matter myelination in rodents peaks during 

the initial postnatal weeks [11], and expression of genes coding myelin proteins reaches 

the maximum at P20 [12]. Control groups consisted of littermates that were separated 

from their dams for the same period of time as their IH-counterparts, but were kept in the 

normoxic environment at 34°C. Following IH, mice were raised until their adulthood (P90). 

In adult mice, following neurofunctional assessment, an extent of cerebral myelination was 

examined with immunohistochemistry, western blotting for myelin basic protein (MBP) and 

2’, 3’-Cyclic-nucleotide 3’-phosphodiesterase (CNP-ase) and electron microscopy of the 

corpus callosum, external capsule. Sex of mice was determined by abdominal exam upon 

euthanasia.

Sensorimotor phenotype in adult mice was evaluated using behavior tests. Normoxic animals 

used to control for effects in EIH or LIH groups at the age of P85–86 were combined 

into a single control group, as no difference in either cerebral myelination or sensorimotor 

performance has been detected. Upon completion of the neurofunctional assessment, p90 

mice were euthanized for neuropathological and electron microscopy evaluation of their 

brains.

A separate cohort of control and experimental mice were euthanized at P1, P5, P10, P15 and 

P20 for immunohistochemical analysis of developmental myelination, maturation of the OL 

lineage cells and for assessment of the extent of cell death in the brains.

Immunohistochemistry.

The animals were euthanized by decapitation under deep isoflurane anesthesia. Brains 

were harvested, fixed in 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB) 

at 4° overnight C. 50 μm coronal sections were obtained using a vibratome (VT1000S, 

Leica Biosystems Inc., Buffalo Grove, IL), kept in cryoprotectant solution at −20°C until 

usage. For immunofluorescence staining, after blocking with 10% goat serum for 30 min 

at room temperature (RT), free-floating sections were incubated with primary antibodies 

and secondary antibodies conjugated with fluorochromes (Alexa Fluor Antibodies, Life 

Technologies, CA) for 1 hour at RT. DAPI was used for the visualization of the nuclei. 

Blocking solution, primary and secondary antibodies were applied in 0.3% Triton in PBS. 

Sections were mounted on slides in Vectashield (Vector Laboratories, Burlingame, CA) and 

examined under confocal microscopy A1RMP+ (Nikon Instruments, Melville, NY).
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For peroxidase immunostaining, free-floating sections were treated with 0.3% H2O2 in 

PBS (30 min, RT), blocked with 10% donkey serum, followed by incubation with primary 

antibody (anti-MBP) overnight at 4°C. Secondary biotinylated antibody and Avidin-Biotin 

complex kit (Vector Laboratories, Burlingame, CA) were applied for 1 hour at RT. 

Visualization with DAB (MilliporeSigma, St. Louis, MO) was performed according to 

manufacture recommendations. Blocking solution, primary and secondary antibodies were 

diluted in 0.3% Triton in PBS.

Primary antibodies included: mouse monoclonal anti-APC (CC1) (1:400, #MABC200, 

MilliporeSigma, St. Louis, MO), rabbit polyclonal anti-NG2 (1:100, #AB5320, 

MilliporeSigma, St. Louis, MO), chicken polyclonal anti-MBP (1:400, #AB9348, 

MilliporeSigma, St. Louis, MO), rabbit polyclonal anti-cleaved caspase-3 (1:100, # 9661, 

Cell Signaling Technology, Danvers, MA), mouse monoclonal anti-Olig2 Ab (1:500, R&D 

Systems, Bio-Techne, AF2418).

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay (#G3250, 

Promega, Madison, WI) was performed according to the manufacturer’s recommendation.

Quantitative evaluation of cerebral myelination and OLs maturation was performed on 

the images captured with confocal microscopy at the resolution 1024×1024 pixels, under 

magnification 20x (observed area 630 × 630 μm) projected from Z-stack of 9 optical slices 

with 1 μm step. Images were transferred to Image-J software, gray scaled and parameters 

of interest were calculated. For each mouse, three images of the external capsule (EC) and 

corpus callosum (CC) from each of the coronal sections at the bregma levels +1 mm, +0.5 

mm and 0 mm were analyzed. As we described previously [8], cells (CC1+, NG2+) were 

counted in a frame 100 × 400 pixels (62 × 251 μm) applied to the images of the corpus 

callosum and external capsule obtained from the similar brain areas in relation to bregma 

(Fig. 1B and 2B). CC1+ cells were considered mature OLs and NG2+ cells were defined as 

undifferentiated oligodendrocyte precursor cells (OPCs) because co-staining of NG2/Olig2 

and CC1/Olig2 revealed > 90% double-positive cells (Fig. 2A). The count of the cells of our 

interest was presented as a percentage of the total DAPI+ cells count per frame. Levels of 

MBP were quantified based on optical density with Image J.

Detection of cellular degeneration was performed by immunostaining for cleaved caspase-3 

and TUNEL (as described above). The images were captured using Zeiss AX10 microscope 

(Carl Zeiss Microscopy, White Plains, NY) with AxioCam ICm1 camera at the resolution 

1024×1024 pixels and 20x magnification. Caspase-3+ and TUNEL+ cells were quantified in 

the areas containing at least one positive cell. Three images per each of 3 coronal sections 

taken at bregma levels +1 mm, +0.5 mm and 0 mm were captured and analyzed using Image 

J. The data were presented as a percentage of DAPI+ total cell count per field.

Western blot analysis.

To exclude potential discrepancies in cerebral sampling which can affect myelin content, 

the entire single hemisphere was used for quantitation of MBP and CNP-ase, detected with 

mouse monoclonal anti-MBP Ab (1:1000, #M9758–01, United States Biological, Salem, 

MA) and mouse monoclonal anti-CNP-ase Ab (1:10,000, #C-5922, Millipore Sigma, St. 
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Louis, MO). Anti-β-Actin peroxidase-conjugated antibody (1:100,000, #A3854, Millipore 

Sigma, St. Louis, MO) was used for control of loading. Images of the blots were obtained 

using Fluorchem M Western Imaging System (Protein Simple, San Jose, CA) and processed 

with Image J software. The results were expressed as optical density ratios between the 

protein-specific and β-actin bands.

Electron microscopy.

Randomly selected P90 mice from each group were euthanized with isoflurane, 

intracardially perfused with 2% glutaraldehyde and 2% paraformaldehyde in 0.1 M sodium 

phosphate buffer, pH 7.4. Brains were removed, fixed for 72 hours at 4°C. Coronal slices (~ 

1 mm thickness) were cut and small pieces (~ 1×1 mm) containing CC and EC areas were 

dissected-out, post-fixed in 2 % OsO4 in PB for 2 hours at 4°C, dehydrated with alcohol and 

propylene oxide, and embedded in Epon-Araldite (Electron Microscopy Sciences, Hatfield, 

PA). Semi-thin sections were stained with toluidine blue; areas of interest were identified 

under the upright microscope for the blocks trimming. Ultrathin sections were stained with 

uranyl acetate and lead citrate, and examined using JEOL 100S electron microscope (JEOL, 

Peabody, MA) equipped with a Hamamatsu ORCA HR camera. The axonal myelination 

was evaluated by the calculation of the g-ratio: ratio of the inner axon diameter to the 

entire diameter of the axon with myelin sheath, as we described previously [7]. Axons with 

diameters less than 300 nm were not analyzed. At least, six images per animal captured at 

20k magnification were used for quantification. A minimum of 50 axons per animal were 

analyzed.

Assessment of sensorimotor performance.

Sensorimotor performance was tested in P85–86 mice using three tests; wire-holding, beam-

crossing and accelerating rotarod tests as we described [7]. The wire test was conducted 

using a wire 0.5 mm in diameter and 0.5 m in length, which was suspended 1.5 m above 

a padded surface. The time each mouse was able to hang without falling was recorded. 

To prevent escaping, each end of the wire was attached to claw-unfriendly plastic walls. 

Each mouse was given two probe trials (one a day) with no training trial, and the mean 

value was used for analysis. The beam test was used to evaluate challenged locomotion and 

coordination. Adult mice were placed at the end of a round ∅17.5 mm and 1 m long beam. 

The time required to traverse the beam was recorded. The allotted time was 60 seconds. 

To promote beam traversing, the mouse was placed at the end of the beam attached to a 

claw-unfriendly wall, while a safety platform was positioned at the opposite end of the 

beam. Following one practice run, two probe trials were offered 10 min apart. The mean 

value of probe trials was used for analysis. An accelerating rotarod test was performed with 

minor modification. Mice were placed on an accelerating (from 16 to 32 rpm) rotarod (Med 

Associates, St. Albans, VT). The time that each mouse was able to run on the rod was 

recorded. The time recording was stopped if the mouse fell from the rotarod or rotated twice 

around the rod without running. Each mouse was given two probe trials (one a day) with no 

training.
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Statistical analysis.

All data were presented as mean ± SEM. One-way analysis of variance (ANOVA) with 

Fisher’s post-hoc tests was performed for comparisons between multiple groups. Student 

t-test was used to analyze differences between the two groups. A difference was considered 

significant, if p < 0.05.

Results

Primary white matter myelination peaks during the initial days of life and is sensitive to 
sublethal IH.

At P1, the brains of naïve mice nearly completely lacked myelin, contained few mature 

OLs (CC1+ cells) and abundance of OPCs (NG2+ cells) in the areas corresponding to 

the corpus callosum (CC) and external capsule (EC) (Fig. 1B). Over the initial ten days 

of life, the density of mature OLs and the extent of cerebral myelination, defined by 

MBP immunopositivity in CC and EC, increased dramatically and significantly surpassed 

those at P1 (Fig. 1B). In contrast, during the same period, the number of OPCs (NG2) 

has significantly decreased (Fig. 1B), indicating the OPCs maturation spurt into myelin-

producing cells (CC1). Over the next ten postnatal days, naive P20 mice exhibited a 

significant elevation of MBP expression in their CC and EC compared to P10 mice (Fig. 

1B), the density of NG2+ cells continued to decrease and CC1+ cells count continued to 

increase (Fig. 1B). Of note, compared to P1 mice, in P10 naive neonatal mice, the density 

of mature OLs exhibited a 48.4 fold increase and only a 1.2 fold increase in P20 naïve 

mice compared to P10 naïve mice. MBP immunoreactivity has also increased drastically 

(164.1 fold) in P10 naïve animals compared to P1 mice. On the other hand, in P20 mice, 

the MBP level raised only by 2.8 fold compared to that in P10 littermates (Fig.1B). These 

data strongly suggest that the most intense OLs maturation and primary myelination occur 

during the initial ten days of life. The total amount of cells defined with DAPI staining did 

not differ significantly between P1, P10, and P20 (Fig.1B). Co-immunostaining of CC1 and 

NG2 cells for Olig2 reactivity demonstrated that, at P15 > 90% of these types of cells belong 

to the OL lineage (Fig. 2A).

Exposure to EIH significantly decreased the density of mature OLs in the white matter 

compared to control normoxic P10 littermates. This was coupled with a significantly greater 

density of OPCs (Fig. 2B), indicating a delay in OPC differentiation. In contrast, LIH did 

not significantly affect OLs maturation in the WM as the density of mature OLs and OPCs 

did not differ compared to control normoxic P20 littermates (Fig. 2B).

EIH and LIH did not cause cell death in the brains.

Cerebral immunostaining for cleaved caspase-3 and TUNEL positive cells revealed no 

difference in either of the EIH or LIH groups compared with their corresponding normoxic 

controls at P5 and P15 respectively (Fig. 3A). Thus, the cell nonlethal IH stress caused 

defects in OPC differentiation and in primary cerebral myelination only when it occurred at 

the initial ten days of life. This confirms an existence of the developmental window of white 

matter vulnerability and dissects out cellular death-driven mechanisms in this event.
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Sub-lethal IH causes permanent cerebral hypomyelination and the sensorimotor deficit 
only if applied during the initial ten days of life.

Adult mice in the EIH group exhibited cerebral hypomyelination evidenced by a significant 

decrease in MBP and CNP-ase immunoblot expression compared to normoxic controls (Fig. 

3B). Immunostaining of CC, EC, adjacent cortex and striatum also revealed significantly 

decreased MBP signal only in the EIH group, compared to LIH and control groups (Fig. 

3C). In contrast, there was no significant difference in cerebral myelination (MBP and 

CNP-ase expression) between LIH and control groups (Fig. 3B, 3C).

When mice were stratified by their sex, only females (gray circles, Fig.3C) from the EIH 

group exhibited significantly decreased MBP expression compared to both controls (p = 

0.015) and LIH (p = 0.045) counterparts. Western blot analysis controlled for sex revealed 

a significantly decreased CNP-ase expression only in EIH-males compared to controls (p 

= 0.017) and LIH (p = 0.046) counterparts, with the same tendency in females. Cerebral 

MBP content also demonstrated only a trend toward hypomyelination in separate groups of 

EIH-exposed males and females compared to their controls and LIH groups.

Electron microscopy of CC and EC in adult mice demonstrated significantly decreased 

axonal myelination evaluated by g-ratio only in the EIH group compared to LIH mice and 

normoxic controls (Fig. 4A).

Cerebral hypomyelination in mice exposed to EIH was associated with significantly poorer 

sensorimotor performance in wire-holding and beam-crossing tests compared to the LIH 

group and normoxic littermates (Fig. 4B). The rotarod test revealed significantly worse 

performance in the EIH mice compared only to normoxic controls, but the difference 

between normoxic controls and the LIH group did not reach statistical significance (Fig. 

4B). Analysis of these data controlled for sex revealed significantly poorer wire holding 

test performance only in EIH-males (p = 0.02 vs. controls) and only a trend (p = 0.067) 

compared to LIH group. Females from EIH group also demonstrated only a trend toward 

poorer performance in this test. In beam crossing and rota-rod tests, separately males 

or females from EIH did not exhibit significantly poorer performance compared to their 

controls or LIH groups.

Discussion

Our work demonstrates that sub-lethal IH stress resulted in maturational failure of OL linage 

cells and permanent diffuse WMI only when this stress was applied at birth and coincided 

with the initiation of primary WM myelination. When the same IH stress affected mice 

at the stage of advanced primary WM myelination, no phenotype of WMI has developed. 

Notably, this permanent WMI injury occurred in the absence of IH-induced cell death 

in the brain. Earlier, permanent diffuse WMI and failure of OLs maturation have been 

recapitulated without OL lineage cellular death by the exposure of newborn mice to IL-1β 
only during the initial five days of their life [13]. Taken together with these findings, 

our data suggest that regardless of the stress nature, IH or neuroinflammation, the WM 

developmental stage during the exposure defines the extent of maturation failure of viable 

OL and diffuse WMI. Since we compared the effects of timing when WMI-inducing IH 
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stress occurs during brain development, our study not only supports the existence of a 

window of developmental vulnerability to WMI in premature infants [4] and neonatal 

rodents [11], but demonstrates that selective lethal vulnerability of immature OLs to stress 

is not a single mechanism driving WMI only at the certain neonatal age in IH-mice. 

These are important and novel results because, mechanisms explaining the existence of a 

developmental window of vulnerability to perinatal WMI driven by hypoxia and ischemia 

have been linked to the selective death of OPC and pre-OLs [14, 3]. In this respect, our 

study expands mechanistic explanation for the existence of a developmental window of 

vulnerability to diffuse WMI, suggesting that early maturational stage of viable OLs is 

vulnerable in cell-sublethal IH stress. Of note, comparative analysis of human cerebral 

sections with and without (control) cystic PVL lesions revealed a significantly increased 

density of caspase-3 positive cells only within the necrotic foci compared to controls and 

compared to the remote (6 mm away) from the necrotic area, yet damaged white matter 

zone. These data support a contribution of OLs maturational failure to abnormal MBP 

patterns detected in these specimens [15]. Similarly, Verney et al. in the cerebral sections 

from very preterm infants have found no significant decrease in cellular density of Olig 2+ 

pre-OLs in diffuse WMI lesions surrounding scattered necrotic foci [16]. Although these 

data were obtained from the brain sections with cystic PVL (cell-lethal injury), an absence 

of pre-OLs loss in the areas of diffuse WMI around necrotic foci suggests the co-existence 

of the cell-nonlethal mechanism of WMI in humans. Our animal study identifies a cerebral 

developmental stage when these cell-nonlethal mechanism/s cause the damage.

In naïve mice, during the initial ten days of life, we observed a dramatic increase in the 

density of CC1+ cells and WM myelination. Over the next ten days of life, however, 

these mice exhibited only modest elevation in CC1+ cells content, while WM myelination 

remained robust. This suggests that developmentally regulated, natural deceleration in the 

OL maturation rate did not significantly affect myelination. These data also demonstrate 

that in neonatal mice, a peak of OL maturation occurs during the first ten post-natal days. 

Similarly, in neonatal (P2) rats, the OL-lineage predominantly contained pre-OLs [17], 

which quickly, by P5, progressed into a more differentiated immature OL population [11]. 

Cell-nonlethal IH stress applied during this initial stage suppressed OLs differentiation and 

this maturation failure was associated with permanent WM hypomyelination. In contrast, 

when IH of an identical severity and duration was applied after the stage of most intense OL 

differentiation was over, the exposure to IH did not reproduce the WMI phenotype. These 

data suggest that the window of vulnerability to WMI is determined by the differentiation 

intensity of OL precursors during post-natal stress.

To date, proposed mechanistic explanations for the existence of a developmental window 

of vulnerability to the WMI induced by hypoxic-ischemic and oxidative stress have been 

related to a fatal selective susceptibility of pre-OLs to various stresses [18–20]. The 

developmental stage when OPCs actively differentiate into pre-OLs has been considered the 

most vulnerable time point for acquiring WMI disease [21]. In rodents, this developmental 

stage corresponds to the initial postnatal week. Thus, when an insult (hypoxia-ischemia, 

intraventricular hemorrhage, infection) coincides with this stage of OL maturation, the 

concept of selective susceptibility of pre-OLs to lethal stressors fairly well explains the 

existence of a developmental window of vulnerability to diffuse WMI. However, this 
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concept does not explain the window of vulnerability to WMI induced by sub-lethal stress 

shown in this and other studies [7, 8, 13].

It has been noted that when WMI is coupled with OLs precursors death, brain 

histopathology reveals significantly increased numbers of OPCs in areas of subacute injury. 

This has been interpreted as a compensatory response of the OPC pool to damage in 

order to generate new OLs and replenish a lost OL population. However, due to unclear 

reasons, these newly generated OPCs fail to differentiate beyond the pre-OL stage [2]. 

One of the potential mechanisms behind this failure could be a dysregulation of the 

WNT/β-catenin pathway. This pathway is thought to be critical for myelinogenesis [22], 

and when aberrant can inhibit both developmental myelination and remyelination in mice 

[23]. Of interest, chronic IH stress mimicking sleep apnea in humans is associated with 

dysregulated WNT/β-catenin signaling in the brain of mature mice [24]. Interestingly, in 

the model of WMI associated with systemic inflammation, cerebral WNT expression was 

significantly decreased in both early and late exposure to IL-1β, yet diffuse hypomyelination 

and OLs maturation failure were detected only after early exposure [13]. This argues 

against contribution of WNT/β-catenin dysregulation to an existence of the window 

of vulnerability in cell-nonlethal diffuse WMI. We have recently reported that cell non-

lethal IH activated cyclophilin D-dependent mitochondrial proton leak, which uncoupled 

mitochondrial respiration in differentiating OPCs and caused their maturation arrest in 
vivo and in vitro [8]. Thus, different molecular mechanisms and pathways contribute to 

OLs differentiation failure, including those triggered by hypoxemia [25, 26]. While exact 

cell-nonlethal mechanisms driving differentiation failure in viable immature OLs are yet to 

be determined, our study frames the developmental stage when these mechanisms would be 

acting. It worth discussing, that LIH was applied when developmental cerebral myelination 

remained robust, while OLs maturation peak has passed. Because LIH did not reproduce 

diffuse WMI phenotype, we reasoned that the rate of OLs differentiation rather than 

the intensity of primary myelination defines a vulnerability to WMI. Of interest, mature 

conditionally COX10 (a critical component of complex IV) knock-out mice maintained 

normal axonal myelination, suggesting that mature OLs are glycolytic and oxidative 

phosphorylation is not critical for myelination [27].

In this study, the data stratified by a sex only partially supported the conclusion, 

demonstrating statistical significance in some tests and only trends in other tests for both 

sexes. Because our study was not powered to identify a sex-determined differences in the 

timing of the window of vulnerability to WMI, future research will address this important 

question.

In conclusion, together with reported research supporting fatal selective sensitivity of OLs to 

stress, we show that IH-driven cell-nonlethal mechanisms of OLs dysmaturation target the 

same narrow developmental window of vulnerability to WMI. Our work does not contradict 

the concept of OPC and pre-OL selective sensitivity to lethal stress in defining this window, 

but offers experimental evidence that in the absence of cellular death, the timing of diffuse 

WMI formation does not display developmental shift and remains the same as in WMI 

driven by cell-lethal stress.
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Impact:

1. The key message of our work is that the developmental window of 

vulnerability to the WMI driven by intermittent hypoxemia exists even in 

the absence of excessive oligodendrocytes and other cells death.

2. This is an important finding because the existence of the developmental 

window of vulnerability to WMI has been explained by a lethal selective 

sensitivity of immature oligodendrocytes to hypoxic and ischemic stress, 

which coincided with their differentiation.

3. Thus, our study expands mechanistic explanation of a developmental window 

of sensitivity to WMI by showing the existence of cell-nonlethal pathways 

responsible for this biological phenomenon.
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Figure 1. 
A – Schematic presentation of experimental design (for details, see Material and Methods 

section). B – Left panel: Representative images of cerebral immunostaining for NG2, CC1 

and MBP in neonatal naïve mice at different ages. DAPI is a marker of cellularity. Dashed 

outlined boxes indicate the areas selected for quantification analysis, scale bar = 100μm. 

Right panel: Developmental changes in cellular densities (NG2+ and CC1+) and levels of 

MBP in neonatal naïve mice. For cellular density, data are present as a ratio to the total 

number of cells (DAPI+) in %. Levels of MBP are present according to OD in arbitrary 

units. One-way analysis of variance (ANOVA) with Fisher’s post-hoc test. Values are means 

± SEM of 5 animals in each group.
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Figure 2. 
A – Representative images of external capsule with CC1+ and NG2+ cells co-stained for 

Olig2 (indicated by white arrows) in neonatal naïve p15 mice (n = 5) with statistical 

analysis for the count of double-positive cells as a % per total either NG2 positive cells or 

CC1-positive cells. DAPI is a marker of cellularity. Scale bar = 30 μm.

B - Representative images of CC1+ and NG2+ cells in neonatal control, early exposure (EIH) 

and late exposure (LIH) to intermittent hypoxemia mice with statistical analysis of cell 

count. Dashed outlined boxes indicate the areas for quantification analysis. Data are present 

as a ratio of the number of positive cells to the total cell count (DAPI+) in %. Scale bar = 

100μm. Student t-test. Values are as mean ± SEM of 5–6 animals in each group.
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Figure 3. 
A – Representative images of the cortex stained for activated caspase-3 and external capsule 

stained for TUNEL with statistical analysis of cells count. Scale bar = 100 μm. Data are 

present as a ratio of the number of positive cells to the total cell count (DAPI+) in %. Student 

t-test. Values are means ± SEM of 5 animals in each group. B – Western blot analysis of 

MBP and CNP-ase content in the entire hemisphere in adult control (n = 14), early exposure 

to intermittent hypoxemia (EIH) (n = 19) and late exposure to intermittent hypoxemia (LIH) 

(n = 18) mice. White circles – males, gray circles – females. C – Immunostaining for MBP 

(brown) in areas of corpus callosum, external capsule with adjacent cortex and striatum in 

adult control (n = 14), EIH (n = 19) and LIH (n = 18) mice. White circles – males, gray 

circles – females. Expression of MBP in each group is present according to OD in arbitrary 

units. Scale bar = 500 μm. One-way ANOVA with Fisher’s post-hoc test. Values are means ± 

SEM. Analysis of the data controlled by sex described in the result section.

Sosunov et al. Page 15

Pediatr Res. Author manuscript; available in PMC 2022 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
A – Assessment of cerebral myelination in the corpus callosum and external capsule with 

electron microscopy and analysis of g-ratio in adult control (n = 6), early exposure to 

intermittent hypoxia (EIH) (n = 7) and late exposure to intermittent hypoxia (LIH) (n = 7) 

mice. Scale bar = 1 μm. One-way analysis of variance (ANOVA) with Fisher’s post-hoc test. 

Values are means ± SEM. B – Sensorimotor performance in adult control (n = 20), EIH (n = 

26) and LIH (n = 25) mice. White circles – males, gray circles – females. One-way analysis 

of variance (ANOVA) with Fisher’ post-hoc test. Values are means ± SEM. Analysis of the 

data controlled by sex described in the result section.
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