
fncom-16-837093 June 1, 2022 Time: 9:46 # 1

ORIGINAL RESEARCH
published: 01 June 2022

doi: 10.3389/fncom.2022.837093

Edited by:
Di Jin,

Tianjin University, China

Reviewed by:
Bin Zhang,

Guangzhou Medical University, China
Penghong Liu,

First Hospital of Shanxi Medical
University, China

*Correspondence:
Sutao Song

sutao.song@sdnu.edu.cn
Donglin Wang

wangdl@hznu.edu.cn
Danning Zhang

haohaizi21c@sina.com

†These authors have contributed
equally to this work

Received: 16 December 2021
Accepted: 19 April 2022

Published: 01 June 2022

Citation:
Li H, Song S, Wang D, Zhang D,

Tan Z, Lian Z, Wang Y, Zhou X, Pan C
and Wu Y (2022) Treatment Response

Prediction for Major Depressive
Disorder Patients via Multivariate

Pattern Analysis of Thalamic Features.
Front. Comput. Neurosci. 16:837093.

doi: 10.3389/fncom.2022.837093

Treatment Response Prediction for
Major Depressive Disorder Patients
via Multivariate Pattern Analysis of
Thalamic Features
Hanxiaoran Li1,2,3, Sutao Song4*†, Donglin Wang1,2,3,5*†, Danning Zhang6*†, Zhonglin Tan7,
Zhenzhen Lian1,2,3, Yan Wang1,2,3,5, Xin Zhou1,2,3, Chenyuan Pan1,2,3 and Yue Wu8

1 Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China, 2 Center for
Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China, 3 Zhejiang Key Laboratory for Research in
Assessment of Cognitive Impairments, Hangzhou, China, 4 School of Information Science and Engineering, Shandong
Normal University, Jinan, China, 5 Department of Psychiatry, The Affiliated Hospital, Hangzhou Normal University, Hangzhou,
China, 6 Shandong Mental Health Center, Shandong University, Jinan, Shandong, China, 7 Department of Psychiatry,
Hangzhou Seventh People’s Hospital, Hangzhou, China, 8 Department of Translational Psychiatry Laboratory, Hangzhou
Seventh People’s Hospital, Hangzhou, China

Antidepressant treatment, as an important method in clinical practice, is not suitable
for all major depressive disorder (MDD) patients. Although magnetic resonance imaging
(MRI) studies have found thalamic abnormalities in MDD patients, it is not clear whether
the features of the thalamus are suitable to serve as predictive aids for treatment
responses at the individual level. Here, we tested the predictive value of gray matter
density (GMD), gray matter volume (GMV), amplitude of low-frequency fluctuations
(ALFF), and fractional ALFF (fALFF) of the thalamus using multivariate pattern analysis
(MVPA). A total of 74 MDD patients and 44 healthy control (HC) subjects were recruited.
Thirty-nine MDD patients and 35 HC subjects underwent scanning twice. Between the
two scanning sessions, patients in the MDD group received selective serotonin reuptake
inhibitor (SSRI) treatment for 3-month, and HC group did not receive any treatment.
Gaussian process regression (GPR) was trained to predict the percentage decrease in
the Hamilton Depression Scale (HAMD) score after treatment. The percentage decrease
in HAMD score after SSRI treatment was predicted by building GPRs trained with
baseline thalamic data. The results showed significant correlations between the true
percentage of HAMD score decreases and predictions (p < 0.01, r2 = 0.11) in GPRs
trained with GMD. We did not find significant correlations between the true percentage of
HAMD score decreases and predictions in GMV (p = 0.16, r2 = 0.00), ALFF (p = 0.125,
r2 = 0.00), and fALFF (p = 0.485, r2 = 0.10). Our results suggest that GMD of the
thalamus has good potential as an aid in individualized treatment response predictions
of MDD patients.

Keywords: major depressive disorder (MDD), thalamus, structural magnetic resonance imaging (sMRI), MVPA,
treatment response prediction
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INTRODUCTION

Major depressive disorder (MDD) is a common ailment
that results in a colossal burden on families and society.
Antidepressant treatment is an important method for providing
relief for patients with MDD in clinical practice; however,
only approximately 30% of MDD patients successfully achieve
remission after 12 months of selective serotonin reuptake
inhibitor (SSRI) therapy in the first level of the Sequenced
Treatment Alternatives to Relieve Depression (STAR∗D) trial
(Papakostas et al., 2008). Some patients who failed to respond
to antidepressant treatment chose to switch to another treatment
later or continue the second therapy (Papakostas et al., 2008;
Dunlop et al., 2017). The process of trial and error contributes
to the consumption of time and money and even to delayed
antidepressant treatment. One of the main reasons for such
delays is the lack of predictive factors. Neuroimaging is a
powerful tool to identify biomarkers of MDD as reliable
predictors. Therefore, this study aimed to identify biomarkers
and an individual-level method to aid in predicting the SSRI
treatment responses of patients to give patients a more accurate
medical plan, provide patients with more benefits, and save
medical resources.

The thalamus might be a proper biomarker of MDD that could
be used to predict patients’ antidepressant treatment responses.
Our previous study and many other thalamic imaging studies
have found thalamic abnormalities in patients with MDD, and
these results show that the thalamus may play an important role
in MDD (Li et al., 2021). Whether the thalamus is related to
the prognosis of depression has also attracted the attention of
researchers. A study demonstrated that pretreatment of patients
with a smaller gray matter volume (GMV) in the thalamus was
associated with a worse response to electroconvulsive therapy
(Takamiya et al., 2019). This result has been confirmed by the
latest review, in which thalamic volume reduction was shown to
play a role in the outcome of a major depressive episode, possibly
via its involvement in the pathophysiology of emotion (Batail
et al., 2020). In addition to structural magnetic resonance imaging
(MRI) studies, a study combining magnetoencephalography,
positron emission tomography (PET), and repetitive transcranial
magnetic stimulation (rTMS) affirmed impaired prefrontal-
thalamic functional connections as a core deficit in treatment-
resistant depression (TRD) (Li et al., 2013). In addition,
patients with antidepressant TRD had increased right-thalamic
fractional amplitude of low-frequency fluctuations (fALFF)
values compared with patients without TRD (Yamamura et al.,
2016). The abovementioned findings illustrate that the thalamus
may be a potential biomarker of patients’ MDD treatment
responses. Additionally, whether thalamic information could
predict antidepressant treatment responses at the individual level
is not clear. This study attempted to examine the performance
of the structural and functional information of the thalamus to
predict SSRI antidepressant medicine treatment responses at the
individual level.

To predict individual antidepressant treatment responses
based on thalamic information, multivariate pattern analysis
(MVPA) techniques have been suggested as promising tools for

predicting antidepressant treatment responses. In recent years,
MVPA has been widely used to predict treatment responses
at the individual level with high accuracy. Many studies have
reported that machine learning models have good performance
in identifying TRD patients (Liu et al., 2012; Redlich et al.,
2016; Kautzky et al., 2017). The efficacy of the antidepressant
medication fluoxetine and that of cognitive behavioral therapy
were predicted based on brain structure information with 88.9%
accuracy (Costafreda et al., 2009). With the application of
the machine learning algorithm, an efficient prediction model
with an accuracy of 75.0% for forecasting treatment outcomes
could be generated, thus surpassing the predictive capabilities of
clinical evaluation (Kautzky et al., 2018). These results indicated
that prediction of TRD before undergoing a second round of
antidepressant treatment could be feasible even in the absence
of biomarker data (Nie et al., 2018). Most of the treatment
predictions of MDD studies have focused on identifying TRD
patients, although MDD continues to progress. Compared to
classifiers, regression models can be performed at a continuous
level, such as predicting Hamilton Depression Scale (HAMD)
scores or score changes. Notably, Gaussian process regression
(GPR) has been widely used in supervised machine learning due
to its flexibility and inherent ability to describe uncertainty in
function estimation (Hewing et al., 2019). To date, GPR has been
used in mental disease research with good performance (Schmaal
et al., 2018; Portugal et al., 2019; Peis et al., 2020).

To date, however, no researchers have used features of the
thalamus as predictors of MDD to train machine learning models
to explore individualized SSRI treatment response predictions
of patients with MDD. Therefore, this study intends to explore
the performance of resting-state functional MRI (rs-fMRI) [e.g.,
amplitude of low-frequency fluctuations (ALFF) and fALFF)]
and sMRI [e.g., gray matter density (GMD) and GMV)] data of
the thalamus to predict patients’ SSRI antidepressant medicine
treatment responses by building GPR models. GPR was used
in the present study to predict HAMD score changes for MDD
patients after three months of SSRI antidepressant treatment.

MATERIALS AND METHODS

Participants
In this study, 118 subjects were recruited, including 74 MDD
patients (MDD group) and 44 healthy volunteers as the control
group (HC group). Previous studies have shown that education
level is a strong predictor of MDD and therefore should be strictly
controlled in data analysis (Ladin, 2008; Chang-Quan et al., 2010;
Park et al., 2013; Pearson et al., 2013; Johnson-Lawrence et al.,
2019). Because it was difficult to match, education level was
controlled as a covariate in the subsequent data processing by
statistical techniques in the present study.

MDD patients (49 female patients and 25 male patients with
an average age of 26.53 ± 8.56 years) were recruited from the
Department of Psychiatry of the Seventh People’s Hospital of
Hangzhou and the Department of Psychiatry of the Second
People’s Hospital of Hangzhou. Study participants were the same
as previously reported (Li et al., 2021). All enrolled patients met
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the following criteria: (1) met the International Classification
of Diseases, 10th Revision (ICD-10) criteria for MDD; (2) had
no history of medicine or physiotherapy for at least one month
before recruitment or taking only SSRI antidepressants ≤1 week;
(3) had a HAMD (Version: 24 Items, HAMD-24) total score≥20;
and (4) aged 18–65 years. There was no restriction on sex.

Healthy subjects (28 females and 16 males with an average
age of 29.34 ± 12.42 years) were recruited from universities
in Hangzhou and communities near hospitals by posters and
internet announcements. The inclusion criteria were as follows:
(1) did not meet the ICD-10 “depression episode” diagnostic
criteria, had no family history of mental illness, and did not
take any medication at least 1 month before recruitment; (2)
HAMD-24 total score ≤ 8; and (3) aged 18–65 years.

Seventy-four participants, including 39 MDD patients (28
females and 11 males with an average age of 27.31 ± 8.36 years)
and 35 HC subjects (24 females and 11 males with an average
age of 28± 11.15 years), underwent scanning twice. Between the
two scanning sessions, participants in the MDD group received
SSRI (such as fluoxetine, paroxetine, sertraline, etc.) treatment for
3 months, and the participants in HC group did not receive any
treatment (see Figure 1).

This study was approved by the Ethics Committee of
the Institutes of Psychological Sciences, Hangzhou Normal
University. All participants received written informed consent
before participating in the study procedures.

Magnetic Resonance Imaging Data
Acquisition
Three-dimensional MR imaging was acquired using a GE
3T scanner (MR750, GE Medical Systems, Milwaukee, WI,
United States) with a 32-channel radio frequency coil at the
Center for Cognition and Brain Disorders (CCBD), Hangzhou
Normal University (HZNU). MRI data acquisition were the same
as previously reported (Li et al., 2021).

Data Processing
Magnetic Resonance Imaging Data Preprocessing
All datasets were preprocessed via DPABI_V3.1 (a toolbox for
Data Processing and Analysis for Brain Imaging) (Yan et al.,
2016). More MRI data processing details were the same as
previously reported (Li et al., 2021).

Features Used for Classification and Prediction
DPABI was used to make the whole-thalamus mask (Yan et al.,
2016) and calculate the GMV, GMD, ALFF, and fALFF values.
The participants’ GMV, GMD, ALFF, and fALFF values in
the thalamus were extracted as regression and classification
features. More information were the same as previously reported
(Li et al., 2021).

Correlation Analysis
To detect the thalamic structural and functional indicators that
are correlated with symptom relief (percentage of HAMD score
decrease) in MDD patients, Pearson correlation analysis was
conducted between the pretreatment thalamus indicators and the
individual percentage of HAMD changes. We got the percentage

of HAMD score decrease by subtracted the post-treatment score
from the pre-treatment score to obtain the score difference, and
divide the score difference by the score before treatment and
multiply by 100.

Pattern Analysis
In this study, GPR was conducted for HAMD score predictions
using the Pattern Recognition for Neuroimaging data Toolbox
(PRoNTo)1 (Schrouff et al., 2013) (see Figure 1). GPR has
been widely used in supervised machine learning due to
its flexibility and inherent ability to describe uncertainty in
function estimation (Hewing et al., 2019). Regression analysis
has the potential to be used when examples (patterns) can
be associated with a range of real values. The objective was
to make continuous predictions. These values usually refer to
demographic, clinical or behavioral data (such as age and HAMD
scores) (Schrouff et al., 2013).

A mask of the thalamus was first added to limit the brain
region for analysis, and the Brainnetome Atlas, which divided
the thalamus into 16 subregions, was added as a secondary mask
(see Figure 2; Fan et al., 2016). For every subregion, the signal in
each voxel was extracted and concatenated as a feature vector.
A vector was associated with the percentage of HAMD score
decrease. Then, a linear kernel was built from the feature vectors
for each region. The computed kernels were added to obtain
a whole-thalamus linear kernel. The kernel and its associated
percentage of HAMD score decrease were used to train the
model and estimate the model parameters. The model could
then give an associated predicted percentage of HAMD score
decrease for new data (Schrouff et al., 2018). The correlation
(r,r =

∑
n (yn−µy)

(
f (xn)−uf

)
{∑

n (yn−µy)
2 ∑

n
(
f (xn)−µf

)2
} 1

2
) and the coefficient of

determination (r2) between the targets (true percentage of
HAMD score decrease) and the predictions (predicted percentage
of HAMD score decrease) were used to evaluate the performance
of the model. No parameters needed to be optimized during the
model training. Fivefold cross-validation was used to evaluate the
generalization performance of the models. A 1000-permutation
test was performed to determine statistical significance, and
cross-validation was repeated for each permutation.

RESULTS

Sample Characteristics
Table 1 shows the demographic variables and clinical
characteristics of participants in the two groups. Age
(Z = −0.83, p = 0.410) and sex (χ2 = 0.08, p = 0.776) were
well matched in participants in the MDD group (Z = −0.83,
p = 0.410) and HC group, and there was no significant
difference between these characteristics according to the
Mann-Whitney test. Because the level of education was
significantly higher in individuals in the HC group than in
participants in the MDD group and may have had potential
effects on the results, the level of education was used as an

1http://www.mlnl.cs.ucl.ac.uk/pronto
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FIGURE 1 | Illustration of the Gaussian process regression (GPR) procedure. Seventy-four major depressive disorder (MDD) patients and 44 healthy volunteers were
included in the first magnetic resonance imaging (MRI) scan, and 39 MDD patients and 35 healthy control subjects were included in the second MRI scan. Between
the two scans, participants in the MDD group received selective serotonin reuptake inhibitor (SSRI) treatment for 3 months, and individuals in the healthy control (HC)
group did not receive any treatment. All datasets were preprocessed via DPABI_V3.1. GMV, GMD, ALFF, and fALFF values in the thalamus determined from the first
scan were extracted as regression features. The percentage of Hamilton Depression Scale (HAMD) scores decreased as the response variable. The mask of the
thalamus was first added to limit the brain region for analysis, and the Brainnetome Atlas, which divided the thalamus into 16 subregions, was added as a secondary
mask. For every subregion, the signal in each voxel was extracted and concatenated as a feature vector. A vector was associated with the percentage of HAMD
score decrease. Then, a linear kernel was built from the feature vectors for each region. The computed kernels were added to obtain a whole-thalamus linear kernel.
The kernel and its associated percentages of HAMD score decrease were used to train the model and estimate the model parameters. The model could then give an
associated predicted percentage of HAMD score decrease for new data. Fivefold cross-validation was used to evaluate the generalization performance of the
models. A 1000-permutation test was performed to determine statistical significance, and cross-validation was repeated for each permutation.

influencing factor for covariate analysis in all subsequent
steps. HAMD-24 scores were also significantly higher in
participants in the patient group than in individuals in
the healthy group.

Correlation Between Antidepressant
Treatment Response and Thalamus
Magnetic Resonance Imaging Data
Before Treatment
The regression analysis showed a strong negative correlation
of thalamic GMD with the percentage of HAMD score
decrease (r = −0.329, p = 0.041). In other words, lower
pretreatment thalamus GMD was associated with a better
clinical response (Figure 3A). This study did not find that
GMV, ALFF, and fALFF of the thalamus were associated with
the percentage of the HAMD score change (Figures 3B–D).
The correlation between GMV and the percentage of the
HAMD score decrease was -0.132 (p = 0.424), that between
ALFF and the percentage of the HAMD score decrease was
r = 0.27 (p = 0.096), and that between fALFF and the
percentage of the HAMD score decrease was r = 0.079
(p = 0.631).

Gaussian Process Regression Prediction
of the Percentage of Hamilton
Depression Scale Score Decrease for
Participants in the Major Depressive
Disorder Group After Treatment
The Change in Hamilton Depression Scale Score
Predicted With Structural Features
Three months later, most MDD patients showed a decrease
in HAMD scores. The percentage of change in the HAMD
score was predicted by a GPR trained with baseline GMD
and GMV data of the thalamus. Permutation tests showed a
significant correlation between targets, i.e., the true percentage
of the HAMD score decrease and predictions was 0.34
(p = 0.01, r2 = 0.11) in the GPR trained with GMD, and
the correlation between targets and predictions was −0.14
(p = 0.24, r2 = 0.02) in the GPR trained with GMV (see
Figures 4A,B).

The Change in Hamilton Depression Scale Scores
Predicted With Functional Features
The results showed that the correlation between targets and
predictions of the HAMD score change was -0.00 (p = 0.125,
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FIGURE 2 | Subregions of the thalamus. mPFtha, medial prefrontal thalamus; mPMtha, premotor thalamus; Stha, sensory thalamus; rTtha, rostral temporal
thalamus; PPtha, posterior parietal thalamus; Otha, occipital thalamus; cTtha, caudal temporal thalamus; lPFtha, lateral prefrontal thalamus; L: left; R: right. Adopted
from Fan et al. (2016).

TABLE 1 | Demographic and clinical characteristics of subjects.

Characteristic MDD HC Statistic

First scan (n = 74) Second scan (n = 39) First scan (n = 44) Second scan (n = 35) First scan Second scan

Age (years) 26.53 ± 8.56 27.31 ± 8.36 29.34 ± 12.42 28 ± 11.15 Z = −0.83 Z = −0.31

Sex, n (%) χ2 = 0.08 χ2 = 0.92

Female 49 (66.22) 28 (71.79) 28 (63.64) 24 (68.57)

Male 25 (33.78) 11 (28.21) 16 (36.36) 11 (31.43)

Education level 4.68 ± 0.74 4.69 ± 0.73 5.43 ± 0.73 5.51 ± 0.61 χ2 = 39.24∗∗∗ χ2 = 23.08***

HAMD-24 score 28.42 ± 6.22 12.72 ± 8.16 1.36 ± 1.37 1.14 ± 1.16 t = 36.01*** t = 7.24***

***p < 0.001. MDD, major depressive disorder group; HC, healthy control group; Education level, 1 (illiterate), 2 (primary school), 3 (junior high school), 4 (senior high
school), 5 (college or university), 6 (master’s degree), 7 (doctorate); HAMD-24, Hamilton Depression Scale, Version: 24 Items.
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FIGURE 3 | Correlation of thalamic characteristics and symptom relief. (A) The results illustrated that the correlation between gray matter density (GMD) and the
percentage of the Hamilton Depression Scale (HAMD) score decrease was −0.329 (p = 0.041). (B) The correlation between gray matter volume (GMV)and the
percentage of the HAMD score decrease was −0.132 (p = 0.424). (C) Results of correlation analysis with ALFF and the percentage of the HAMD score decrease
(r = 0.27, p = 0.096). (D) Results of correlation analysis with fALFF and the percentage of the HAMD score decrease (r = 0.079, p = 0.631).

r2 = 0.00) with ALFF of the thalamus. For the GPR trained with
fALFF data, the correlation between targets and predictions was
−0.32 (p = 0.485, r2 = 0.10) (see Figures 4C,D).

Group Analysis Results
Pretreatment Differences Between Major Depressive
Disorder Patients and Healthy Controls
Before treatment, both GMD and GMV of the thalamus in
MDD participants were significantly different from those in
HC subjects (Li et al., 2021). Compared to HC subjects, MDD
patients showed higher GMD in the left rostral temporal
thalamus and lower GMD in the right posterior parietal
thalamus. Also, MDD patients showed higher GMV in the left
lateral prefrontal thalamus, right posterior parietal thalamus,
and right caudal temporal thalamus and lower GMV in
the right medial prefrontal thalamus, right sensory thalamus,
and left rostral temporal thalamus. After three months of
treatment, there was no significant difference between MDD
patients and HC participants in thalamic GMD and GMV. See
Figure 5A.

No clusters showed significant differences between MDD
patients and HCs in ALFF and fALFF of the thalamus.

Brain Changes in Major Depressive Disorder Patients
After Treatment
This study showed a strong association between thalamic
GMD and antidepressant effects. After 3 months of SSRI
treatment, significant changes were observed in the GMD

and GMV of the thalamus in MDD patients. The GMD
was significantly increased in the rostral temporal thalamus
(t = −4.36, p < 0.001), right rostral temporal thalamus
(t = −6.32, p < 0.001), right occipital thalamus (t = −6.32,
p < 0.001), and left medial prefrontal thalamus (t = −4.11,
p < 0.001). The GMV was significantly increased in the
bilateral ventromedial thalamus (t = −9.73, p < 0.001),
and the GMV was significantly decreased in the bilateral
dorsolateral thalamus (t = 39.91, p < 0.001). Moreover, after
three months of treatment, there was no significant difference
between participants in the MDD group and the HC group (see
Figure 5B).

No clusters showed significant differences before treatment
and after treatment in ALFF and fALFF of the thalamus
in MDD patients.

DISCUSSION

To the best of our knowledge, this is the first study aimed
at predicting MDD SSRI treatment responses by multivariate
pattern analysis with sMRI of gray matter and rs-fMRI features
in the thalamus. Correlation analysis and multivariate pattern
analysis findings showed that GMD of the thalamus has a strong
capability to predict the treatment responses of MDD patients.
These findings indicate that the GMD of the thalamus may
be a potential biomarker for MDD. In addition, the current
results showed that after three months of SSRI treatment,
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FIGURE 4 | The results of Hamilton Depression Scale (HAMD) score predictions by Gaussian process regressions (GPRs) trained with thalamic ALFF, fALFF, GMD,
and GMV data. (A) The GPR trained with GMDof the thalamus had a great performance in predicting the HAMD score 3 months later. Correlation was 0.34
(p = 0.01, r2 = 0.11). (B) The performance of GPR trained with GMV with the thalamus [correlation was −0.14 (p = 0.24, r2 = 0.02)]. (C,D) These two models had
poor performance in HAMD score prediction after treatment.

abnormal thalamic changes in MDD patients altered the thalamic
characteristics so that they were comparable to HC levels. This
seems to indicate that SSRIs are beneficial to MDD patients,
and the percentage decline in the HAMD score could provide
evidence to prove this hypothesis.

Although medical treatment is the main antidepressant
method, there are still many patients who are not sensitive to
drug therapy, resulting in the delay of treatment. Although most
studies exploring predictive analyzes in neuroimaging have been
related to classification, regression analysis has aroused interest
in the neuroscience community for its ability to allow researchers
to decode continuous characteristics from neuroimaging data. It
is important to foresee the antidepressant treatment response of
MDD patients. Moreover, we trained the regression models with
good performance. The correlation between the true percentage
of HAMD score decrease and predictions was significant in the
GPR trained with GMD. This result indicated that the GPR model
could accurately predict the effect of antidepressant treatment.
Many of the existing studies predicted treatment responses by
classifying the patients into responders and non-responders;
however, building classifiers is not the best model to predict
treatment responses because of the continuity of the MDD
patient’s recovery status. Compared to classifiers, GPR is more
suitable for predicting treatment responses due to the ability to
predict continuous data.

Our analysis of the longitudinal effects of antidepressants
confirmed previous findings. Pertinently, the thalamic structure
could be changed by antidepressant treatment. For instance,
existing studies have shown a reduction in the thalamus after
antidepressant treatment (Young et al., 2008). The change in
MRI data proved objective evidence of the patient’s improvement.
Moreover, our results indicated that the gray matter of the
thalamus plays an important role in the treatment prediction
of MDD. We successfully predicted the HAMD scores after
three months of treatment with the pretreatment thalamus
GMD value. Both previous studies and this study illustrated
the potential of thalamic characteristics as biomarkers to
predict the antidepressant treatment response, help determine
the appropriate diagnosis and treatment plan and reduce
the unnecessary waste of medical resources. In addition, the
successful prediction of thalamic GMD may imply that this
brain region may involve a pathophysiological mechanism of
depression and may provide some clues for further research on
the thalamus in emotion-related disorders.

The thalamus has been shown to be involved in the
pathophysiological mechanism of MDD. Many existing studies
have shown abnormalities of the thalamus in MDD patients.
Compared with that of participants in the HC group, MDD
patients had a smaller thalamus (Nugent et al., 2013). Other
studies showed decreased left thalamus volume and contracted
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FIGURE 5 | Differences between major depressive disorder (MDD) patients and healthy control (HC) subjects and changes in the thalamus of MDD patients after
treatment. (A) There were significant differences between MDD patients and HC participants in thalamic gray matter density (GMD) and gray matter volume (GMV)
before treatment. (B) The changes in the GMD and GMV of the thalamus in MDD patients after treatment (Gaussian random field-corrected, voxel p-value = 0.001,
cluster p-value = 0.05).

shape on ventral aspects of the left thalamus and decreased
GMV of the right thalamus in MDD patients (Zhang et al.,
2012; Zhao et al., 2014; Lu et al., 2016). In adolescents with
MDD, GMV in the thalamus is inversely related to the severity
of self-reported symptoms; furthermore, GMV in the thalamus
decreases with age, while healthy adolescents show increases
in thalamic GMV with age (Hagan et al., 2015). Notably,
mental diseases may be related to thalamus abnormalities.
A recent review of previous studies showed that the results
from rodents indicate that thalamocortical circuits are candidates
for controlling the activity of the default network, including
task-suppression effects (Buckner and DiNicola, 2019). The
dysregulation of thalamocortical circuits might also increase
the risk of certain forms of mental illness (Buckner and
DiNicola, 2019). Interestingly, MRI-related studies of MDD
found that MDD patients had abnormalities in prefrontal,
temporal, parietal, insula, occipital, and subcortical structures
(Hao et al., 2019; Ma et al., 2019). The abovementioned brain

areas are all related to thalamocortical circuits. If the gray matter
of the thalamus, an important part of thalamocortical circuits, is
abnormal, it may cause entire thalamocortical circuits to function
abnormally, which may lead to MDD (Buckner and DiNicola,
2019). Therefore, the analysis of structural imaging data of the
thalamus could separate MDD patients from healthy people.

There are some limitations to this study: (1) There was a
significant difference in the level of education between the patient
group and the control group, which may have impacted the
results even though the education level was controlled. (2) The
study sample was not very large, and this may have led to a
deviation between the prediction results of the GPR and the true
situation. By building a larger database upon which to base a
predictive model, the variations observed among MDD patients
could be more thoroughly incorporated, and in the future, this
may result in models with better clinical utility (Patel et al.,
2016). (3) Not all MDD patients were medicine-free subjects, and
some of them were not experiencing their first depressive state.
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This may have influenced the results in the current study. These
problems need to be addressed in future studies.

In conclusion, this was the first study to use a machine learning
method to predict the HAMD score of MDD patients after
three months of SSRI treatment with gray matter, ALFF, and
fALFF data of the thalamus. MDD patients showed abnormal
gray matter measurements, which could change in response to
SSRI medicine. The GPRs trained with thalamic GMD data could
predict the HAMD score of participants after three months of
treatment and have been shown to have high discrimination
accuracy by pattern analysis. Therefore, the results of this study
suggest that GMD but not rs-fMRI information of the thalamus
has good potential for SSRI treatment response predictions
of MDD patients.
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