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Abstract

Modern biological techniques enable very dense genetic sampling of unfolding evolutionary histories, and thus frequently
sample some genotypes multiple times. This motivates strategies to incorporate genotype abundance information in
phylogenetic inference. In this article, we synthesize a stochastic process model with standard sequence-based phyloge-
netic optimality, and show that tree estimation is substantially improved by doing so. Our method is validated with
extensive simulations and an experimental single-cell lineage tracing study of germinal center B cell receptor affinity
maturation.
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Introduction
Although phylogenetic inference methods were originally
designed to elucidate the relationships between groups of
organisms separated by eons of diversification, the last several
decades have seen new phylogenetic methods for popula-
tions that are evolving on the timescale of experimental sam-
pling (Drummond et al. 2003). This development is being
spurred by new experimental techniques that enable deep
sequencing at single-cell resolution, some of which enable
quantification of original abundance. For bulk sequencing,
random barcodes can be used to quantify PCR template
abundance (Jabara et al. 2011; Kivioja et al. 2012; Brodin
et al. 2015). More recently, cell isolation (Shapiro et al.
2013) or combinatorial techniques (Cusanovich et al. 2015;
Howie et al. 2015; DeWitt et al. 2016) have provided sequence
data at single-cell resolution. With such data, a given unique
genotype—among many in the data—is represented in a
measured number of cells. The abundance of a genotype
can be read out as the number of cells bearing that genotype.
Here, we demonstrate that incorporating genotype abun-
dance improves phylogenetic inference for densely sampled
evolutionary processes in which it is common to sample
genotypes more than once.

We are motivated by the setting of B cell development in
germinal centers. B cells are the cells that make antibodies, or
more generally immunoglobulins. Immunoglobulins are
encoded by genes that undergo a stage of rapid Darwinian
mutation and selection called affinity maturation (Mesin et al.
2016). During affinity maturation, immunoglobulin is in its
membrane-bound form, known as the B cell receptor (BCR).
The biological function of this process is to develop BCRs with

high-affinity for a pathogen-associated antigen molecule, and
later excrete large quantities of the associated antibody.

This affinity maturation process occurs in specialized sites
called germinal centers in lymph nodes, which have specific
cellular organization to enable B cells to compete among each
other to bind a specific antigen (proliferating more readily if
they do) while mutating their BCRs via a mechanism called
somatic hypermutation (SHM). Using microdissection,
researchers can extract germinal centers from model animals
and sequence the genes encoding their BCR directly (Kuraoka
et al. 2016; Tas et al. 2016). Lymph node samples are also
available through autopsy (Stern et al. 2014) or fine needle
aspirates from living subjects (Havenar-Daughton et al. 2016).
Such samples provide a remarkable perspective on an ongo-
ing evolutionary process.

Indeed, these samples contain a population of cells with
BCRs that differentiated via SHM at various times and have
various cellular abundances. Because the natural selection
process in germinal centers appears permissive to a variety
of BCR-antigen affinities (Kuraoka et al. 2016; Tas et al. 2016),
earlier-appearing BCRs are present at the same time as later-
appearing BCRs. The collection of descendants from a single
founder cell in this process naturally form a phylogenetic tree.
However, it is a tree in which each genotype is associated with
a given abundance, and such that older ancestral genotypes
are present along with more recent appearances.
Reconstruction of phylogenetic trees from BCR data may
benefit from methods designed to account for these distinc-
tive features.

Standard sequence-based methods for inferring phyloge-
nies fall into several classes according to their optimality
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criteria. Maximum likelihood methods posit a probabilistic
substitution model on a phylogeny and find the tree that
maximizes the probability of the observed data under this
model (Felsenstein 1973, 1981, 2003). Bayesian methods aug-
ment likelihood with a prior distribution over trees, branch
lengths, and substitution model parameters, and approxi-
mate the posterior distribution of all the above variables by
Markov chain Monte Carlo (MCMC) (Huelsenbeck et al.
2001; Drummond and Bouckaert 2015). Maximum parsimony
methods use combinatorial optimization to find the tree that
minimizes the number of evolutionary events (Eck and
Dayhoff 1966; Kluge and Farris 1969; Fitch 1971). Parsimony
methods often result in degenerate inference, in which mul-
tiple trees achieve the same minimal number of events (i.e.,
maximum parsimony) (Maddison 1991). Additional
approaches include distance matrix methods, which summa-
rize the data by the distances between sequence pairs, and
phylogenetic invariants, which select topologies based on the
value of polynomials calculated on character state pattern
frequencies. None of the above methods incorporate geno-
type abundance information, and it is standard for data with
duplicated genotypes to be reduced to a list of deduplicated
unique genotypes before a phylogeny is inferred.

In this article, we show that genotype abundance is a rich
source of information that can be productively integrated
into phylogenetic inference, and we provide an open-
source implementation to do so. We incorporate abundance
via a stochastic branching process with infinitely many types
for which likelihoods are tractable, and show that it can be
used to resolve degeneracy in parsimony-based optimality.
We first validate the procedure against simulations of germi-
nal center BCR diversification. We also empirically validate
our method using an experimental lineage tracing approach
combining multiphoton microscopy and single-cell BCR

sequencing, allowing us to study individual germinal center
B cell lineages from brainbow mice. Beyond the setting of BCR
development, we foresee direct application to tumor phylo-
genetics in single-cell studies of cancer evolution (reviewed by
Schwartz and Schaffer 2017), and single-cell implementations
of lineage tracing based on genome editing technology
(McKenna et al. 2016).

New Approaches

Genotype-Collapsed Trees
Given sequence data obtained from a diversifying cellular
lineage tree (fig. 1a), our goal is to infer the genotype-collapsed
tree (GCtree) defining the lineage of distinct genotypes and
their observed abundances (fig. 1b). The GCtree is con-
structed from the lineage tree by collapsing subtrees com-
posed of cells with identical genotype to a single node
annotated with its final cellular abundance. Our data consist
of the genotypes sampled at least once in the GCtree, along
with their associated abundances. Under the infinite types
assumption that every mutant daughter generates a novel
genotype, each genotype can be identified with one subtree
in the original lineage tree. We are not claiming any originality
in the GCtree definition, but it is useful to have a word for this
object.

We note that, unlike standard phylogenetic trees where
only leaf nodes represent observed genotypes, GCtree inter-
nal nodes represent observed genotypes if they are annotated
with nonzero abundance. Although not leaves per se in the
GCtree, a nonzero abundance represents a clonal sublineage
that resulted in a nonzero number of leaves of that genotype
in the lineage tree. A node in the GCtree, along with its
descending edges, summarizes the lineage outcome for a
given genotype as its mutant offspring clades and the number

FIG. 1. Genotype-collapsed trees. (a) A diversifying B cell lineage is illustrated with distinct BCR genotypes colored. The final observed cells
(enclosed by a dashed path) consist of genotypes at various abundances; note the yellow genotype is not observed. (b) The corresponding
genotype-collapsed tree (GCtree) describes the descent of distinct genotypes, and is our inferential goal. (c) Genotype abundance informs
topology inference. Two hypothetical GCtrees, equally optimal with respect to the sequence data, propose two possible parents of the green
genotype—the gray and yellow genotypes (the yellow genotype was not sampled and thus has a small circle with no number inside). Intuitively, the
abundance information indicates that the tree on the left is preferable because the more abundant parent is more likely to have generated mutant
descendants.
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of its clonal leaves. Because this summary does not
completely specify the genotype’s clonal lineage structure
(fig. 2c), several branching structures may be consistent
with a given node, and we have no information with which
to distinguish between the various lineage trees consistent
with a GCtree. Hence, our goal is to infer the GCtree topology.

Parsimony with a Prior
BCR sequence data from a germinal center sample have the
following characteristics from the perspective of phyloge-
netics: genotypes have abundances, there is a limited amount
of mutation between genotypes, and ancestral genotypes are
present along with later ones. The latter two features suggest
maximum parsimony as a useful tool because of the limited
amount of mutation and because ancestral genotypes can be
assigned to internal nodes of the tree (although recent
Bayesian methods can do such assignment as well;
Gavryushkina et al. 2014, 2017). For these reasons, parsimony
has been used extensively in B cell sequence analysis (Barak
et al. 2008; Stern et al. 2014). Because having many duplicate
sequences inhibits efficient tree space traversal, these studies
have inferred trees using the unique genotypes (BCR sequen-
ces). This ignores the varying cellular abundances of the ob-
served genotypes.

Here, we wish to use a branching process model to rank
trees that are equally optimal according to sequence-level
optimality criteria. Indeed, maximum parsimony often results
in degenerate inference: there are many trees that are max-
imally optimal (Maddison 1991). We refer to these trees as a
parsimony forest. In later sections, we show, using in silico and
empirical data, that parsimony degeneracy is common and
often severe for BCR sequencing data, and that parsimony
forests exhibit substantial variation in phylogenetic accuracy.

It is common practice to arbitrarily select one tree in the
parsimony forest at random, without regard for this variability
in inference accuracy. Instead, we will rank trees in the par-
simony forest with an auxiliary likelihood that incorporates
abundance information, thereby resolving this degeneracy.

Genotype abundance is an additional source of informa-
tion for phylogenetics, using the simple intuition that more
abundant genotypes are more likely to have more mutant
descendant genotypes. This intuition makes sense because
relative sample abundance is a reasonable estimator of rela-
tive total historical abundance, and total historical abundance
is related to the number of mutant offspring—that is, geno-
types with larger abundance are likely to have more mutant
descendant genotypes simply because there are more indi-
viduals available to mutate. The number of mutant offspring
genotypes is in turn related to the number of surviving mu-
tant offspring sampled. Thus, given two equally parsimonious
trees, this intuition would prefer the tree that has more mu-
tant descendants of a frequently observed node (fig. 1c). We
formalize this intuition using a stochastic process model for
the phylogenetic development of germinal centers, and inte-
grate this model with sequence-based tree optimality via em-
pirical Bayes.

In this stochastic process model, a GCtree node i has a
random number Ti 2N of mutant children (i.e., descending
edges) and a random abundance Ai 2N. We will index
nodes in a “level order” as follows, which is well defined given
an embedding of the tree into the plane. Index 1 refers to the
root node, and 2 through 1þ T1 refer to the children of the
root node. The level-order continues in order through all tree
nodes of the same level before nodes at the next level.
Adopting this level-ordering convention, a GCtree containing
N nodes is specified by integer-valued random vectors giving

FIG. 2. Modeling sequences equipped with abundances. (a) Both genotype sequence data G and genotype abundance data A inform tree topology
T. As illustrated in this probabilistic graphical model, we assume independence between G and A conditioned on T rather than a fully joint model
of G, A, and T. This facilitates using standard sequence-based phylogenetic optimality for G, augmented with a branching process (with parameters
h) for A. (b) For the binary infinite-type Galton–Watson process, h ¼ ðp; qÞ. Four possible branching events characterize the offspring distribution
common to all nodes. A node may bifurcate (with probability p) or terminate, and upon bifurcating its descendants each may be a mutant (with
probability q). (c) A GCtree node specifies a genotype’s clonal leaf count and number of descendant genotypes, but not lineage details. The
likelihood of a GCtree node marginalizes over consistent lineage branching outcomes. (d) GCtree likelihood factorizes into the product of
likelihoods for each genotype.
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the (planar) topology T ¼ ðT1; . . . ; TNÞ, and abundances
A ¼ ðA1; . . . ;ANÞ. We also have the observed genotype
sequences associated with each node G ¼ ðG1; . . . ;GNÞ.

A complete diversification model would give a joint distri-
bution on T, G, and A. As an approximation to such a model,
facilitating use of existing sequence-based optimality meth-
ods, we propose a generative model containing conditional
independences as follows (fig. 2a). First, we model abundan-
ces A and tree topology T as being drawn from a branching
process likelihood, conditioned on parameters h (character-
izing birth, death, and mutation rates in the underlying line-
age tree): PðA;TjhÞ. This stochastic process likelihood will
capture the intuition (described earlier) that more abundant
genotypes are likely to have more mutant descendant geno-
types. Next, we assume that genotype sequences G are gen-
erated by a mutation model conditioned on the fixed tree T,
independent of A. This sequence-based optimality is cap-
tured by a distribution over G dependent only on T:
PðGjTÞ. The lack of direct dependence of G on A constitutes
an approximation to a more realistic sequence-valued
branching process. However, this formulation has the advan-
tage that it allows us to leverage standard sequence-based
phylogenetic optimality in the specification of PðGjTÞ. In a
later section (In silico validation), we validate this approxima-
tion with simulations that do not assume this conditional
independence.

In an empirical Bayes treatment (see Materials and
Methods for details), a maximum likelihood estimate for
the branching process parameters, ĥ, can be obtained by
marginalizing T, and this in turn can be used to approximate
a posterior over T conditioned on the data G and A (as well as
ĥ). Using parsimony as our sequence-based optimality, one
can rank trees in the parsimony forest (denoted T G) accord-
ing to the GCtree likelihood. We encode the parsimony cri-
teria in PðGjTÞ by assigning uniform weight to the trees in
T G, and zero to the other trees. This gives the following
approximate maximum a posteriori tree:

T̂ ¼ arg max
T2T G

PðA;TjĥÞ; (1)

where the point estimate ĥ is given by

ĥ ¼ arg max
h

X
T2T G

PðA;TjhÞ: (2)

Next we turn to explicitly defining the GCtree likelihood
PðA;TjhÞ.

A Stochastic Process Model of Abundance
To compute likelihoods PðA;TjhÞ for GCtrees (fig. 1b), we
model the lineage tree (fig. 1a) as a subcritical infinite-type
binary Galton–Watson (branching) process (Harris 2002) in
which extinct leaf nodes correspond to observed cells. All
mutations in an infinite-type process result in a novel geno-
type, embodying the assumption that each genotype can be
identified with one subtree. Subcriticality ensures that the
branching process terminates in finite time, so an explicit
sampling time is not needed. The process is initiated with a

single cell (a naive germinal center B cell before affinity mat-
uration ensues), and runs to eventual extinction. This model
is highly idealized and unable to capture many biological
realisms of B cell affinity maturation and the sampling pro-
cess. However, as we show in our validations, it is useful as a
minimal model for leveraging genotype abundance informa-
tion in a tractable likelihood.

The offspring distribution for our process, governing repro-
duction and mutation for all lineage tree nodes at all time
steps, is specified by two parameters: the binary branching
probability p, and the mutation probability q. Because the
offspring distribution is independent of type, subcriticality
simply requires that the expected number of offspring of
any node is <1, in this case equivalent to p< 0.5. In this
case a “mutation” is an event that causes the evolving lineage
to change to a novel genotype (under the infinite-types as-
sumption). Thus the corresponding offspring distribution
supports four distinct branching events (fig. 2b). Letting C
and M denote the (random) number of clonal and mutant
offspring of any given node in the lineage tree, respectively,
the offspring distribution is

PðC ¼ c;M ¼ mÞ ¼

1� p c ¼ m ¼ 0;

pð1� qÞ2 c ¼ 2;m ¼ 0;

2pqð1� qÞ c ¼ m ¼ 1;

pq2 c ¼ 0;m ¼ 2;

0 otherwise:

8>>>>>>>><
>>>>>>>>:

(3)

We can compute the likelihood of a hypothetical binary
lineage tree simply by evaluating equation (3) at each node in
the tree and multiplying the results. The likelihood for a
GCtree is then given by summing over all possible binary
lineage trees that are consistent with that GCtree (i.e., that
give the same GCtree when collapsing by genotype), thus
marginalizing out the details of intragenotype branching
events that give rise to the same abundance. Here, we
show how to calculate the GCtree likelihood directly for
the simple offspring distribution (eq. 3). Other work
(Bertoin 2009) has described how to calculate statistics of
the infinite-type branching process with a general subcritical
offspring distribution.

First consider the likelihood for an individual node in the
GCtree, say the root node, in the context of the branching
process described earlier. A GCtree node i is specified by its
abundance Ai and the number of edges descending from it Ti

(both random variables). There are, in general, multiple dis-
tinct branching process realizations for genotype i that result
in Ai¼ a clonal leaves and Ti ¼ s mutations off the genotype
i lineage subtree (fig. 2c). Determining the likelihood of node i
in the GCtree under this process, which we denote by
fasðp; qÞ ¼ PðAi ¼ a; Ti ¼ sjh ¼ ðp; qÞÞ, requires margin-
alizing over all such genotype lineage subtrees. In Materials
and Methods, we derive a recurrence for fasðp; qÞ by margin-
alizing over the outcome of the branching event at the root of
the lineage subtree for genotype i, and show that the GCtree
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node likelihood fasðp; qÞ can be computed by dynamic
programming.

A complete GCtree containing N nodes is specified by
level-ordering the nodes as described earlier
T ¼ ðT1; . . . ; TNÞ; A ¼ ðA1; . . . ;ANÞ. Because the same off-
spring distribution generates the lineage branching of each
genotype subtree, the same recurrence can be applied to all
GCtree nodes. Specifically, we show in Materials and Methods
that the joint distribution over all nodes in a GCtree factorizes
by genotype (fig. 2d).

PðT ¼ ðs1; . . . ; sNÞ;A ¼ ða1; . . . ; aNÞjh ¼ ðp; qÞÞ

¼
YN

i¼1

f aisi
ðp; qÞ; (4)

Using dynamic programming and factorization by geno-
type, the computational complexity of the GCtree likelihood
is OðmaxðAÞmaxðTÞ þ NÞ. Ranking parsimony trees with
GCtree requires a polynomial increase in runtime compared
with finding the parsimony forest, which is itself NP-hard
(Foulds and Graham 1982). Supplementary figure S1,
Supplementary Material online, depicts runtime from simu-
lations of various size, and shows that, in practice, this in-
creased runtime is negligible.

A computational implementation of the inference method
above is available at http://github.com/matsengrp/gctree; last
accessed February 23, 2018. The GCtree inference subprogram
accepts sequence data in FASTA or PHYLIP format, deter-
mines a parsimony forest from the unique sequences using
the dnapars program from the PHYLIP package (Felsenstein
2005), determines the genotype-collapsed form of these trees
and outputs tree visualizations using the ETE package (Huerta-
Cepas et al. 2016), and ranks them according to their GCtree
likelihood using the sequence abundances. Bootstrap analysis
is also implemented, providing confidence values of each split
in the maximum likelihood GCtree. The GCtree maximizing
the branching process likelihood (with optional bootstrap
support) is the inference result. Next we show that resolving
parsimony degeneracy using GCtree substantially increases
both accuracy and precision of phylogenetic inference.

Results

In Silico Validation
To explore the accuracy and robustness of GCtree inference,
we developed a simulation subprogram to generate random
lineages starting with a naive BCR sequence. For simulated
lineages, true trees can be compared against those inferred
with the GCtree inference subprogram. The stochastic pro-
cess model used in GCtree inference is intended as a minimal
model (in terms of biological realism) that captures the intu-
ition that genotype abundance is relevant to phylogenetic
reconstruction. Experimental data need not obey our simpli-
fying assumptions, thus, we set out to test GCtree’s robust-
ness to deviations of the data generating process from the
inferential model.

A simulation process was implemented that includes bio-
logical realisms of B cells undergoing SHM (and violates

inferential assumptions). These realisms of simulation—
detailed in Materials and Methods—include: branching pro-
cess multifurcations (controlled by a parameter k, the
expected number of children of a node in the cell lineage
tree), sequence context sensitive mutations (Dunn-Walters
et al. 1998; Spencer and Dunn-Walters 2005) (with a baseline-
line mutation rate k0, and a context-specific mutational
model with 5mer mutabilities taken from Yaari et al.
2013), explicit sampling time (t, or N representing the
number of cells desired in the sampled generation), in-
complete sampling (the number of cells to sample
n � N), and repeated genotypes allowed (deviation
from the infinite-type assumption). This constitutes a
more challenging validation than simply simulating under
the same assumptions that had been invoked for tracta-
bility of the inferential framework.

Our in silico validation workflow is demonstrated in
figure 3a for a small simulation that resulted in a parsimony
forest with just two equally parsimonious trees. The output of
the simulation software consists of FASTA data (sequences and
their abundances), visualizations of the lineage tree and its
GCtree equivalent, and a file containing the true GCtree struc-
ture. The GCtree inference subprogram can then be run on the
FASTA data, and the resulting inferred GCtree compared with
the true GCtree (in this case they were identical). To calibrate
simulation parameters, we defined summary statistics on se-
quence data with abundance information, and tuned parame-
ters to produce data similar to experimental BCR sequencing
data under these statistics (see Materials and Methods).

Our validation shows that using abundance information via
a branching process likelihood can substantially improve in-
ference results (fig. 3b). For each simulation, we ranked other-
wise degenerately optimal parsimony trees using GCtree. For
each parsimony forest, we compared the GCtrees in the forest
to the true GCtree for that simulation using the Robinson–
Foulds (RF) distance (Robinson and Foulds 1981) as a measure
of tree reconstruction accuracy. The maximum likelihood
GCtree tends to be closer to the true tree than other equally
parsimonious trees, which vary widely in accuracy, showing
that GCtree is able to leverage abundance data to resolve
parsimony degeneracy and improve the accuracy of tree re-
construction in this simulation regime.

Empirical Validation
We next performed a biological validation by investigating if
GCtree improves inference according to biological criteria us-
ing real germinal center BCR sequence data. The BCR is a
heterodimer encoded by the immunoglobulin heavy chain
(IgH) and immunoglobulin light chain (IgL) loci. Both loci un-
dergo V(D)J recombination, and then evolve in tandem during
affinity maturation. By obtaining matched sequences from
both loci using single-cell isolation, we have two independent
data sets to inform the same phylogeny of distinct cells (each of
which is associated with a single IgH sequence and single IgL
sequence). Performing separate and independent IgH and IgL
tree inference, we can then validate GCtree by comparing the
inferred IgH tree to the inferred IgL tree. If the GCtree likelihood
(eq. 4) meaningfully ranks equally parsimonious trees, then the
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two MLE trees (IgH and IgL) would be expected to be more
correct reconstructions than the other parsimony trees. Thus,
we are to expect that the two MLE trees are more similar to
each other (in terms of the lineage of distinct cells) than other
pairs of IgH and IgL parsimony trees (which, if they are more
distorted phylogenies, should show less concordance in the
partitioning of the distinct cells). Conversely, if the GCtree
likelihood is not meaningfully ranking trees, we expect that
the MLE IgH and IgL trees will not be significantly closer to each
other than other pairs of IgH and IgL parsimony trees.

We used data from a previously reported experiment in
which multiphoton microscopy and BCR sequencing were
combined to resolve individual germinal center B cell lineages
from mouse lymph nodes 20 days after subcutaneous immu-
nization with alum-adsorbed chicken gamma globulin (Tas
et al. 2016) (see Materials and Methods). Brainbow mice were

used for multicolor cell fate mapping, enabling B cells and
their progeny to be permanently tagged with different fluo-
rescent proteins. In situ photo-activation followed by
fluorescence-activated cell sorting yielded B cells from a
color-dominant germinal center (fig. 4a, left). BCR sequences
were obtained for 48 cells in this lineage by single-cell mRNA
sequencing of the IgH and IgL loci, resulting in 32 distinct IgH
and 26 distinct IgL genotypes due to SHM mutations acquired
through affinity maturation. The unmutated naive IgH and IgL
V(D)J rearranged sequences (not observed) were inferred
with partis using each set of 48 sequences (IgH and IgL) as a
clonal family using germline genetic information (Ralph and
Matsen 2016a, 2016b). These naive sequences were used as
outgroups for rooting parsimony trees.

GCtree results are depicted in figure 4b. Parsimony analysis
resulted in degeneracy for both loci, with 13 equally

FIG. 3. In silico validation of GCtree inference. (a) Demonstrating the simulation–inference–validation workflow, a small simulation resulted in two
equally maximally parsimonious trees, and the one inferred using GCtree was correct. The initial sequence was a naive BCR V gene from the experimental
data described in Materials and Methods. Branch lengths in the cell lineage tree (left) correspond to simulation time steps, while those in collapsed trees
correspond to sequence edit distance. (b) About 100 simulations were performed with parameters calibrated using the BCR sequencing data and
summary statistics described in Materials and Methods. Of 100 simulations, 66 resulted in parsimony degeneracy, with an average degeneracy of 12 and a
maximum degeneracy of 124. For each of these 66, we show the distribution of Robinson–Foulds (RF) distance of trees in the parsimony forest to the true
tree. “RF” denotes a modified Robinson–Foulds distance: since nonzero abundance internal nodes in GCtrees represent observed taxa, RF distance was
computed as if all such nodes had an additional descendant leaf representing that taxon. GCtree MLEs (red) tend to be better reconstructions of the true
tree than other parsimony trees (gray boxes). Four simulations resulted in a tie for the GCtree MLE, and the two tied trees in these cases are both displayed
in red. Aggregated data across all simulations are depicted on the right, clearly indicating superior reconstructions from GCtree.
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parsimonious trees for IgH, and 9 for IgL. Empirical Bayes point
estimation according to equation (2) yielded p̂ ¼ 0:495;
q̂ ¼ 0:388 (IgH) and p̂ ¼ 0:495; q̂ ¼ 0:304 (IgL). GCtree
likelihoods (eq. 4) were computed to rank the equally
parsimonious trees, and the MLE trees are shown with
support values among 100 bootstrap samples (see

Materials and Methods). Because the binary Galton–
Watson process assigns probability zero to a GCtree
node with frequency zero and one mutant descendant,
the unobserved naive root node (which had one descen-
dant after rerooting and collapsing identical genotypes in
all parsimony trees) was given a unit pseudocount.

FIG. 4. Empirical validation using lineage tracing and single-cell germinal center BCR sequencing. (a) A multiphoton image of a germinal center
reveals a dominant blue lineage (scale bar 100 mm). This lineage was sorted, and 48 cells sequenced to determine IgH and IgL genotypes of each.
These sequences were analyzed with partis (Ralph and Matsen 2016a, 2016b) to infer naive (preaffinity-maturation) ancestor sequences using
germline genetic information, and trees were inferred with GCtree. (b) GCtree inference was performed separately for IgH and IgL loci, resulting in
parsimony degeneracies of 13 and 9, respectively. Maximum likelihood GCtrees for each locus are indicated in red and the GCtrees with annotated
abundance are shown. Roots are labeled with the gene annotations of the naive state inferred using partis. Small unnumbered nodes indicate
inferred unobserved ancestral genotypes. Numbered edges indicate support in 100 bootstrap samples. (c) All possible pairings of IgH and IgL
parsimony trees were compared in terms of the Robinson–Foulds distance between the IgH and IgL trees, labeled by cell identity. IgH and IgL
parsimony trees are ordered by GCtree likelihood rank in columns and rows, respectively. Grid values show RF distance between each IgH/IgL pair.
MLE trees result in more consistent cell lineage reconstructions between IgH and IgL (smaller RF values). (d) For each locus, distributions of
bootstrap support values are shown for the tree inferred by GCtree and for a majority rule consensus tree of all trees in the parsimony forest. The
latter contain more partitions with very low support. (e) Using additional data from a second germinal center from the same lymph node that had
the same naive BCR sequence, GCtree correctly resolves the two germinal centers as distinct clades (as did other lower ranked parsimony trees).
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We then compared the concordance between pairs of
heavy and light trees. Since both IgH and IgL loci have been
recorded from the same set of 48 cells, the units of cell abun-
dance in an IgH GCtree map to the units of cell abundance
from an IgL GCtree (i.e., each cell identity among the 48 is
associated with an IgH genotype and an IgL genotype). We
can then consider the consistency of a given IgH tree and a
given IgL tree in terms of the lineage of the 48 cell identities. For
each possible pairing of an IgH parsimony tree with a IgL par-
simony tree, we computed the RF distance (Robinson and
Foulds 1981) between the two trees using the cell identities
(rather than the genotype sequences) to define splits. We ob-
served that the GCtree MLE based on IgH sequences and
GCtree MLE based on IgL sequences form the most concor-
dant pair among all pairs of parsimony trees (fig. 4c). Moreover,
pairs of parsimony trees that contained at least one GCtree
MLE tree ranked consistently higher in terms of their similarity.

We assessed confidence in GCtree partitions by comparing
bootstrap support values in GCtree trees to those from the
majority-rule consensus parsimony trees made using the con-
sense program from the PHYLIP package (Felsenstein 2005).
We observed the latter contained an excess of very low con-
fidence partitions (fig. 4d and supplementary fig. S4,
Supplementary Material online). These results demonstrate
that parsimony reconstructions for real BCR data sets suffer
from degeneracy, and that GCtree likelihood can correctly
resolve this degeneracy by incorporating abundance informa-
tion ignored by previously published methods.

Finally, using data collected from a second germinal center
from the same lymph node, we tested GCtree’s ability to
correctly group cells from each germinal center into separate
clades when run on combined data from both germinal cen-
ters. The two germinal center sequence data sets appeared to
have the same naive BCR sequence (IgH and IgL), indicating
they were both seeded from the same B cell lineage.
Concatenating the IgH and IgL sequences for each cell in
each germinal center, we used GCtree to infer a single tree
for all cells from both germinal centers (fig. 4e and supple-
mentary fig. S5, Supplementary Material online). GCtree cor-
rectly resolved the two germinal centers as distinct clades (we
note that all the parsimony trees had this feature, regardless
of likelihood rank). This demonstrates the phylogenetic
resolvability of germinal centers with the same naive BCR
diversifying under selection for the same antigen specificity.

Discussion
We have shown that genotype abundance information can
be productively incorporated in phylogenetic inference. By
augmenting standard sequence-based phylogenetic optimal-
ity with a stochastic process likelihood, we were able to im-
plement abundance-aware inference as a processing step
downstream of results from an existing and widely used par-
simony tree inference tool. We have shown that our
method—implemented in the publicly available GCtree
package—is useful for inferring B cell receptor affinity matu-
ration lineages. Although branching processes have been used
previously to infer parameters of BCR evolution (Kleinstein

et al. 2003; Magori-Cohen et al. 2006) and construct SHM
lineage trees from error-prone bulk sequencing reads (Sok
et al. 2013), to our knowledge, we are the first to use branch-
ing processes to sharpen phylogenetic inference for BCRs se-
quenced at single-cell resolution from germinal centers.

We believe GCtree will find use in other settings where
sequence data from dense quantitative sampling of diversify-
ing loci are available. Studies of cancer evolution are increas-
ingly performed with single-cell resolved sequencing, however
most tumor phylogenetics approaches use standard phyloge-
netic methods (reviewed by Schwartz and Schaffer 2017) that
do not model genotype abundance. Exceptions include
OncoNEM (Ross and Markowetz 2016) and SCITE (Jahn
et al. 2016), both of which leverage single-cell data for tumor
phylogenetic inference that is robust to genotyping errors and
missing data, but do not aim to capture the intuition that
genotype abundance and the number of direct mutant
descendants are related. Single-cell implementations of line-
age tracing based on genome editing technology (McKenna
et al. 2016) may also benefit from reconstruction methods
that model the abundance of observed editing target states,
since cell types may vary widely in rates of proliferation.

Using parsimony as our sequence-based optimality
resulted in particularly simple results, as the tree space nec-
essary to explore is exactly the degenerate parsimony forest.
However, our empirical Bayes formulation is agnostic to the
particular choice of sequence-based optimality, so in the fu-
ture, we envision augmenting likelihood-based sequence op-
timality. This will require more computationally expensive
tree space search and sampling schemes.

In contrast to GCtree, a fully Bayesian approach to incor-
porate genotype abundance could use the full set of sequences
(without deduplication) in a Bayesian phylogenetics
package—such as BEAST (Drummond and Bouckaert
2015)—with a birth–death process prior. This would not en-
force the infinite-type assumption, so a set of identical sequen-
ces could be placed in disjoint subtrees. However, such an
approach will not scale well with many identical sequences:
trees that only differ by exchange of identical sequences will
create islands of constant posterior in tree space. Methods do
not currently exist for tree space traversal that avoids moves
within such islands. Even if such methods existed, they would
need to be combined with algorithms to infer trees with sam-
pled ancestors (Gavryushkina et al. 2014, 2017) as well as multi-
furcations (Lewis et al. 2005, 2015); even just this combination
is not currently available.

Although our methods can be applied to other sequence-
based optimality functions besides parsimony, it is important to
recognize that GCtree (and indeed any tree inference procedure
that deduplicates repeated sequences) contains an inherent
weak parsimony assumption: that each unique genotype arose
from mutation just once in the lineage and therefore corre-
sponds to a single subtree in the lineage tree, and thus a single
node in the GCtree. Thus it is important to continue to assess
the impact of this weak parsimony assumption with simulation
that does not make this assumption, as done here.

The GCtree framework can also be extended to nonneutral
models. For example, one could consider a model in which
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each genotype obtains a random fitness encoded by branching
process parameters h that are fixed within a given genotype
but randomly drawn by the genotype founder cell upon mu-
tation from its parent. This will likely necessitate modeling
genotype birth time explicitly, rather than restricting to extinct
subcritical processes, since a genotype with small abundance
may be a result of low fitness or just young age. One might also
consider extending the offspring distribution to separately
model synonymous and nonsynonymous mutations.
Synonymous mutations do not change fitness, while nonsy-
nonymous mutations change fitness as described earlier.
Another direction of extension is to incorporate mutation
models specialized to the case of BCR evolution, such as the
S5F model (Yaari et al. 2013) used in our simulation study.

Materials and Methods

An Empirical Bayes Framework for Incorporating
Genotype Abundance in Phylogenetic Optimality
Here, we more fully develop the empirical Bayes perspective
on our estimator for the model depicted in figure 2a. This
graphical model implies the factorization

PðG;A;T; hÞ ¼ PðGjTÞPðA;TjhÞPðhÞ: (5)

A hierarchical Bayes treatment would assign a prior PðhÞ
(such as uniform over the unit square for the model
h ¼ ðp; qÞ) and compute the posterior over trees condi-
tioned on the data, marginalizing over h:

P TjG;Að Þ ¼
ð

dh PðT; hjG;AÞ

¼
ð

dh
P G;A;T; hð Þ

P G;Að Þ

/ P GjTð Þ
ð

dhP A;Tjhð ÞP hð Þ:

Rather than attempting this integral over PðA;TjhÞ, each
evaluation of which requires dynamic programming, we first
seek a maximum likelihood estimate for h marginalizing T:

ĥ ¼ arg max
h

PðG;AjhÞ

¼ arg max
h

X
T

PðG;A;TjhÞ

¼ arg max
h

X
T

PðGjTÞPðA;TjhÞ:

(6)

Using this point estimate, an approximate posterior over
trees is

PðTjG;A; ĥÞ / PðGjTÞPðA;TjĥÞ: (7)

This formulation embodies an optimality over trees condi-
tioned on both genotype sequence data G and genotype
abundance data A. Evaluation of ĥ with equation (6) in gen-
eral requires summation over the space of all trees consistent
with the data.

A simple application of this formalism is to augment
parsimony-based tree optimality with abundance data. Let

T G denote the degenerate set of maximally parsimonious
trees given G (each of which has the same total genotype
sequence distance over its edges). Encode parsimony opti-
mality as a PðGjTÞ assigning uniform weight to each tree in
T G, and zero elsewhere. In this case, equation (2) becomes

ĥ ¼ arg max
h

X
T2T G

PðA;TjhÞ; (8)

and equation (7) becomes

PðTjG;A; ĥÞ /
PðA;TjĥÞ; t 2 T g

0; t 62 T g

:

(
(9)

With equation (9), we have a framework using abundance
information to distinguish among the otherwise equally op-
timal trees presented by a parsimony analysis. In our appli-
cation, we use a subcritical infinite-type binary Galton–
Watson branching process model for the lineage tree, and
describe a recursion for computing GCtree likelihoods PðA;
TjĥÞ by dynamic programming to marginalize over compat-
ible lineage trees.

Dynamic Programming to Marginalize Lineage Tree
Structure
We derive a recurrence for fasðp; qÞ ¼ PðAi ¼ a; Ti ¼ sjh
¼ ðp; qÞÞ by marginalizing over the outcome {C, M} of the
branching event at the root of the lineage subtree for genotype
i (the first cell of type i). We will use that a and s are the sum
over two iid processes for the left and right clonal branches. We
temporarily suppress the parameters h ¼ ðp; qÞ, writing fas

for notational compactness. In the case fC ¼ 2;M ¼ 0g,

PðAi ¼ a; Ti ¼ sjC ¼ 2;M ¼ 0Þ ¼
Xa

a0¼0

Xs

s0¼0

fa0s0 fa�a0;s�s0 :

(10)

As this is the convolution of fas with itself, we denote it as
f �2as . Marginalizing over all outcomes {C, M}, we have

fas ¼
X

ðc;mÞ2N2

PðAi ¼ a; Ti ¼ sjC ¼ c;M ¼ mÞ

PðC ¼ c;M ¼ mÞ ¼ da1ds0ð1� pÞ þ f �2as pð1� qÞ2

þ ð1� ds0Þfa;s�12pqð1� qÞ þ da0ds2pq2

¼

0 a ¼ 0; s ¼ 0; 1;

ð1� pÞ a ¼ 1; s ¼ 0;

pq2 a ¼ 0; s ¼ 2;

f �2a0 pð1� qÞ2 a > 1; s ¼ 0;

fa;s�12pqð1� qÞ þ f�2as pð1� qÞ2 otherwise;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(11)

where d�� denotes the Kronecker delta function. In light of the
first case, the convolutional square may be written as
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f �2as ¼
X

ða0;s0Þ62fð0;0Þ;ða;sÞg
fa0s0 fa�a0;s�s0 ;

showing that there are no terms containing fas on the RHS of
equation (11). The GCtree node likelihood fas is thus amena-
ble to computation by straightforward dynamic
programming.

The GCtree Likelihood Factorizes by Genotype
We argue that the joint distribution over all nodes in a GCtree
factorizes by genotype (fig. 2d):

PðA1 ¼ a1; T1 ¼ s1; . . . ;AN ¼ aN; TN ¼ sNÞ ¼
YN

i¼1

faisi
:

(12)

Since s1 is the number of children of node 1 (the root
node), the children of the root node are indexed in level order
by 2; . . . ; 1þ s1. Let Ki denote the set of indices of the nodes
of the subtree rooted at node i, so K2; . . . ;K1þs1

refer to
sister subtrees rooted on each of the s1 children of the root.
Using the definition of conditional probability, and since sister
subtrees are independent, we have

Pða1; s1; . . . ; aN; sNÞ ¼ Pða2; s2; . . . ; aN;Nja1; s1ÞPða1; s1Þ

¼ fa1s1

Y1þs1

i¼1

Pðfðaj; sjÞ : j 2 KigÞ;

where random variable notation has been dropped for nota-
tional compactness. Now, within each subtree factor, we may
reindex in level order (that is, level order in that subtree)
starting from 1. We then pull out factors fa2s2

; . . . ; fa1þs1 s1þs1

corresponding to the root nodes of the sister subtrees (chil-
dren of the original root). We obtain equation (12) by apply-
ing this logic recursively. Restoring the offspring distribution
parameters, we recognize this as the distribution needed in
equations (1) and (2) to rank trees in a parsimony forest:

PðT ¼ ðs1; . . . ; sNÞ;A ¼ ða1; . . . ; aNÞjh ¼ ðp; qÞÞ

¼
YN

i¼1

faisi
ðp; qÞ; (13)

where faisi
ðp; qÞ is computed by dynamic programming using

equation (11).
Numerical validation of the GCtree likelihood is summa-

rized in supplementary figure S3, Supplementary Material
online, using 10,000 Galton–Watson process simulations at
each of several parameter values. The likelihood accurately
recapitulates tree frequencies, and simulation parameters are
recoverable by numerical maximum likelihood estimation.

Simulation Details
To provide for a more challenging in silico validation study,
several biological realisms were built into our simulation that
defied simplifying assumptions in the GCtree inference
methodology.

Arbitrary Offspring Distribution
The recursion (eq. 11) used to compute GCtree likelihood
components specifies a binary branching process, and such
an approach would in general require an offspring distribu-
tion with bounded support on the natural numbers. Our
simulation implements an arbitrary offspring distribution
with no explicit bounding. In the results that follow, we
used a Poisson distribution with parameter k for the expected
number of offspring of each node in the lineage tree.

Context Sensitive Mutation
To generate mutant offspring, all offspring sequences (drawn
from a Poisson as described earlier) were subjected to a
sequence-dependent mutation process. The SHM process is
known to introduce mutations in a sequence context-
dependent manner, with certain hot-spot and cold-spot
motifs (Dunn-Walters et al. 1998; Spencer and Dunn-
Walters 2005). We used a previously published 5-mer context
model S5F (Yaari et al. 2013) to compute the mutabilities l1,
. . . ; l‘ of each position 1, . . . ; ‘ within a sequence of length
‘ based on its local 5-mer context. This model also provided
substitution preferences among alternative bases given the 5-
mer context. To compute mutabilities for beginning and end-
ing positions without a complete 5-mer context, we averaged
over missing sequence context.

Although existing code can simulate a mutational process
parameterized by S5F on branches of a fixed tree with a
prespecified number of mutations on each branch (Gupta
et al. 2015), in our simulations, we wanted the number of
mutations on the branches to be determined by the sequence
mutability as it changes via mutation across the tree. For
example, as an initial mutation hotspot motif acquires muta-
tions down the tree, its mutability typically degrades as it
diverges from the original motif. We defined the mutability
of the sequence as a whole by the average over its positions
l0 ¼ 1

‘

P‘
i¼1 li. We defined a baseline mutation expectation

parameter k0 as a simulation parameter, and the number of
mutations m any given offspring sequence received was
drawn from a Poisson distribution. The Poisson parameter
was modulated by the sequence’s mutability
m � Poisðl0k0Þ, so that more mutable sequences tended
to receive more mutations. Given m> 0, the positions in
the sequence to apply mutations were chosen sequentially
as follows. A site j to apply the first mutation was drawn from
a categorical distribution using the site-wise mutabilities to
define relative probability of choosing each site
j � Catðl1; . . . ; l‘Þ. We mutated the site using a categorical
distribution over the three alternative bases parameterized by
the substitution preferences defined by the site’s context. We
then updated mutabilities l0 and l1, . . . ; l‘ as necessary to
account for contexts that had been altered by the mutation.
This process was repeated m times.

Since the mutability of each node in the lineage tree will
depend on the mutation outcome of its parent, the GCtree
likelihood components will not factorize by genotype.
Because the probability of mutation is sequence-dependent,
the topology of the GCtree will be sequence-dependent.
Therefore, the generative assumptions of the empirical
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Bayes inference do not hold in this simulation scheme, nor
does the offspring distribution equivalence across lineage tree
nodes specified by equation (3).

Sampling Time
Our inference model specifies a subcritical branching process
run until extinction, and sampling of all terminated nodes
(leaves). Our simulation more realistically assigns a discrete
time of sampling parameter t (number of time steps from
root), and thus does not need to constrain the offspring dis-
tribution to achieve subcriticality. At the specified time, ex-
tant nodes can be sampled, so all genotypes that terminated
or mutated at a prior times are not observed. Alternatively, a
parameter N specifying the desired number of simulated ob-
served sequences may be passed, in which case the simulation
runs until a time such that at least N sequences exist (unless
terminated). Genotypes born at different times will be sam-
pled under a process with different effective sampling times
since birth. Thus this sampling time parameter also increases
dependence between genotypes, further distancing the sim-
ulation model from the inferential model.

Incomplete Sampling
We introduce imperfect sampling efficiency with a parameter
n for the number of simulated sequences that end up in the
simulated sample data (FASTA), requiring n � N. This vio-
lates the inferential assumption of complete sampling, and
renders the true genotype abundances latent variables (which
a more complete likelihood approach might aim to margin-
alize out).

Repeated Genotypes
Our simulation is seeded with an initial naive BCR sequence,
from which randomly mutated offspring are created. Because
there is no built-in restriction that the same sequence cannot
arise along different branches (or mutations could be re-
versed), the model assumption of infinite types—such that
identical sequences can be associated with a single genotype
subtree—does not necessarily hold. When this assumption is
violated the tree must necessarily be incorrect.

Calibrating Simulation Parameters Using Summary
Statistics
We defined several summary statistics on sequences
equipped with abundances which were used to calibrate sim-
ulation parameters representative of a regime similar to ex-
perimental data. We chose these statistics to reflect
information relevant to tree inference, but not actually re-
quire tree inference, so as to avoid circularity. Denote g0 2 G
as the naive BCR (root genotype) and dHð�; �Þ as the
Hamming distance function between two sequences. Given
simulation or experimental data G and A, we characterize the
degree of mutation (from naive BCR) in the lineage by the set
of Hamming distances of the observed genotypes from the
naive genotype: fdHðg; goÞ; g 2 Gg. For a given genotype
gi 2 G, we can compute its number of Hamming neighbors
in the data gi ¼ jfgj 2 G : dHðgi; gjÞ ¼ 1gj.

A simulation is specified by parameters ðk; k0;Nðor tÞ; nÞ,
a mutability model (here S5F; Yaari et al. 2013), and an initial
sequence. We found parameters ðk ¼ 1:5; k0 ¼ 0:25;N ¼
100; n ¼ 65Þ produced simulations that were comparable to
experimental data under these statistics. The experimental
data used for comparison, consisting of 65 total BCR V
gene sequences from a single germinal center lineage, is de-
scribed in the following section. Supplementary figure S2,
Supplementary Material online, depicts these summary sta-
tistics for 100 simulations, compared with experimental BCR
data.

Germinal Center BCR Sequencing
Germinal center B cell lineage tracing and B cell receptor
sequencing was performed as previously described (Tas
et al. 2016). Full length IgH and IgL sequences from lymph
node 2 germinal centers 1 and 2 from this reference were used
for empirical validation results, whereas V gene sequences
only (which are not dependent on partis-inferred naive
sequences) were used for calibrating simulation parameters.

Bootstrap Support
We computed bootstrap support values for edges on a
GCtree extending the standard approach (Felsenstein 1985):
we resampled columns from the alignment G 100 times with
replacement, generating an inferred GCtree (maximum
GCtree likelihood among equally parsimonious trees) for
each. Each edge is equivalent to a bipartition of observed
genotypes obtained by cutting the edge; such a bipartition
is typically referred to as a split. We compute the number of
bootstrapped trees that contain the same split, and annotate
the edge with this number. Because resampling the alignment
G can produce repeated genotypes, there can exist ambiguity
about how to perform genotype collapse of a parsimony tree.
We simply group genotypes in the bootstrap analysis that
collapse to identical genotypes. For example, if two observed
sister genotypes with resampled sequences are both identical
in sequence to their mutual parent, both have a claim on
collapsing into the parent. When collapsing this tree, both
genotypes will be associated with this collapsed node, rather
then just a single one.

Data Availability
Germinal center BCR sequence data can be found in supple-
mentary Database S1 of Tas et al. (2016), lymph node 2 and
germinal center 1.

Software Availability
The GCtree source code is available at github.com/mat-
sengrp/gctree and accepts sequence alignments in FASTA
or PHYLIP format as input. It is open-source software under
the GPL v3.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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