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Abstract: The role of fibronectin (FN) in tumorigenesis and malignant progression has been highly
controversial. Cancerous FN plays a tumor-suppressive role, whereas it is pro-metastatic and
associated with poor prognosis. Interestingly, FN matrix deposited in the tumor microenvironments
(TMEs) promotes tumor progression but is paradoxically related to a better prognosis. Here, we
justify how FN impacts tumor transformation and subsequently metastatic progression. Next, we try
to reconcile and rationalize the seemingly conflicting roles of FN in cancer and TMEs. Finally, we
propose future perspectives for potential FN-based therapeutic strategies.
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1. Introduction

Identification of a general and suitable target that is unambiguously oncogenic or tumor
suppressive is a foundation on which cancer therapeutic strategies could be designed and developed.
Fibronectin (FN) (Figure 1A) has long been proposed to play an important role in the pathobiology
of cancer. Numerous studies have indeed provided possibilities to target FN for fighting against
cancer [1–6]. However, the role of FN in tumorigenesis and malignant progression has been highly
controversial [7,8]. On the one hand, it has been reported that FN expression in tumor cells plays
a tumor suppressive role to prevent tumor transformation and to halt their early progression [9].
On the other hand, abundant evidence reveals that FN provokes late stages of cancer metastasis and is
associated with poor prognosis when endogenously expressed in tumor cells. When deposited into
extracellular matrices (ECMs) in the immunosuppressive tumor microenvironments (TMEs) in which
tumor cells are often the driving force to induce inflammatory responses, FN promotes early tumor
progression [10–15] but is paradoxically correlated with a better prognosis [7,16–19] (Figure 1B,C).
Before resolving such obviously paradoxical roles of FN in cancer development, it is of high risk
to simply target FN for controlling cancer. In this review article, we will first delineate how FN
paradoxically impacts the pathobiology of cancer. Next, we will try to reconcile and rationalize the
seemingly conflicting roles of FN in cancer. Finally, we will provide future perspectives by proposing
potentially suitable FN-targeting therapeutic strategies.
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Figure 1. (A) The structure of fibronectin (FN) containing three types of repeats and three alternative 
splicing regions (EDA, EDB, and IIICS) with several well-known binding sites for extracellular matrix 
(ECM) components (fibrin, heparin, collagen, and gelatin), polymeric assembly (FN–FN), cell 
adhesion (integrin α5β1), DPP IV, and two C-terminal disulfide bonds for dimeric FN. (B) 
Publications in recent some forty years regarding the roles of cancerous FN and stromal FN in ECM 
in tumor progression as represented in a time-line pattern. Among 26 publications before 2000, 15 
(57.7%) papers are related to the role of cancerous FN in tumor suppression (in light green boxes), 3 
(11.5%) papers are related to the role of cancerous FN in metastasis promotion (in orange boxes), and 
8 (30.8%) papers are related to the role of stromal FN in promoting early tumor progression but not 
late metastasis (in dark green boxes). On the contrary, Among 46 publications after 2000, 7 (15.2%) 
papers are related to the role of cancerous FN in tumor suppression (in light green boxes), 25 (54.4%) 
papers are related to the role of cancerous FN in metastasis promotion (in orange boxes), and 14 
(30.4%) papers are related to the role of stromal FN in promoting early tumor progression but not late 
metastasis (in dark green boxes). Abbreviations in boxes are referred to the context of this article. (C) 
Percentages of articles for the three various roles of FN (the same colors as depicted in (B) before 2000 
and after 2000. Numbers in the parenthesis represent article numbers. 
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Figure 1. (A) The structure of fibronectin (FN) containing three types of repeats and three alternative
splicing regions (EDA, EDB, and IIICS) with several well-known binding sites for extracellular matrix
(ECM) components (fibrin, heparin, collagen, and gelatin), polymeric assembly (FN–FN), cell adhesion
(integrin α5β1), DPP IV, and two C-terminal disulfide bonds for dimeric FN. (B) Publications in recent
some forty years regarding the roles of cancerous FN and stromal FN in ECM in tumor progression as
represented in a time-line pattern. Among 26 publications before 2000, 15 (57.7%) papers are related to
the role of cancerous FN in tumor suppression (in light green boxes), 3 (11.5%) papers are related to the
role of cancerous FN in metastasis promotion (in orange boxes), and 8 (30.8%) papers are related to
the role of stromal FN in promoting early tumor progression but not late metastasis (in dark green
boxes). On the contrary, Among 46 publications after 2000, 7 (15.2%) papers are related to the role of
cancerous FN in tumor suppression (in light green boxes), 25 (54.4%) papers are related to the role
of cancerous FN in metastasis promotion (in orange boxes), and 14 (30.4%) papers are related to the
role of stromal FN in promoting early tumor progression but not late metastasis (in dark green boxes).
Abbreviations in boxes are referred to the context of this article. (C) Percentages of articles for the three
various roles of FN (the same colors as depicted in (B) before 2000 and after 2000. Numbers in the
parenthesis represent article numbers.

2. The Pathobiology of Cancer

2.1. Transformation

Accomplishment of cancer development, a rather slow and chronic process, temporally and
spatially requires various cellular activities across different tissues. Tumor cells originate from healthy,
often epithelial, cells that acquire hereditary mutations [20] or somatic mutations in response to a
diversity of environmental stresses. Owing to self-defense, healthy cells harboring first fit of oncogenic
activation or tumor suppressor gene (TSG) inactivation become senescence instead of continued
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oncogenic proliferation until a second hit of somatic mutation occurs, illustrated as the Knudson’s
“two-hit” model [21,22]. As such, once these senescent precancerous cells are transformed, they possess
intratumor heterogeneity due to genomic instability caused by the abnormally released cell cycle
progression [23,24] (Figure 2).
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moderate FN-expressing normal cells, most often epithelial cells, first enter the senescence state under 
oncogenic stimuli (including oncogenic activation, loss of tumor suppressor genes, and diverse factors 
derived from environments), in which endogenous FN expression is highly promoted and 
senescence-associated secretory phenotypes (SASPs) are subsequently secreted by those senescent 
cells to recruit fribrolytic pro-M1 macrophages and fibroblasts, cytotoxic T cells, and natural killer 
cells (NKs) for degrading and remodeling ECM (including ECM FN) and clearing damaged or 
senescent cells (at the immune elimination stage of 3E). Progressing from the immune equilibrium to 
the immune escape stage, tumor cells are transformed from the survived stimulus-induced senescent 
cells and slowly evolve to conquer immunosurveillance in the primary tissues, during which 
endogenous FN is drastically downregulated, whereas tumor cell-driven FN deposition in the ECM 
of TMEs is greatly elevated, resulting from plasma FN extravasated from leaky vasculature and 

Figure 2. Hypothetic illustration of tumor transformation and early progression involving
immunoediting in which FN participates. During tumor transformation and early progression,
moderate FN-expressing normal cells, most often epithelial cells, first enter the senescence state
under oncogenic stimuli (including oncogenic activation, loss of tumor suppressor genes, and diverse
factors derived from environments), in which endogenous FN expression is highly promoted and
senescence-associated secretory phenotypes (SASPs) are subsequently secreted by those senescent cells
to recruit fribrolytic pro-M1 macrophages and fibroblasts, cytotoxic T cells, and natural killer cells (NKs)
for degrading and remodeling ECM (including ECM FN) and clearing damaged or senescent cells (at the
immune elimination stage of 3E). Progressing from the immune equilibrium to the immune escape stage,
tumor cells are transformed from the survived stimulus-induced senescent cells and slowly evolve
to conquer immunosurveillance in the primary tissues, during which endogenous FN is drastically
downregulated, whereas tumor cell-driven FN deposition in the ECM of TMEs is greatly elevated,
resulting from plasma FN extravasated from leaky vasculature and secretion (most likely the altered
SASP secretome) by M1/M2 hybrid macrophages and cancer associated fibroblasts (CAFs). Eventually,
tumor cells increase their migratory and invasive activities, trigger angiogenesis, outgrow in the
primary tissues, and intravasate into the nearby blood vessels to become FNlow CTCs, which, although
in large amounts, suffer greatly from anoikis, mechanical deformation, and immunosurveillace (majorly
via NK cells) in the circulation. Nevertheless, the fast growing tumor cells in the primary tissues can
secrete chemokines and exosomes to drive bone marrow-derived cells (BMDCs) that are recruited in
the distant organs (e.g., the lungs) to establish premetastatic niche (PMN) where macrophages (most
likely M1/M2 hybrid as in the primary tissues) and CAFs are mainly responsible for the FN deposition
in the ECM of PMN to prepare a suitable TMEs for the future extravasated metastatic DTCs. diFN:
dimeric form of FN; EpiFN: FN expression in normal epithelial cells; SeFN: FN expression and surface
assembly in the stimuli-induced senescence cells; ECMFN: FN deposition in ECM.
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2.2. Early Progression

In contrast to such intratumor heterogeneity, immune and stromal cells in the tumor
microenvironments (TMEs) initially arise to eliminate pre-tumor abnormal cells and early transformed
cells that encounter environmental stresses. Consequently, these stresses impose early transformed
cells enormous selective pressures to force evolution, rendering tumor cells staying in the equilibrium
stage for a long while before being able to escape immunosurveillance and make a malignant
progression [25–27]. However, these events are seemingly insufficient to warrant cancer metastasis, an
event highly associated with hypoxia within TMEs, a lethal environment when tumor size continue to
increase without sufficient oxygen and nutrient supplies [28] (Figure 2).

2.3. Hypoxia at the Crossroad between Early Progression and Late Malignancy

Oxygen delivery within the TMEs is inefficient mainly due to various abnormalities in the tumor
vasculature [29]. Indeed, the stable expression of the hypoxia-inducible transcription factors HIF-1 and
HIF-2 under hypoxia are highly correlated with increased distant metastasis and poor prognosis [28].
Hypoxia has been reported to contribute to premetastatic niche (PMN) [30,31], immune evasion [32],
and survival in distant tissues [28], events required for the accomplishment of cancer metastasis in
distant organs [28] (Figure 3).
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macrophages and cancer associated fibroblasts (CAFs) are activated to become fibrolytic CAFs, 
leading to significant clearance of ECM FN. While angiogenesis is promoted by hypoxia with 
abnormality, the abilities of the FNhigh tumor cells to migrate, invade, and intravasate are greatly 
reduced. Although the numbers of intravasated FNhigh circulating tumor cell (CTC) are reduced, CTC 
clusters can be present via collective transendothleial migration in addition to single CTCs to enhance 
their resistance to circulatory stresses, e.g., anoikis, mechanical deformation, and immunosurveillance 
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PMN-lodged proMes DTCs tend to be reversed to proEpi again and quickly form macrometastasis 
(Macrometa), whereas the non-PMN-lodged proMes DTCs first enter a dormancy and only exhibit 
micrometastasis (micrometa) for a long period of time until metastatic nich (MN) is established by the 
proMes DTCs, which in turn reverse DTCs to proEpi without compromising FN expressing and lead 
to the outgrowth of DTCs into macrometastasis. 

3. The Paradox of the Role of FN in Cancer 

Figure 3. Hypoxia is at the cross road likely to decide whether tumor cells could reexpress FN and
pave the way for themselves to distant organs. Once the outgrown tumor cells rich a certain size,
oxygen concentration within the TMEs becomes significantly less which forms an enormous harsh
environmental pressures to force cell death of the majority of outgrown tumor cells due to hypoxia with
only a small number of cells continue to evolve and survive (most likely due to slow cycling and cancer
stemness). These slow cycling stem-like cells drastically reexpress endogenous FN in a HIF1α-dependent
or -independent manner. At the same time, the pro-epithelial (proEpi (E)) phenotypes of tumor cells are
reversed into pro-mesenchymal ((proMes (M)) phenotypes and M1/M2 hybrid macrophages and cancer
associated fibroblasts (CAFs) are activated to become fibrolytic CAFs, leading to significant clearance of
ECM FN. While angiogenesis is promoted by hypoxia with abnormality, the abilities of the FNhigh tumor
cells to migrate, invade, and intravasate are greatly reduced. Although the numbers of intravasated FNhigh

circulating tumor cell (CTC) are reduced, CTC clusters can be present via collective transendothleial
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migration in addition to single CTCs to enhance their resistance to circulatory stresses, e.g., anoikis,
mechanical deformation, and immunosurveillance (majorly via NK cells). CTC clusters, that are often
formed together with platelets, M2 macrophages, or neutrophils, can adhere to endothelia via binding
to dipeptidyl peptidase IV (DPP IV) by periFN assembled on FNhigh CTCs, followed by extravasation
and migration to either non-PMN locations or PMN which has early been established by the outgrowing
tumor cells in the primary tumor cells. The PMN-lodged proMes DTCs tend to be reversed to proEpi
again and quickly form macrometastasis (Macrometa), whereas the non-PMN-lodged proMes DTCs
first enter a dormancy and only exhibit micrometastasis (micrometa) for a long period of time until
metastatic nich (MN) is established by the proMes DTCs, which in turn reverse DTCs to proEpi without
compromising FN expressing and lead to the outgrowth of DTCs into macrometastasis.

2.4. Tumor Cell Survival in the Circulation

The liberation and survival of circulating tumor cells (CTCs) is a requirement for the colonization
of disseminated tumor cells (DTCs) in secondary organs and finally outgrowth and macrometastasis
development [33,34]. Like those in the primary tissues, CTCs are also heterogeneous and only certain
subpopulation is able to make their way to final metastatic growth [35]. Accumulating evidence
indicates that hypoxia-induced EMT allows the intravasated CTCs to survive, most likely via resistance
to detachment-induced anoikis and/or NK-mediated immunosurveillance, and to colonize distant
organs [36,37] (Figure 3).

2.5. Premetastatic Niche and Macrometastasis Outgrowth

Serious attention has recently been paid to the concept of PMN which plays an important role in
the outgrowth of dormant DTCs into macrometastatic tumor lesions in which EMT could be reversed
into mesenchymal–epithelial transition (MET) [38,39]. PMN is established in the distant organs mainly
through effects of VEGFR+ bone marrow-derived cells (BMDCs) that have been driven by cytokines or
exosomes secreted by the metastatic competent tumor cells in primary tissues long before extravasation
of DTCs in distant tissues [40,41]. Obviously, the reason of DTCs to be reversed from EMT to MET
within PMN is that DTCs in MET state adapt better the growth conditions in distant tissues which are
otherwise disfavoring the outgrowth of DTCs in EMT state [38,42–44] (Figures 2 and 3).

3. The Paradox of the Role of FN in Cancer

3.1. Structure and Functions of FN

FN was originally identified a cell surface glycoprotein that is present on the cell surfaces of
nontransformed cell lines [45]. FN mRNAs, about 8-kb, encode for FN protein subunits, dependent
of alternative splicing, with a range in size from 230–270 kDa [46]. FN harbors three repeating units,
name as types I, II, and III repeats to contain various binding sites for collagen/gelatin, integrins, heparin,
FN, and other extracellular molecules. Numerous folded structures in each type I and II FN repeat are
stabilized by two intramolecular disulfide bonds, whereas type III FN repeats are seven-stranded β-barrel
structures without any disulfide bond. The minimal ~500-kDa dimer form of FN is further stabilized by
two intermolecular antiparallel disulfide bonds at the C terminus of each monomer (Figure 1A) [47,48].
Polymerization and pericellular FN matrix assembly (periFN) engaging disulfide bond-dependent and
-independent dimerization of FN subunits, self-binding activity that associates FN dimers into fibrils,
and cell-binding activity enable FN to participate various physiological and pathological functionalities.
Illustrations regarding detailed biology of FN can be referred to other review articles [49,50].

3.2. FN Plays a Tumor Suppressive Role in Tumor Cells but Serves as an Oncogenic Factor in the Surrounding
Stromal Tissues

Before the early 1990s, while stromal FN in TMEs favors the growth of tumor cells, cancerous FN
has unambiguously been deemed as a tumor suppressive factor [51–53]. In line with these findings,
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it has been found that, by comparing lots of non-transformed and tumorigenic epithelial cell lines
inoculated in nude mice [54], loss of FN expression and cell surface matrix assembly is correlated with
malignant transformation [54–56]. Clinically, immunohistochemistry (IHC) staining reveals that no FN
can be detected in most of the carcinoma tumor cells, whereas the surrounding stromal tissues are
strongly positive, echoing the above-described pre-clinical findings [19]. Other evidence also shows
that the level of periFN is reduced or it is absent on transformed cells [57–59]. Restoration of periFN on
rat kidney transformed cells convert them into extremely flat cells with abundant fibrillar FN on cell
surfaces and these cells subsequently grow into monolayer with normal morphology, implying that
periFN expression indeed plays a tumor suppressive role [60]. Overexpressing a recombinant FN clearly
suppresses transformed phenotypes of human fibrosarcoma cells [61]. Consistently, it has been found
that overexpressing FN receptor integrin α5β1 in Chinese hamster ovary (CHO) cells induces more
periFN deposition, rendering CHO cells significantly less migratory and anchorage-independent [62].
Despite the fact that drastically fewer reports document FN as a tumor suppressor after 2000s, there
remain several findings characteristic of tumor suppression for cancerous FN [7,63–67]. The impact of
high stromal FN expression to which tumor cells directly adhere in early malignant tumor progression
may be due to the induction of matrix metalloproteinases (MMPs) in tumor cells, which facilitates
tumor migration, invasion, angiogenesis, and intravasation [68,69]. During the TWIST1-promoted
ovarian cancer metastasis, discoindin domain receptor 2 was upregulated to increase activity of matrix
modeling enzymes and the cleavage of FN, leading to elevated migratory and invasive activities of
tumor cells [70]. Mechanistically, periFN serving as a tumor suppressor has further been evidenced
by the fact that the ability of tumor cells to assemble periFN is abolished due to the mutation and
deficiency of an intimate FN-binding partner von Hippel-Lindau proteins (pVHLs) [71]. However,
periFN remains deficient in many other types of tumors with intact pVHLs, suggesting that loss of FN
expression or periFN deficient may also be regulated by VHL-independent pathways. Alternatively,
aberrant functions of yet-to-be-identified factors, e.g., NEDD8 that modifies pVHL or elongin C, elongin
B, cullin 2, or RBX1 in the pVHL complex [72–74] may be responsible for the tumor cells losing the
ability to assemble periFN (Figure 1B).

3.3. FN Promotes Cancer Metastasis

Accumulating evidence has emerged to reveal that cancerous FN expression critically contributes
to tumor malignancy, metastasis, and patients’ poor prognosis since early publications controversially
claim that periFN serves as an endothelia-binding ligand on blood-borne tumor cells to mediate
and promote lung colonization and metastasis [1,75–77]. Numerous reports have also employed
either genetic or proteomic approaches to demonstrate that cancerous FN expressions in various
types of tumor cells are indeed experimentally and clinically associated with tumor malignancy,
metastasis, or poor prognosis [2,78–86]. Higher levels of plasma, serum, or urine FN expression
could be detected in late stages and metastatic renal cell carcinoma or colorectal cancer patients
and may clinically serve as excellent non-invasive prognostic biomarkers [87,88]. In line with such
metastatic-promoting role of cancerous FN, FN is highly expressed in the pancreatic CTCs that possess
a high metastatic potential empowered by the WNT signaling [89]. In many findings elaborating
molecular mechanisms underlying distant cancer metastases, cancerous FN expression has often
identified as a critical mediator. For example, FN expression mediates the metastatic promoting role of
the decreased expression long non-coding RNA FENDRR, which is associated with poor prognosis
of gastric cancer [90]. In addition, the mechanism underlying the anti-adhesion effect of metastatic
suppressor KAI1/CD82 is that overexpressing KAI1/CD82 results in a reduced FN expression, leading
to an attenuation of the matrix adhesion of human prostate cancer cells [91]. In the cancer metastasis
that is mediated by the interaction between X-linked inhibitor of apoptosis (XIAP) and survivin but
independent of inhibition of cell death, FN expression serves a downstream signaling factor to promote
the metastasis process [92]. Furthermore, FN expression has often been found to mediate various
metastatic-promoting mechanisms [93–100] (Figure 1B).
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4. Reconciliation of the Paradoxical role of FN in Cancer

Attention has particularly been paid to the fact that, with a few exceptions [101–106], the role of FN
expression in tumor cells was primarily thought of as a tumor suppressor prior to the 1990s, yet later
the consensus switched to its role being a metastatic promoter as aforementioned. It remains obscure
why there are such two cut-off phases as to the different time periods for the obviously conflicting
mainstream conceptions regarding the role of FN in tumor progression. Most fascinatingly, not only
have almost no rebuttals been made from either side, but when one side deems FN to be a tumor
suppressor or metastatic promoter, the effect of FN in tumor metastasis or tumorigenesis, respectively,
has often not been tested (Figure 1B). This implies the possibility that all the findings are truthful
but difficult to rationally reconcile given that the roles FN plays during tumor progression are too
complicatedly intertwined. Here, several possibilities are proposed for the seemingly paradoxical roles
of FN in cancer progression (Figures 2–4).

4.1. The Role of FN Expression in Epithelial Cell Senescence and Tumor Transformation

During early process of transformation, normal cells usually encounter various types of
stresses, leading to premature cellular senescence that autonomously halts the continuous growth of
damaged cells to prevent the occurrence of tumor and non-autonomously affects the surrounding
microenvironments, including immune cell recruitment for eliminating the senescent cells (so called
elimination stage of immunoediting during tumor progression) and stromal cell senescence for tissue
remodeling [26,107–110]. Cumulative evidence indicates that increased FN expression is a relatively
common event in the senescent cells and even in the secretome of ASAP [111–114]. Indeed, FN
upregulation has been deemed as one of prominent senescent marker [113,115] (Figure 2). It is
reasonable to associate FN overexpression with premature cellular senescence that is triggered by a
variety of stresses, including ER stresses, due to tumor transformation factors, e.g., oncogene-induced
senescence (OIS) or senescence induced by loss of TSG, as FN is a large and highly structured
ECM glycoprotein synthesized in the ER with a molecular weight of a disulfide-bonded dimer as
high as ~500 kDa [50] and may easily suffer structural misfolding due to diverse reasons including
mutations, inadequate stoichiometric amounts of oligomerization partners, shortage of chaperone
availability, increase in nascent client proteins, nutrient deprivation, viral infection, hypoxia, and
oxidative stress [116]. The newly synthesized FN monomer entering the lumen of the ER undergoes
proper folding, posttranslational modifications, followed by the acquisition of disulfide bonds before it
is in the appropriate structure to execute physiological functions [117]. Normally, when FN is misfolded
during synthesis in the ER, it may be exported from ER back to cytosol for the degradation by the
ubiquitin/proteasome system, a process named as the ER-associated protein degradation (ERAD) [116]
and the cell integrity ensues. However, when FN is overexpressed with too many misfolded FN
molecules exceeding the affordable ERAD, ER stress is likely to be spawned, resulting in cell death or
premature cellular senescence [109,118].

The possibility that FN overexpression accounts for normal epithelial senescence caused by various
types of stresses [118–123] is substantially supported by the findings that silencing FN transcription
or depleting periFN of pre-cancerous cells or pre-malignant tumor cells promotes characteristics of
tumor progression, including proliferation, migration/invasion, tumor sizes, anchorage-independent
cell growth, and angiogenesis [53,64–67,106,124–127]. Whether the promotion of tumor malignancy by
FN depletion is due to the suppression of senescent phenotypes warrants further investigation. PeriFN
suppresses tumor progression could further be evidenced by the fact that, in von Hippel-Lindau
(VHL) disease, defected pVHL protein gives rise to renal tumorigenesis where periFN assembly
is hampered. Cells that are deficient in VHL gene are less competent to eliminate misprocessed
proteins [128], possibly disrupting the binding of CUL2 to the VHL-elongin complex [72,129]. CUL2
is believed to target misprocessed proteins for ubiquitination and subsequent clearance by protein
degradation [130]. Conceptually, cells with pVHL-deficient may not properly assemble periFN on
their surfaces but accumulate misfolded FN in the ER lumen, leading to unmanageable ER stress and
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premature cellular senescence [131]. Such senescent cells may be maintained in an equilibrium stage
until they are able to significantly downregulate FN, reduce ER stress, evade the cellular senescence,
and progress to the escape stage (Figure 2) [26]. In line with the aforementioned idea of the molecular
mechanism underlying cellular senescence escaping and tumor transformation, HSP90 chaperon
proteins have been reported to be capable of binding to and guiding newly synthesized FN in the
ER lumen of normal epithelial cells, facilitating proper folding of glycosylated FN structure followed
by appropriate periFN assembly on cell surfaces [132,133]. When normal epithelial cells are treated
with HSP90 inhibitors, cells also suffer senescence due to a reduced ability to properly guide the
folding of FN for a correct periFN assembly, unavoidably leading to cellular senescence and more FN
is expressed as a senescent marker [132]. Indeed, HSP90s are deemed as an essential chaperon family
to prevent senescence of normal epithelial cells [134]. The HSP90 deficiency-induced senescence may
be evaded if endogenous FN synthesis is prohibited, rationalizing why, in order to allow transformed
tumor cells to continue proliferating, they must downregulate their endogenous FN synthesis to
foster the regrowth of senescent cells to become transformed tumor cells when the genome instability
reaches the degree to which cellular senescence can be evaded and the regrown senescent cells become
tumorigenic [20,107,135,136].

4.2. ECM-Deposited FN Derived from Plasma, CAFs, and Macrophages during Inflammation Promotes Tumor
cell Growth, Migration, Invasion, Angiogenesis, and Intravasation

The mutual interactions between parenchymal cells that endure the process of oncogenic stresses
and transformation and stromal microenvironments harboring mesenchymal cells endow tumorigenesis
and tumor progression [26,137]. In contrast to the significant downregulation of FN in tumor cells
in primary tumor tissues, FN that is deposited in the ECM of TMEs plays an important role in
promoting tumor progression, including tumor cell growth, migration, invasion, angiogenesis, and
intravasation [13,138–148]. However, how FN production and FN matrix deposition and organization
are regulated by tumor cells has been less understood. Here, we attempt to propose possibilities.
The ECM-depositing FN can be derived from either plasma [149] or various cell types, of which
fibroblasts and macrophages have especially drawn attention [136,145,150] (Figure 2). Endothelial cells
and their cell-to-cell junctions are essential in maintaining vascular integrity and vascular permeability
to plasma and cells [151]. In certain physiological circumstances, endothelial cell junctions may be
transiently dismantled, allowing inflammatory leukocytes and plasma proteins including FN to enter
a wound tissue for a protective barrier against invading microorganism, prevention of severe water
loss, clearance of damaged cells, and healing of the wound [152,153]. However, when endothelia are
situated within tumor tissues where tumor cells release factors to trigger angiogenesis with altered
junctional compositions [154,155], hyperpermeability of tumor vessels renders pro-tumor leukocyte
recruitment and persistent influx of plasma molecules, e.g., FN and fibrin, into chronic inflammatory
TMEs, consequently facilitating tumor growth, migration/invasion, and intravasation [149,153,156–158].
Fibroblasts surrounding tumor cells are generally considered as the main professional matrix producers
called CAFs [145,159,160]. In the beginning of oncogenic processes, pro-inflammatory cytokines in
non-autonomous SASP [113,161], produced and secreted by the senescent parenchymal cells that suffer
diversity of stresses, are essentially responsible for the alteration of surrounding microenvironments,
including fibroblast activities [162,163]. While fibroblasts are thought to be temporarily senescent to
control fibrogenesis in the neighbor stroma and recruit pro-inflammatory cells to clear the damaged
senescent cells, the transient fibrolytic senescent fibroblasts are altered to be persistent FN-generating
fibrogenic fibroblasts in response to the altered secretome of tumor cells that evolve to escape
immunosurveillance during tumor transformation [107,145,164]. The fact that persistent senescent
fibroblasts surrounding transformed tumor cells aggravate FN-enriched fibrosis [145] is substantiated
by the findings that the fibroblast senescence induces myofibroblast differentiation in a paracrine
manner to express a profibrotic SASP and eminent FN expression and that reduction of fibrillar FN
formation ameliorates organ fibrosis [144,153,165]. It has been known that FN and enzyme LOX
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critically contribute to fibrosis in various tissues [166,167]. Consistently, SASP of fibrogenic senescent
fibroblasts, although contains decreased ECM components, e.g., collagens and elastin [168–170],
exhibits elevated FN and LOX [127,171], implying that long-term senescent fibroblast-synthesized FN
critically contributes to the ECM deposition within TMEs. Another pro-inflammatory cell type that
is able to contribute to FN deposition in TMEs is macrophage [172–176]. It has been reported that
alternatively activated macrophages do express FN [177], facilitating tumor progression, migration,
invasion, and intravasation [172,178–180]. Additionally, macrophages have been reported to be capable
of remodeling FN-containing ECM matrix deposition and driving pro-malignant interactions between
tumor cells and ECM in the TMEs [181,182] Clinically, more than 80% of all meta-analytic results
demonstrate a strong association between the presence of macrophage and patients’ poor prognosis in
various types of cancer [183,184]. Indeed, the poor prognosis for cancer patients has been attributed to
high expression levels of CSF-1, the major lineage regulator for macrophages [185,186]. Importantly,
CSF-1 has been evidenced as a regulator of endogenous cellular FN expression [187,188]. Furthermore,
during the hepatocellular carcinoma development, oncogene-induced senescent hepatocytes secrete
SASP cytokines, e.g., CCL2, to exert pro-tumor effects [136]. CCL2 secreted by tumor cells is well
known to be a crucial chemokine factor for immature monocyte recruitment [186] and associated
with poor prognosis [189], whereas its absence is associated with increased survival in cervical cancer
patients [190]. Additionally, CCL2, when engaged with CCR2 expressed on the recruited immature
monocytes and triggering their maturation into tumor associated macrophages (TAM), has been
reported to evoke IL6 secretion that activates STAT3-mediated signaling [191]. FN expression and
secretion has well been known to be provoked by IL6-STAT3 signaling axis [192,193]. These findings
suggest that TAMs may significantly contribute to persistent FN secretion and deposition within TMEs,
facilitating tumor progression.

Whereas it is beyond the shadow of doubt that macrophages in the tumor-induced inflammatory
milieus can deposit and organize the FN matrices into TMEs [172,176,177], it remains obscure whether
a specific macrophage population contributes to such FN matrix deposition. It is probably due to
a fact that myeloid monocyte-derived macrophages are relatively pliable and not only limited to
the M1/M2 conversion in response to diverse stimulatory cues [194–196]. For instance, FN matrix
deposition, instead of provisional FN, has been deemed as one of markers in alternatively activated
macrophages often designated as M2 macrophages within the pro-tumor inflammatory TMEs [197],
whereas it has conversely been revealed that macrophages characteristic of the M1 type responsible
for clearing damaged cells during the elimination stage of tumor transformation remain M1 type and
are not converted to M2 type [198]. Indeed, classification of macrophages has also evolved originally
from dichotomy to macrophage spectra before macrophage circle [196]. The bottom line for the role of
macrophages and their secretion of FN eventually organized into FN matrices in pro-tumor TMEs is that
any type of macrophages belonging to TAMs should comply with the criteria in which macrophages
are potent to persistently secrete FN and render FN matrix deposition in TMEs in favoring tumor
growth and malignant development when endogenous FN expression is downregulated in tumor
cells. However, how these two mutually cross-interactions between tumor cells and macrophages are
engaged deserves further investigations.

4.3. Hypoxia-Induced Reexpression of FN in Tumor Cells and Cancer Metastasis

As low FN expressing (FNlow) tumor cells that bypass senescence effects at the elimination
stage and drive persistent FN deposition in the ECM within TMEs to facilitate tumor growth and
progression prosperously proliferate and enlarge tumor sizes up to ~100–200 µm away from blood
vessels, the low oxygen pressure within the TMEs renders hypoxia due to insufficient blood vessel
supply [199–202]. The hypoxic microenvironments give an enormous impulse to tumor cells as well as
stromal cells metabolic threatening, eventually leading to apoptosis of tumor cells that are sensitive to
prolonged hypoxia [203,204]. Due to the entities of genomic instability and heterogeneity in tumor
cells, some tumor cells, however, adapt to hypoxia, survive, and become highly metastatic [199,202]
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(Figure 3). Hypoxia-induced factors (HIFs), e.g., HIF1 and HIF2, are among molecules upregulated in
the tumor cells surviving the hypoxic environments the most studied genes as master regulators [28,205].
Interestingly, endogenous FN synthesis is one of consequences of HIF activation [206–209]. Importantly,
HIFs are highly instable under normoxia mainly due to the oxygen-dependent hydroxylation of
pVHL-binding proline residues in HIFs by proline hydroxylase (PHD), triggering specific binding of
pVHL, an E3 ubiquitin ligase capable of rendering polyubiquitination and proteasomal degradation of
HIFs [28,210]. In cancer patients with VHL mutations, HIFs are always stabilized [211]. It has been
reported that pVHL is required for periFN assembly [71,131,212], perfectly in line with the concept
that FN expression and periFN assembly serve as tumor suppressing factors [54,56]. Consistently, in
the early tumor progression, FN has always been found to be downregulated in prosperous tumor
cells in primary tumor tissues [19,54–56]. These results suggest that periFN assembly is disabled
in VHL-deficient tumor cells in the presence of stable HIFs. Since it has well been documented
that FN expression in tumor cells is highly correlated with metastatic potency and poor prognosis,
upregulation of endogenous FN in metastatic cancer cells of VHL-deficient patients may conceptually
due to HIF-independent molecular mechanisms, warranting further investigation. This hypothesis is
supported by the findings that FN can still be significantly upregulated in in the mouse embryonic
fibroblasts (MEFs) isolated from HIF-1α–/– mice under hypoxic conditions [213].

Abundant evidence indicates that epithelial–mesenchymal (E–M) plasticity is a cellular activity
essential to cancer cells that are competent to metastasize in distant organs [36,214,215]. Moreover,
E–M plasticity has long been shown to regulate tumor- or metastasis-initiating characteristics of tumor
cells [216–218]. Interestingly, cancer stemness has also been documented to contribute to resistance
to anti-cancer drugs [219,220]. FN is one of most studied genes that are upregulated in tumor cells
bearing E–M plasticity and often employed as a biomarker for the mesenchymal phenotype [221,222].
Hypoxia is often deemed as a stimulator for tumor cells to be switched from epithelial to mesenchymal
phenotype and become cancerous stem cells [216,223]. Altogether, these findings fully support
that FN can be reexpressed in tumor cells under hypoxic conditions either by HIF1α-dependent or
-independent signaling regulations. The metastatic-initiating and drug-resistant characteristics of these
FN-reexpressing hypoxia-altered tumor cells may endow them abilities to progress toward secondary
growth in distant organs. It is worth researching as to whether FN reexpression in hypoxia-altered tumor
cells is a cause or a consequence of metastatic initiation and drug resistance. Like stress-induced cellular
senescence of precancerous cells, hypoxic stresses may also impulse apoptotic and senescent pressure to
the prosperously growing tumor cells [224,225]. Indeed, the majority of tumor cells die due to apoptosis
under hypoxic conditions [226]. Within heterogeneous populations, the outgrowing tumor cells in
primary tissues may suffer again from senescent stimulation under hypoxic conditions [225]. In line
with such thought, senescence biomarkers such as FN reexpression and RhoA-mediated actin stress
fiber cytoskeleton become apparent in tumor cells suffering from hypoxic stimulations [206,227,228].
Conceptually, tumor cells that have continuously evolved and harbored certain degree of genomic
instability would not behave similarly to precancerous cells and stay in the senescent state where
cells are stopped in the G0 phase but likely slower their cell cycle progression to avoid apoptosis and
are prepared to switch to mesenchymal plasticity [202,216,217]. Indeed, the FN-reexpressing tumor
cells under hypoxic conditions are potent to become metastatic-initiating cells and more resistant to
anti-cancer drugs [216,218]. Consistently, numerous publications have unveiled that once tumor tissues
ensuing hypoxic environments upon therapeutic treatments, tumor cells that acquire drug resistance
develop mesenchymal plasticity and metastasis-initiating capability [229–232]. Most importantly,
it has been demonstrated that, likely due to XIAP-dependent pathway, drug-resistant tumor cells
often highly express endogenous FN and are highly metastatic under hypoxic conditions [92,233,234].
Accumulating evidence indicates that cancer stemness and drug resistance do make tumor cells grow
significantly slower [235,236]. These findings explain exactly why FN plays roles in suppressing early
tumor growth and progression but promoting late cancer metastasis. Whether FN reexpression is a
cause or consequence of hampered cell growth, cancer stemness, drug resistance, and cancer metastasis
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remains to be explored. In addition to effects on tumor cell functionalities, hypoxia greatly impacts
TMEs in various respects [179,237]. Unlike the vasculature that is facilitated by the FN deposited in
TMEs where nutrients and oxygen are properly provided under normoxia, the neovascular system
provoked by HIF-upregulated VEGF under hypoxic conditions is, although abundant, highly abnormal
with poor integrity [238–240]. Provided that FN deposited in the ECM within TMEs supports a
better perfused vasculature and thus promotes rapid tumor growth under normoxia, whether the
hypoxia-induced disintegrated vasculature is attributable in part to a FN-deficient ECM remains
unclear and is worth investigating. A report has emerged to seemingly oppose the possible regulatory
role of FN matrix within TMEs [241]. It claims that, in all conditions tested, the nearly complete
absence of FN makes no difference in vascular density and concludes that FN and its receptor subunits
are dispensable for tumor angiogenesis [241]. It is not surprising that no difference can be observed
with respect to the vascular density in tumor tissues in the presence or absence of ECM FN, as an
alteration of vascular growth factors, e.g., VEGF, which are essential for neo-vasculization, has not
been evidence. However, the report has not examined whether the integrity of the vasculature within
FN-depleted tumor tissues is altered. According to the presented results, the vasculature seems more
fragmented and the lengths of visible vessels in the images provided are shorter in the FN-depleted
tumor tissues [241], somewhat implicating an abnormality during tumor angiogenesis.

Matrix stiffness in TMEs mechanistically is another mechanical cause for hypoxia-induced tumor
metastasis [242]. Matrix stiffness can be made stiffer upon cross-linkages among collagen fibers by
LOX, one of products secreted by tumor cells that are under hypoxic conditions [243–245]. Matrix
stiffness driven by LOX is indeed required for hypoxia-induced tumor metastasis [246]. Interestingly,
it has been reported that vigorously growing tumor cells that are deficient in FN synthesis under
normoxia in a FN-enriched TMEs are stiffer than adjacent normal cells that capable of expressing
FN [214,247]. On the contrary, when tumor cells become more metastatic under chronic hypoxic
conditions with a stiffer matrix in TMEs, they turn out to be softer as compared to the less metastatic
counterpart tumor cells [214]. The fact that tumor cells and ECM are stiffer in the absence of FN and
softer in the presence of FN reflects the possibility that FN plays a role in decreasing the rigidities of
ECM in the TMEs and tumor cells to impact tumor progression and metastasis [2,77,83]. The reduced
rigidity is likely because of the typical FN characteristics where the conformation is highly changeable
and elastic and capable of softening the structurally stiffer and collagenous matrix once interwound
with collagen fibers [248,249]. Importantly, it has been well documented that, the increased matrix
rigidity induced by hypoxia due to LOX-mediated collagen fiber cross-linkage also contributes to
aberrant neovasculization with an abnormal hierarchical arrangement of vascular structures that
further promotes tumor metastasis [250,251]. These findings substantially support that a less rigid
FN-enriched matrix within TMEs under normoxia promotes the proliferation of primary tumor
cells but limits their capacity of metastasis until the matrix within hypoxic environments depletes
FN and becomes stiffened. Abundant evidence indicates that CAFs and macrophages are able to
change their phenotypes upon hypoxic stimulation to foster a stiffer matrix which in turn aggravating
neovascular abnormality and facilitating the subsequent distant organ metastasis [237,252,253]. Indeed,
hypoxia-induced CAF and macrophage phenotype alterations actively participate in promoting tumor
intravasation, an essential event predisposing tumor cells en route from the circulation to distant
organs [136,198,254,255]. Altogether, these findings suggest that hypoxia stands at the crossroad of
tumor cell stiffness, tissue stiffness, maturation of tumor angiogenesis, and FN reexpression for tumor
suppression and cancer metastasis [205] (Figure 3).

4.4. FN Expression in CTCs Facilitates Distant Organ Colonization and Metastasis

CTCs can be found in the very early stage of tumor progression with a large quantity when
tumor cells are still deficient in FN expression [256]. These findings are well supported by the fact that
CTC alone is insufficient to serve as a precise prognostic marker for cancer metastasis [37,257–259],
suggesting that a CTC population with metastatic potential is different from other low metastatic
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CTCs with poorer viability (Figure 3). CTCs make an adventurous journey en route to distant organs
with various risky environmental stresses, including anoikis due to a loss of anchorage-dependent cell
growth signal stimuli [260], mechanical pressures due to shear stresses and cell deformation within
blood vessels of smaller diameter [257], a normal immunosurveillance system competent in destroying
CTCs [261], and passing through endothelial barriers to escape the hostile circulation system [262].
A study carefully comparing polarization properties of clinically isolated CTCs and of suspended
tumor cell lines exhibits a high degree of similarity [263,264], suggesting that resuspending the attached
tumor cell lines may recapitulate characteristics of CTCs derived from cancer patients and is suitable
for characterizing CTCs. Indeed, various characteristics of clinically identified metastatic CTCs well
coincide with those of resuspended tumor cells [2,75,85,89,265]. Consistently, CTCs may directly be
derived from those primary tumor cells who make their way to approach nearby blood vessels to
become plakoglobin-mediated CTC clusters that are more resistant to anoikis [266–268]. Interestingly,
plakoglobin has been demonstrated to maintain FN mRNA stability and increase endogenous FN
expression that is required for periFN assembly on primary tumor cells [269], further explaining why
FNhigh CTCs, likely promoting formation of clusters, are more resistant to anoikis and better survive in
the circulation. Depletion of plakoglobin drastically reduces FN expression, CTC cluster formation,
and distant metastasis [270]. In line with these findings, it has been shown that although CTC clusters
are much rarer as compared to single CTCs, the metastatic potential appears to be significantly higher,
confirming that CTC clusters survive better within the circulation prior to distant colonization and
metastatic growth [266,271]. Additionally, formation of tumor cell–platelet microaggregates, resulting
in physical shielding, has been demonstrated to protect CTCs from mechanical stress-induced cell
deformation and cell death [37,272,273]. Cumulative reports have provided evidence to ascribe
resistance of CTCs to mechanical deformation to CTC-platelet microaggregates in which adhesion
between platelet integrin, e.g., αIIbβ3 (glycoprotein IIb/IIIa), and tumor cell integrin ligands, e.g.,
periFN [274,275], is triggered [266,268,271]. Conversely, since TGF-β1 has been shown to be a major
regulator for endogenous FN synthesis [276,277], platelet microaggregates may prompt secretion of
TGF-β1 by platelets to further sustain E–M plasticity of CTCs, likely facilitating periFN assembly
on tumor cells to make aggregation of CTCs with platelets stronger, rendering more resistance of
CTCs to mechanical deformation in the circulation [278]. Another way metastatic CTCs utilize to
fight against shear stress- and cell deformation-induced apoptosis is the formation of EMT-facilitated
microtentacles [36], particular cytoskeletal structures composed of Glu-tubulin to generate stabilized
detyrosinated microtubules [279]. These structures can particularly be enriched by a well-known
mesenchymal marker vimentin [280]. Importantly, endogenous FN expression in tumor cells has been
found to be promoted by upregulation of vimentin during E–M plastic processes [281,282], suggesting
again that elevated endogenous FN expression in metastatic CTCs results in better periFN assembly to
sustain stability of microtentacles, which not only protect CTCs from mechanical stresses existing in the
circulation but also pave ways for CTCs to colonize distant organs. This conclusion is well supported
by the findings that vimentin inhibition with withaferin A abolishes binding of FN to integrin α5β1,
one of cell surface receptors mediating periFN assembly [283]. Further supporting evidence is that
the ability of vimentin in controlling integrin recycling depends on the phosphorylation mediated
by PKCε [284], which has been revealed to promote periFN assembly on blood-borne breast cancer
cells and lung metastasis [265]. In line with these findings, it has been demonstrated that vimentin
expression can serve as a prognostic biomarker for the metastases in non-small cell lung carcinoma
patients [285].

Among various peripheral leukocytes responsible for the active immunosurveillance in the
circulation, natural killer (NK) cells are majorly involved in anti-tumor cytotoxicity as exhibited in
humans and animal models with defective NK cell function [286]. CTCs with E–M plasticity are
able to secrete TGFβ, which serves as a potent inhibitor of NK cytotoxicity against tumor cells by
downregulating activating receptor NKG2D expression on NK cells [286]. Since FN is a major E–M
plasticity marker, it is conceivable that periFN may mediates the TGFβ-dependent immune escape of
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CTCs from NK cytotoxicity. As it is a requirement for NK cells to directly interact with CTCs prior
to effective tumor lysis, a physical shielding may help CTCs escape NK immunosurveillance [37].
Indeed, it has been shown that formation of CTC-platelet microaggregates efficiently prevents NK
cytotoxicity [287,288]. Alternatively, activated platelets in these microaggregates can expose NK
cell inhibitory ligands [289]. Since FN expression in CTCs is critically involved in the formation of
CTC–platelet microaggregates, the possibility that periFN on CTCs plays an important role in immune
evasion for NK insulting is further substantiated. In contrast to NK cells, macrophages and neutrophils
are among innate immune cells playing an opposite role to protect CTCs from anoikis and mechanical
deformation-induced cell death [290–292]. Interestingly, pro-metastatic neutrophils may alternatively
impact immune escape via suppressing cytotoxic CD8+ T cells and NK cells [293–295]. Recently,
programmed death-ligand 1 (PD-L1), the ligand for the cytotoxic T lymphocyte immune checkpoint
receptor programmed death 1 (PD-1) during immunosuppression processes within primary tumor
tissues, has also been detected on the cell surfaces of CTCs derived from cancer patients [296,297],
implying that T cell-mediated adaptive immunosurveillance is also in effect in the circulation and
CTCs may escape such immune assault by the engagement of PD-1/PD-L1 immune checkpoint [36].
Indeed, miR200/ZEB1 axis-induced EMT pathways also regulate PD-L1 expression in CTC [232,298]
and FN expression is evidenced when miR200 is overexpressed or ZEB1 mRNA is stabilized [299–301],
indicating the possibility that periFN on CTCs exerts PD-1/PD-L1-mediated immune checkpoint to
escape T-cell-mediated cytotoxicity.

To accomplish metastatic growth in distant organs, several requisite steps for CTCs to extravasate
the blood stream, including attachment to endothelia of distant organs, endothelial retraction, and
transendothelial migration [37]. Importantly, periFN assembly on CTCs of various cancer types has
been shown in in vivo tumor colonization assays to mediate cancer metastasis in the lungs via binding
to lung endothelial adhesion receptor dipeptidyl peptidase IV (DPP IV; also named CD26) [1,2,4,6,75,76].
Furthermore, employing a novel in vivo imaging experimental designing in which endothelia-attaching
CTCs can be visualized within the vasculature of lung tissues, it has been demonstrated that periFN is
a mandatory tumor cell surface ligand responsible for DPP IV-binding prior to extravasation in the
lung tissues [302]. Whereas numerous studies have been dedicated to exploring molecular mechanism
underlying periFN assembly on adherent cells, how CTCs assemble periFN in suspension is just about
to be understood. Protein kinase Cε (PKCε) has been shown to regulate periFN assembly on suspended
rat breast tumor cells when it is upregulated and phosphorylated, leading to a rapid translocation of
PKCε from cytosol to plasma membrane [265]. Specific PKCε inhibitors block PKCε phosphorylation
and expression followed by a suppression of plasma membrane translocation and periFN assembly,
substantially supporting the essential role of PKCε in periFN assembly. As expected, tumor metastasis
in the lungs can be drastically abolished [265]. A comprehensive secretomic study and quantitative
analyses reveal that 68 out of 660 secreted proteins can be identified to be differentially expressed in
FNhigh and FNlow human lung tumor cells [2]. Among 68 proteins, A1AT as a serine protease inhibitor
has further been identified to be highly secreted in FNhigh cell line CL1-5, facilitating CL1-5 metastasis
in the lungs. Depletion of A1AT from CL1-5 cells significantly reduces periFN assembly and thus lung
metastasis, suggesting that periFN assembly can also be modulated on suspended tumor cell surfaces
via A1AT [2]. Consistently, a DPP IV-derived polypeptide harboring the FN-binding site specifically
blocks A1AT-promoted lung colonization of CL1-5 with a high level of periFN assembly, confirming
that the specific adhesion between periFN on CTCs and DPP IV on lung endothelia readily promotes
tumor metastasis in the lungs [2]. This notion is further substantiated by the fact that Lung metastasis
of FNhigh rat breast cancer cells can be effectively blocked by FN-derived polypeptides harboring the
consensus DPP IV-binding motif [6]. Moreover, thanks to a natural phytochemical pterostilbene that
potently reduces periFN assembly on suspended lung cancer cells and their metastasis in the lungs,
the AKT-ERK signaling axis has separately been identified in regulating periFN assembly on CTCs [4].
It is worthwhile to test the possibility that PKCε AKT-ERK axis, and A1AT are causally connected to
concertedly regulate periFN assembly on CTCs. Upon attachment of CTCs to endothelia, disruption of



Cells 2020, 9, 27 14 of 37

endothelial integrity and retraction of endothelial cells appear to be essential in facilitating metastatic
growth. CTC-secreted angiopoietin-like 4 (ANGPTL4) or its C-terminal fragment are competent
in antagonizing vascular endothelial cell-cell junctions to facilitate extravasation and metastasis of
tumor cells due to direct interaction with adhesion molecules, e.g., a FN receptor α5β1, involved
in cell junctions [303,304]. Interestingly, ANGPTL4 has been deemed a regulator of endogenous
FN synthesis in tumor cells likely through an autocrine or paracrine manner [305]. Conceptually,
ANGPTL4 may alternatively induce endothelial retraction by promoting periFN assembly on CTCs that
leads to an enhancement of tumor-endothelial adhesion via periFN-DPP IV binding. This possibility is
worth further investigating. Moreover, it has been reported that ablating VCAM-1-mediated actin
cytoskeleton organization causes endothelial junction opening [306], and endothelial cell death in a
form of necroptosis generates gaps in endothelia [307], leading to an endothelial barrier opening [308].
Whether these endothelial integrity-disrupting events are directly induced by endothelial DPP IV upon
stimulation with cancerous periFN-binding remains to be examined. Importantly, cumulative evidence
indicates that impairment of several ligand–receptor interactions between CTCs and endothelia are
required for promoting cancer metastasis through enhancing transendothelial migration without
affecting cell-cell adhesions between them [37,309–312]. It is worthwhile to corroborate whether the
impairment of these homophilic and heterophilic interactions can be initiated by the adhesion between
cancerous periFN and endothelial DPP IV to facilitate transendothelial migration of CTCs and promote
cancer metastasis in distant organs.

4.5. Malignant Tumor Cells in the Primary Tissues Early Establish PMN in Distant Tissues and Disseminated
Tumor Cells Continue to Evolve, Rendering Macrometastatic Outgrowth

To complete the entire process of metastatic growth in distant organs, extravasated FNhigh

tumor cells must conquer growth disadvantages conveyed by autonomous and nonautonomous
tumor suppressive stresses [313,314]. These disadvantages ultimately lead to tumor dormancy and
formation of micrometastasis until the unfavored factors are cleared [315,316]. Cancerous FN may
exert tumor suppressive functions as aforementioned to halt cell proliferation, migration, invasion,
and angiogenesis [51,52,54,56] once CTCs arrive at distant organs and reside in the parenchymal
tissues, reminiscence of scenario in the primary tumor tissues. Imaginably, new and different locally
imposed innate and adaptive immunosurveillances from those in the primary tumor tissues can
form huge microenvironmental pressures to further suppress metastatic outgrowth [313,314], turning
tumor cells into senescence-like dormancy in the micrometastatic foci within which dormant tumor
cells keep evolving [316]. Such tumor dormancy in micrometastasis can last for several years until
tumor cells successfully evolve to outgrow into macrometastasis with the growth-advantageous
supporting from tumor cell-driven favorable pro-tumor microenvironments [317] (Figures 2 and 3).
Since FN is a major EMT marker expressed by tumor cells and can be upregulated by transcription
factors, e.g., Twist1 or Snail1, the role of EMT in formation of FNhigh tumor dormancy at distant
sites has been evidenced [259,318]. It has been presented that disseminated tumor cells (DTCs) that
enter dormancy and form micrometastasis highly express Twist1 or Snail1 [319,320], suggesting
that EMT contributes to the initial colonization and formation of dormancy. Consistently, an early
subpopulation of DTCs in the Her2-driven mouse breast cancer model also exhibits a Twisthigh

E-cadherinlow phenotype [321]. Consistently, tumor cells outgrown in the macrometastatic foci
often display pro-epithelial instead of pro-mesenchymal phenotypes, seemingly challenging the
requirement of E–M plasticity in metastatic establishment [322–325]. Nevertheless, it has been
demonstrated that, by tracking the primary tissue-inoculating tumor cells with pro-mesenchymal
phenotypes, outgrown DTCs in the macrometastatic foci exhibit pro-epithelial phenotypes, indicative
of an apparent reversion of MET from EMT phenotypes [326]. These findings well explain why
evolved pro-epithelial phenotypes of DTCs are displayed in the macrometastatic foci that initially
originate from extravasated CTCs with pro-mesenchymal phenotypes [319,320] and outgrow from
the dormant micrometastasis due to continued evolution [327], a scenario reminiscent of early
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tumor progression where tumor cells vigorously proliferate, migrate, invade surrounding ECMs,
promote angiogenesis when FN expression is downregulated in a pro-epithelial phenotype as
aforementioned [54–56]. Indeed, suppression of tissue factors (TFs) that are competent of driving
E–M plasticity is a mandatory step to promote macrometastatic outgrowth at distant organs after
the initial steps of CTC colonization that require pro-mesenchymal phenotypes [328,329]. Similarly,
downregulation of EMT inducers Prrx1, ID1, or Snail1, transcription factors for FN expression [330–332],
effectively promotes macrometastasis [330,333,334]. The role of FN expression in DTCs in metastatic
dormancy is further substantiated by the findings in which stem-like prostate tumor cells were used to
perform an in vivo selection and the indolent cell line preserved the dormant state when implanted into
tibial bones, whereas aggressive cell line proliferated rapidly in bones. Secreted protein acidic and rich
in cysteine (SPARC), known as a promoter for periFN assembly, was identified to be highly expressed
by the indolent cells [335]. Knocking down SPARC expression significantly waken tumor dormancy
and drastically lowered bone metastasis-free survival of tumor-bearing mice, suggesting SPARC plays
a central role in maintaining tumor dormancy [335]. Conceivably, the effect of SPARC on tumor
dormancy may be due to the elevated level of periFN assembly, which is worth further researching.

Another intriguing question is whether tumor dormancy in FNhigh DTCs at distant organs can be
reversed by the M–E phenotype without affecting the expression level of FN in DTCs. To answer this
question, we have focused on two important mouse mammary adenocarcinoma cell lines, 4T1 and
67NR, which were isolated spontaneous mammary tumor in a BALB/cfC3H mouse [336]. Interestingly,
it has been demonstrated that 4T1 cells are highly metastatic but exhibit pro-epithelial phenotypes,
e.g., upregulation of E-cadherin and tight junction protein ZO-1. Conversely, 67NR cells possess
pro-mesenchymal phenotypes, e.g., higher levels of N-cadherin and vimentin but without E-cadherin
and do not form macrometastasis foci in the lungs at the time 4T1 cells already generate lots of
metastatic nodules when inoculated in fat pad or intravenously injected into syngeneic mice [337,338].
However, this work does not provide evidence as to how these two cell lines express endogenous
FN and assemble periFN. In our unpublished results, we found that both cells were competent
in expressing FN but there were no differences in levels of FN expression and periFN assembly
between two cell lines. These findings are strongly supported by the gene profiling as performed with
cDNA microarrays where FN is absent among 53 upregulated and 74 downregulated genes in 4T1
cells as compared to 67NR cells [338]. The fact that both 4T1 and 67NR cells are highly expressing
FN and assembling periFN [unpublished data], but only 4T1 cells characterized with pro-epithelial
phenotypes are competent in forming macrometastasis foci in the lungs [338], implying that, although
FNhigh 67NR cells are capable of attaching lung endothelia and form micrometastasis in the lung
parenchyma, their pro-mesenchymal phenotypes render tumor dormancy and hamper macrometastatic
outgrowth. Indeed, employing a lung colonization assay for circulating tumor cell visualization in
lung tissues [302], we found that the abilities of both cell lines to colonize the lungs were about the
same, but tail vein-injected 67NR cells formed tumor nodules in the lungs in about 2 months, which
was much slower than 4T1 cells did in as early as the 10th day after tumor injection [unpublished data].
These findings reason why the FNhigh phenotype of the metastatic tumor cells, including 4T1 cells,
can repeatedly be isolated from macrometastatic foci in the metastatic tissues of mice intravenously
or orthotopically inoculated with tumor cells [77,339,340]. These findings also confirm that the FN
expression and periFN pertinent to E–M phenotypes are required for FNhigh CTC colonization but
render tumor dormancy in distant organs and M–E phenotypes drives FNhigh DTCs outgrowth from
dormancy and set forth an intriguing possibility that functionalities of individual molecules involved in
E–M and M–E plasticity and phenotypical changes between epithelial and mesenchymal morphologies
can be uncoupled. This possibility can be echoed by the findings in which reversion pro-mesenchymal
into pro-epithelial phenotypes awakes DTCs from dormancy and promotes metastatic outgrowth and
loss of E-cadherin, one of pro-epithelial biomarker, unambiguously hampers cancer cell growth and
survival, reduces numbers of CTCs and extravasated DTCs in distant organs, and lowers metastatic
outgrowth regardless of the E/M phenotype state [341,342]. Another example is that binding of
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breast cancer cells to endothelial E-selectin can promote bone-metastasis by triggering non-canonical
M–E reversion concomitantly with Wnt-upregulated FN [343]. In addition to autonomous evolution
that promotes macrometastatic tumor outgrowth, local microenvironments are deemed important
for transition of M–E phenotypes in the distant organs [318]. A non-autonomous effect exerted by
FNhigh DTCs on bone marrow-derived cells (BMDCs) has been ascribed to DTC-secreted SPARC
that drives expression of BMP7 in BMDCs to maintain tumor dormancy by inducing senescence in
micrometastatic cancer cells [335]. These findings unveil an essential role of SPARC within TMEs of
the bone in sustaining prostate tumor dormancy and suggest that SPARC inactivation may lead to
M–E reversion and evasion of BMDC-driven tumor dormancy. Whether a high level of FN expression
can be maintained during the M–E reversion by inactivating SPARC remains to be clarified. CAF is
another cell type to be activated and recruited by AXLhigh mesenchymal DTCs in the micrometastatic
foci, followed by an activated CAF-stimulated M–E phenotype reversion and outgrowth of DTCs [344].
AXL has been recognized as a strong E–M plasticity and cancer stemness inducer, resulting in apparent
upregulation of pro-mesenchymal markers including FN [345]. Interestingly, when M–E phenotype of
AXLhigh mesenchymal DTCs was reversed upon stimulation by activated CAFs, only AXL, Twist1, and
vimentin were downregulated, but FN was not examined [344]. These findings may imply that during
M–E phenotype reversion in FNhigh DTCs, FN expression is maintained regardless of alterations of
other E/M marker expression as aforementioned [77,339].

It is now well recognized that primary tumors also contribute metastatic-promoting factors in a
systemic manner to establish favorable microenvironments, so-called PMN, at distant organs prior to
the arrival of DTCs [346]. Ample evidence indicates that the recruitment of CD11b+ BMDCs plays an
important role in the establishment of PMN [40–44]. Interestingly, FN deposited in the PMN has been
deemed as an essential player in promoting macrometastatic outgrowth [40,346]. Predisposed primary
tumor cells with metastatic potency may secrete, at the primary sites, soluble chemoattractants [41], or
exosomes harboring stimulatory factors to upregulate FN expression in, most likely, locally recruited
TAMs or CAFs, followed by ECM deposition and remodeling [40,346]. Subsequently, the VEGFR1+

BMDCs are mobilized by those chemoattractants to arrive at FN-enriched ECM and attach to the
deposited FN via surface-expressed integrin α4β1 [40]. Consistently, distinct integrins expressed
on the surfaces of primary tumor-derived exosomes can determine organ-specific cancer metastasis
by binding to their corresponding matrix proteins in the PMNs [44,347]. Such microenvironmental
cues are highly reminiscent of those in the FN-enriched primary tissues where tumor cells vigorously
grow and progress. These findings reason why the FNhigh dormant DTCs need to be reversed into
pro-epithelial phenotypes in that pro-mesenchymal phenotypes with a high level of FN expression,
like those in the primary tumor tissues, disfavor outgrowth of DTCs. By clinical observations,
it takes an awfully long latent period of dormant state from extravasation of CTCs into distant organs
and become micrometastatic DTCs to macrometastatic outgrowth during late stage of metastatic
progression [259]. However, distant metastatic recurrences are often rapidly developed in those
patients who receive surgical removal of their primary tumors [259,316]. Altogether, these observations
raise a fascinating possibility that PMNs and metastatic niche at least share certain contributors to
facilitate macrometastatic outgrowth. Indeed, in vivo experiments have been designed to explore such
possibility. The results decipher that systemic inflammatory response caused by surgical operations
unambiguously promotes macrometastatic outgrowth of DTCs which are otherwise maintained and
controlled by local innate as well as adaptive immunosurveillances in a dormant state in distant
organs as corroborated by a perioperative anti-inflammation treatment that drastically suppresses
macrometastatic outgrowth [316]. It appears to be clear that pro-tumor inflammatory cytokines
and chemokines are important characteristics shared by the TMEs of primary tissues, metastatic
niche, and PMN to potently result in accumulation and polymerization of FN and promote tumor
cell outgrowth [41]. It would be interesting to investigate whether these FN-enriched niches can
force further tumor evolution by a M–E phenotype reversion [344]. Our unpublished observations
resulting from two highly metastatic cell lines FNhigh MDA-MB-231 and FNlow MDA-MB-435 only
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begin to shed light on these causal relationships [348]. Expectedly, when intravenously injected,
significantly more FNhigh MDA-MB-231 cells than FNlow MDA-MB-435 cells [unpublished data] [348]
formed tumor nodules in the female athymic nude mouse lungs. Moreover, MDA-MB-435 cells, but not
MDA-MB-231, could rapidly grow in mouse mammary fatpads [unpublished data], consistent with
the tumor suppressive role of FN expression in early tumor progression. Surprisingly, in spontaneous
metastasis assays, only MDA-MB-435 cells, but not MDA-MB-231 cells, entered the circulation and
extravasated as DTCs to form tumor nodules in the mouse lungs [348] [unpublished data]. These findings
imply that FNlow MDA-MB-435 cells with pro-epithelial phenotypes are competent in establishing
pro-tumor FN-enriched TMEs to nourish pro-epithelial FNlow tumor cells, rendering tumor outgrowth
in the mammary fatpads. These vigorously growing FNlow cells, but not the slow-growing FNhigh cells,
may secrete cytokines, chemokines, and exosomes to mobilize BMDCs to the future metastatic sites
where the FN-enriched PMNs can then be established, waiting for the future arrival and outgrowth of
MDA-MB-435 DTCs [41]. Uncoupling of M–E reversion from FN expression explains why FNhigh tumor
cells can repeatedly be isolated from macrometastatic foci in distant organs [77]. Such phenomenon also
explains well why DTCs outgrown in the first metastatic site can reenter the circulation and colonize
the second metastatic site [349,350], likely through reversible E–M and M–E plasticity without affecting
periFN assembly on their cell surfaces. Aforementioned interchanges of various phenotypes in tumor
cells, stromal cells, and stromal FN during the whole processes of tumor genetic/epigenetic evolution
and progression where hypoxia and PMN are critically at the crossroads are illustrated in Figure 4.Cells 2020, 9, 27 18 of 38 
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Figure 4. Hypothetic illustration of the interchanges of various phenotypes in tumor cells, stromal
cells, caFN, and ECM-FN as exhibited in Figures 2 and 3 during the whole processes of tumor
genetic/epigenetic evolution and progression where hypoxia and PMN are critically at the crossroads.
“−” means in the absence and “+” means in the presence.

5. Future Perspectives for FN-Targeting Therapeutic Strategies against Cancer

Since how cancerous FN and ECM FN participate in tumor progression remains obscure and
paradoxical, FN-based cancer therapies have so far only been focused on the functions of drug
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delivery. For example, EDA- and EDB-containing oncofetal variants have often been utilized for that
purpose [3,5,351,352]. Despite lots of intriguing phenomena and underlying molecular mechanisms
remain unresolved and urgently need to be fully deciphered, cellular stresses-triggered loss of FN
expression, hypoxia-driven FN reexpression and the E–M/M–E phenotypic reversion which can be
uncoupled from FN functionality seem to be major determinants dictating the tumor suppressive and
metastatic-promoting roles of FN in temporal and spatial manners during tumor progression and can
serve as targets for developing cancer therapeutic strategies (Figure 5). In the very early stage of tumor
progression, FN is downregulated to help tumor cells ameliorate their oncogene- or loss of TSG-induced
endogenous ER stresses and evade senescent limitation of cell cycle progression. Therefore, for tumor
patients in a very early clinical stage, in addition to the traditional surgery, chemotherapies, and
radiotherapies or recently prevailing immune checkpoint blockade therapies [353–355], therapeutic
strategies can be formed by inducing overexpression of FN in newly transformed tumor cells and
force tumor cells into senescent state or cell cycle arrest followed by cell apoptosis, if FN is proved
to be a regulator for senescent induction by enhancing ER stresses. Alternatively, tumor senescence
and subsequently apoptosis can be induced circumventing alteration of FN expression level [356,357].
However, one need to use caution that these FN-based therapeutic strategies should not be practiced
once CTCs are identified from tumor patients’ blood samples in that elevated levels of endogenous
and thus periFN assembly in tumor cells may make FNhigh CTCs colonize more and form more
metastatic tumor nodules in distant organs, unless there are strategies to reverse FNhigh CTCs back to
pro-epithelial phenotypes that tend to render CTCs suffer more from anoikis and mechanical stresses
and injuries.
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and mucin domain-containing molecule-3; HIFs, hypoxia-induced factors; CTCs, circulating tumor
cells; PS, pterostilbene; periFN, pericellular fibronectin; EDA, extra domain A of fibronectin; EDB,
extra domain B of fibronectin; Abs, antibodies; diFN, dimeric form of fibronectin; caFN, cancerous
fibronectin; ECM-FN, fibronectin deposited in ECM; VEGF, vascular endothelial growth factor; DPP IV,
dipeptidyl peptidase IV. All other cartoon characters and abbreviations are referred to Figures 2–4.

At the same stage of tumor patients, FN deposition in ECM of TMEs exacerbates tumor growth
and subsequent progression. Therefore, approaches targeting such matrix-depositing FN may be
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ideal for effectively slowing down the tumor progression. FN secretion and deposition may due
in part to tumor-infiltrating pro-tumor stromal cells including CAFs and TAMs [358]. Ablation of
these tumor-infiltrating cells could be an anti-tumor strategy [359–361]. For example, Fresolimumab,
a monoclonal antibody against TGF-β to block FN secretion and VEGF secretion from activated CAFs,
has been used in clinical trials for melanoma, renal cell carcinoma, and mesothelioma [362]. Moreover,
TAMs can be activated by T cell immunoglobulin and mucin domain-containing molecule-3 (TIM-3)
and, in an in vivo kidney cancer model, blocking antibodies developed against TIM-3 has been shown
to reduce its tumorigenic effects [363].

In later stages of tumor progression, tumor cells with the metastatic potential begin to intravasate
into the circulation and become FNhigh CTCs prior to extravasation in distant organs as DTCs.
Blockade of the attachment of FNhigh CTCs to DPP IV-expressing endothelia can be an ideal strategy to
prevent tumor metastasis and improve patients’ prognosis. Indeed, in experimental metastasis assays,
polypeptides derived either from FN harboring DPP IV-binding sites [6] or from DPP IV harboring
FN-binding sites [1,2] have been identified and produced to significantly suppress rat mammary
adenocarcinoma tumor metastasis in the lungs [75]. More importantly, how to concomitantly prevent
tumor metastasis in distant organs and suppress distant tumor outgrowth to prolong patients’ survival
becomes the most urgent anti-tumor therapeutic strategies. Screening stilbenoids, pterostilbene (PS), a
well-known phytochemical capable of triggering strong apoptosis in attached tumor cells, has been
found to possess the best potency in suppressing periFN assembly on suspended tumor cells existing in
the circulation as a form of CTCs [4]. Intriguingly, by oral gavage, PS was able to prevent intravenously
injected mouse Lewis lung cancer cells from entering the lungs and also significantly inhibited the
outgrowth of already lung-colonized DTCs by exerting the apoptotic effect on the extravasated CTCs [4].

In most cases, tumor patients receive either tradition chemo/radiotherapies or targeted anti-tumor
therapies. As aforementioned, tumor patients often develop resistance to these anti-cancer drugs,
driving tumor evolution, malignant progression, intravasation of tumor cells to become CTCs,
and metastatic recurrence simultaneously with the upregulation of endogenous FN. Although
therapy-elevated FN expression in resistant tumor cells slow down the tumor growth, the blood-borne
FNhigh CTCs become highly metastatic and capable of colonizing distant organs. The prevailing
therapeutic strategies are to switch to a second line of tumor-killing drugs or combinatory therapies
including immune checkpoint blockade, which may cause further genetic or epigenetic evolutions and
eventually lead to another drug resistance. These problems may be avoided by finding a drug that
by itself has no cytotoxic effect on tumor cells but is able to sensitize the resistant tumor cells to the
original drugs. Efforts can be exerted to screening such drug from either small molecule library or a
series of less harmful natural phytochemicals. By combining such drug with periFN/DPP IV binding
blockade treatments, the drug-resistant tumor cells can be re-sensitized and controlled in the primary
sites and FNhigh CTCs can simultaneously prevented from entering distant sites.

6. Conclusions

In summary, after extensively reviewing the bulk literature regarding the roles of FN in cancer
progression, we provided intriguing possibilities that reasonably reconcile the seemingly paradoxical
roles FN plays. We hypothesized that cancerous FN and FN mactrices in TMEs can coordinately regulate
tumor transformation and malignant progression in temporal and spatial manners. Upon accomplished
experimental proof of concept, FN can be carefully targeted at the right location and in the right time.
We finally provided a few FN-based therapeutic strategies as future perspectives. Hopefully, this
review article can attract more cancer researchers to be delved into concerted efforts in unveiling and
validating what had been proposed here.
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