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Efficient and accurate treatment 
of electron correlations with 
Correlation Matrix Renormalization 
theory
Y. X. Yao1, J. Liu1, C. Liu1, W. C. Lu2,3, C. Z. Wang1 & K. M. Ho1

We present an efficient method for calculating the electronic structure and total energy of strongly 
correlated electron systems. The method extends the traditional Gutzwiller approximation for one-
particle operators to the evaluation of the expectation values of two particle operators in the many-
electron Hamiltonian. The method is free of adjustable Coulomb parameters, and has no double 
counting issues in the calculation of total energy, and has the correct atomic limit. We demonstrate 
that the method describes well the bonding and dissociation behaviors of the hydrogen and nitrogen 
clusters, as well as the ammonia composed of hydrogen and nitrogen atoms. We also show that 
the method can satisfactorily tackle great challenging problems faced by the density functional 
theory recently discussed in the literature. The computational workload of our method is similar 
to the Hartree-Fock approach while the results are comparable to high-level quantum chemistry 
calculations.

It is one of the outstanding challenges in physics, chemistry, and materials science to develop robust 
and efficient theoretical and computational methods to accurately calculate the electronic structure and 
total energy of materials containing strongly correlated electrons (see, for example, US DOE-Office of 
Science Report: “Basic Research Needs for Advanced Nuclear Energy Systems”, 2006). While accurate 
methods are available from quantum chemistry approaches (e.g., configuration interaction (CI)), these 
methods are too expensive for condensed matter systems. On the other hand, density functional theory 
(DFT) and related computational codes based on the Kohn-Sham approach1,2 have been well developed, 
and are highly effective and successful for predicting the structures and properties of many materials, 
but they fail for systems with strongly correlated electrons. In the last three decades, there have been 
intensive efforts in developing new approaches to solve the outstanding problems in correlated electron 
systems3–19. Among these new developments, local-density approximation plus on-site Coulomb inter-
action parameter U (LDA +  U)3,4, LDA +  dynamical mean field theory5–7, and LDA +  Gutzwiller11,12,14–19 
have emerged as the most popular methods for treating strongly-correlated electrons in solid-state sys-
tems. These methods handle electron correlations through the effective on-site Coulomb interaction 
parameters, while keeping the overall description of the electronic structure through LDA. The effective 
Coulomb parameters can be calculated using constrained LDA3 or constrained random phase approx-
imation20. Completely self-consistent approaches are also possible21. However, the effective Coulomb 
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parameters can often be treated as fitting parameters in practical calculations, especially when one 
intends to study the total energy of the correlated systems6,16.

In this paper, we present a highly efficient method for the electronic structure and ground state total 
energy calculations of strongly correlated electron systems without adjustable Coulomb parameters. In 
our approach, the commonly-adopted Gutzwiller approximation (GA) for evaluating the one particle 
density matrix22–25 is extended to evaluate the two-particle correlation matrix of the system. This approx-
imation, which we call the correlation matrix renormalization (CMR) approximation26, allows the expec-
tation value of a many-electron Hamiltonian with respect to Gutzwiller variational wave function (GWF) 
to be evaluated with reduced computational complexity. We show that the method describes well the 
bonding and dissociation behaviors of hydrogen and nitrogen clusters in comparison with the accurate 
and expensive quantum chemistry calculations. Furthermore, some of the most challenging problems 
faced by Kohn-Sham DFT-based calculations recently discussed in the literature27,28 can also be readily 
solved by our method. The method has no double counting issues in the calculation of total energy, and 
produces the correct atomic limit. The computational efforts involve solving the renormalized HF-like 
equations with O(N4) scaling, where N is the number of basis functions to expand the non-interacting 
wave function, and optimizing the local configuration weights, which scales linearly with the number 
of inequivalent correlated atoms and exponentially with the number of local correlated orbitals of each 
atom.

Results
We start with the Hamiltonian for an interacting many-electron system in the second quantization form
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Here ciασ
†  and cjβσ are electron creation and annhiliation operators, with i, j, k, l atomic site indices, α, β, 

γ, δ orbital indices and σ, σ′  spin indices. The first term of Eq. (1) is the local on-site Hamiltonian which 
has been singled out for exact treatment, with EiΓ the energy of a local many-body configuration iΓ . 
The second and third terms describe the non-local one-body and two-body contributions. All interac-
tions are included in this Hamiltonian without any adjustable parameters. When evaluating this 
Hamiltonian with the full CI wave function, one obtains an exact expression of the total energy which 
consists of non-local one-particle and two-particle density matrices in addition to the local on-site con-
tributions. In our CMR approach, we evaluate the Hamiltonian in Eq. (1) with the GWF of the form
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where 0Ψ  is a non-interacting wavefunction, i.e., a single Slater determinant. giΓ is the Gutzwiller vari-
ational parameter which determines the occupation probability of the on-site configuration iΓ . Note 
that here we restrict the Gutzwiller variational parameters giΓ,Γ ′  to be diagonal in Γ i, which is still a 
legitimate choice from the variational point of view and is computationally much more efficient. The 
central physics of the Gutzwiller trial wavefunction relevant to correlation effects is the selective suppres-
sion of the energetically unfavorable atomic configurations in the noninteracting wave function. Using 
the GWF of Eq. (2) and adopting the generally accepted GA for the expectation value of a one-particle 
operator24,25, the total energy of the system within the CMR approach can be casted in a form following 
the Levy-Lieb’s constrained search method29,30 as
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where piΓ is the optimized occupation weight of the configuration iΓ . zi
j
ασ
β  can be evaluated following 

the standard GA rule for one-particle hopping operators, i.e., z z zi
j

i j=ασ
β

ασ βσ if (iα) ≠ (jβ) and 1 other-
wise. Here ziασ is named Gutzwiller orbital renormalization factor and can be expressed as
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here n c c c ci i i i i
0

0 0 0= ≡ Ψ Ψασ ασ ασ ασ ασ
† † . The sum is over all possible local electronic configurations. 

We define c c p c ci l G i l= ∑ Γ Γασ δσ ασ δσΓ Γ
† †  if (iα) and (lδ) are local correlated orbitals of the same site, 

and z c ci
l

i l 0ασ
δ

ασ δσ
†  otherwise. Note that this term effectively adds the crystal field to the local Hamiltonian. 

To reach the expression Eq. (3), the validity of Wick’s theorem has been assumed. There would be resid-
ual correlation energy, Ec, to correct the total energy expression in Eq. (3), due to the approximations 
involved in the CMR approach. In general, Ec can be determined by comparing the total energies from 
the CMR with that from accurate CI or quantum Monte Carlo calculations for some exactly solvable 
structures. Since the dominant local onsite electron correlation effect has been taken into account by the 
GWF, the residual correlation energy due to the CMR approximation is expected to be small. In the test 
cases to be shown in this work, we find that one way to include the effects of Ec is to modify the renor-
malization z-factor obtained from the GA. Thus, in what follows, the role of Ec is played by replacing z 
with some functional f(z), which is determined by fitting on some exactly solved reference systems fol-
lowing the idea of LDA.

We first demonstrate the CMR method by studying the dissociation behavior of the hydrogen mole-
cules. The dissociation behavior of these hydrogen molecules has been the testing ground of methods for 
correlated electron calculations, because the electron correlation changes from the weak to strong regime 
as the hydrogen bond length increases. For these systems, the residual correlation energy is included by 
replacing the renormalization z-factor24 by a functional of z, i.e., f(z). The f(z) is determined by requiring 
that the total energy and the probability of the local double occupancy for the hydrogen dimer obtained 
from CMR to be the same as the exact CI results. In the case of using minimal basis set (one s orbital 
for each H atom), the total energy and double occupancy probability from CI can be calculated rigor-
ously, and f(z) can be solved analytically in term of z. Using this f(z), CMR calculations are performed 
on H6-ring, H8-ring, H10-ring and H8-cube structures. The results from our CMR calculations are pre-
sented in Fig. 1 in comparison with the full CI results. We found the bonding and dissociation behavior 
of the hydrogen clusters calculated from the CMR method agrees very well with the exact CI results. In 
contrast, the HF results show large systematic errors, especially at large separations where the electron 
correlation effect becomes prominent, as evidenced by the strong suppression of the energetically unfa-
vorable local electron double occupancy weight given by CI.

We further tested the CMR method on the dissociation behavior of hydrogen clusters using a large 
basis set of 6-311G**, which contains 3 s-orbitals plus 3 p-orbitals. In this case, the f(z) needs to be 
determined numerically by fitting total energy E and {piΓ} from the CMR calculations on the hydrogen 
dimer to the exact CI results. Using such a numerically constructed functional f(z), we have performed 
the CMR calculations for H6-ring, H8-ring, and H8-cube with the same large basis set. To evaluate the 
quality of the CMR results, we carried out the highly accurate multi-configurational self-consistent field 
(MCSCF) calculations for the hydrogen molecules, since the full CI calculations with the large basis set 
are already very time-consuming. The convergence of MCSCF calculations have been checked such that 

Figure 1. Minimal-basis binding energy and double occupancy curve of hydrogen clusters. The total 
energy (a–e) and double occupancy weight (f–j) of Hn clusters as a function of bond length calculated from 
the CMR method agree very well with the results from the exact CI calculations. The CMR results are also 
much better than the HF results. The calculations are done using a minimal basis set.
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the error due to truncated active space is smaller than 0.005 Har/atom. In Fig. 2 we show that the CMR 
method yields again very good bonding and dissociation curves in close agreement with the MCSCF 
calculations. The inset of Fig. 2 shows the behavior of f(z), which scales like z  at small z and approaches 
z as z goes to 1.

The CMR method is also successfully applied to systems with atoms containing multiple correlated 
orbitals, e.g., nitrogen clusters. For computational convenience, we describe the nitrogen atom with the 
minimum basis set and choose the 2s and 2p orbitals as the local correlated orbitals. The same idea can 
be equally well carried over to the large basis calculations as shown previously for the hydrogen clusters. 
Two functionals, fs(zs) and fp(zp), are introduced to modify the renormalization coefficients of 2s and 2p 
orbitals. The specific functional forms, following the procedure in the calculations of hydrogen clusters, 
are determined by matching the CMR total energy, E, and the local configuration weights, {piΓ}, with 
the exact CI results of the N2 dimer. We apply the method to calculate binding energy curves of three 
nitrogen clusters of different geometries, i.e., the square, diamond and tetragonal shapes. In Fig.  3 we 
show the total energy as a function of bond length from the CMR, HF and MCSCF calculations. The 
good agreement between the CMR and MCSCF energies for all the structures demonstrates the good 
transferability of our method.

To further test our scheme, we calculate the binding energy curve of the ammonia molecule, NH3, 
with three hydrogen atoms straightly approaching the nitrogen atom at the apex but maintaining its 
overall stable geometry. These heterogeneous polarized molecules pose as a very good test bed on the 
transferability of f(z) determined with homogeneous molecular dimers. How well these fitted functionals 
are able to capture the subtle orbital hybridization and correlation energy gain in a chemical process is 
unknown a priori. We apply the 6-311G** basis set to describe H and the minimum basis set to describe 
N in order to be consistent with the pre-determined f(z) for the correlated orbitals in previous calcula-
tions. Again, a full CI calculation is time-consuming for this set of basis sets on NH3. We instead replace 
it with a highly sophisticated and accurate enough Multiple Active Space Self-consistent Field(MASSCF) 
method31,32 to get the benchmark energies with an estimated truncation error smaller than 0.003Har/
atom. The calculation is done with GAMESS(US). For MCSCF, a frozen orbital taking 2 core electrons 
and an active space of 14 molecular orbitals holding the rest 8 electrons are used. For ORMAS-CI, two 
occupation restricted active subspaces and quadrupled excitations within each active subspace are used. 
Variationally, more active orbitals and more electron excitations used in MASSCF will render better 
energy. The current choice is found to balance between speed, accuracy and memory usage quite well. 
The energy binding curves calculated by CMR, MASSCF and HF methods are shown in Fig. 4. The close 
agreement between the CMR and MASSCF calculations are easy to see. The HF method, however, gives 
quite high binding energy curve. This result strongly support the good transferability of f(z) in different 
chemical environments.

Figure 2. Large-basis binding energy curve of hydrogen clusters. The total energy of hydrogen clusters 
as a function of bond length calculated from the CMR method agrees well with the result from the high-
level quantum chemistry MCSCF calculations. The HF result is also shown for comparison. The calculations 
are done using large basis set. Insets: f(z) obtained by fitting the CMR total energy and local configuration 
weights with the exact full CI results.
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Discussion
Very recently, Cohen, et al. used some prototype systems to show the dramatic errors in the DFT-based 
calculations. These errors stem from the fact that the current approximations used in DFT calculations 
miss the energy derivative discontinuity with respect to the total electron number27,28,33. The prototype 
systems to reveal the failure of DFT are the stretched few-electron systems, e.g., one-electron systems like 
HZ{1e} and HZH{1e} and two-electron systems like HZ{2e} with Z being the proton with nucleus charge Z 
varying between 0 and 2. While the electron density from the exact calculations shows dramatic discon-
tinuous changes in real space with a slight variation of Z near some critical points at large separations, all 
the DFT calculations predict an artificial continuous variation of the electron density27. Our CMR method 
gives exact solutions for any single-electron systems, as is easily proved that the orbital renormalization 
factors are constantly one and the method reproduces the HF results, which are exact in the special class 
of one-electron systems. Therefore our CMR method yields the exact bonding and dissociation behaviors 
for both H2

+ and H2 by construction (see Fig. 2), while none of the available DFT calculations can describe 
both cases equally well28. One can further show that because the CMR method reaches the correct atomic 

Figure 3. Binding energy curve of nitrogen clusters. The total energy of the nitrogen clusters as a function 
of bond length calculated from the CMR method agrees well with the result from the high-level MCSCF 
calculations. The HF result is also shown for comparison.

Figure 4. Binding energy curve of ammonia. The total energy of NH3 as a function of bond length 
between H and N atoms is shown in the plot for CMR, MASSCF and HF calculations. H atoms straightly 
approach the N atom in such a way that the overall stable geometry is preserved.
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solutions at the large separation limit, the exact discontinuous electron transfer observed in the HZ{2e} 
system at large separations can be well reproduced. In Fig.  5 we compare the electron occupation and 
double occupancy weight of Z atom from the CMR, HF, DFT with the generalized gradient approxima-
tion (GGA) and CI. Although all the methods predict similar results near equilibrium bond length 
(∼ 0.75Å ), the CMR method shows significant improvements over the mean field HF and GGA and 
follows closely the exact CI results with increasing separations, even at the chemically crucial bond break-
ing region (∼ 2Å ) and beyond. The underlying physics for the large errors of the simple mean field 
approaches like the HF and GGA can be understood by noting that the mean field double occupancy 
weight evaluated using the CI orbital occupation, shown as the dotted line in the lower panel of Fig. 5, 
can severely deviate from the exact CI double occupancy weight—manifesting the multi-configuration 
nature of the exact solution which is beyond the single Slater determinant description.

Another challenging prototype system is the H8 cluster with varying electron filling28. The exact solu-
tion predicts a relatively big energy gap for the system at large separations and half-filling Ne =  8; while 
all the DFT calculations fail to reproduce this result because of the incapability to treat the strong elec-
tron correlation effects. In Fig. 6 we show the total energy of the H8 cube from the CMR, HF, GGA and 
MCSCF calculations as a function of even number of electron filling, which keeps the system to have the 
closed shell ground state solution28. While all the four theories give similar total energies at the small 
bond length, the discrepancy becomes increasingly big as the H8 cluster expands. Remarkably, the CMR 
energies agree with the highly accurate MCSCF results very well for all the bond separations and electron 
fillings, which proves that the key many-body correlation physics in this system has been perfectly cap-
tured by the CMR method. A better comparison between the four levels of theories is presented by the 
energy gap, defined as the second order finite difference E E N E N E N2 2 2e e e2Δ = ( + ) + ( − ) − ( ), 
as shown in the insets of Fig. 6. Clearly, as the bond length increases, or the electron correlation effects 
become stronger, the simple mean field HF and GGA energy gaps show larger deviations from the exact 
gap, especially the gap at half filling. In contrast, the CMR calculations yield energy gaps in excellent 
agreement with the MCSCF results in all the cases.

In summary, we have developed an efficient method for calculating the electronic structure and total 
energy of the systems with strong electron correlations. The method is based on the Gutzwiller type 
variational wavefunction and adopts a correlation matrix renormalization approximation in which both 
one-particle density and two-particle correlation matrices at mean field level are renormalized according 
to the local electron correlation effects. While the computation efficiency of this new approach is similar 
to the Hartree-Fock method, the calculation results are much more accurate. The benchmark results 
presented in the current paper for the bonding and dissociation behaviors of the hydrogen and nitrogen 

Figure 5. The variation of electron occupation number and double occupancy. The electron occupation 
number nZ (a–c) and the local double occupancy weight dZ (d–f) as a function of the nucleus charge on the 
Z atom calculated with the CMR, HF, GGA and CI methods for the HZ dimer at three separations: near 
equilibrium (left), close to bond breaking (middle) and beyond (right). The dotted line in the lower panel 
shows the mean field double occupancy weight evaluated at the CI electron occupation of the Z atom.
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clusters show that our method well reproduces the results from the accurate and yet expensive quantum 
chemistry CI and MCSCF calculations. The calculation applied to ammonia supports the claim of good 
transferability of CMR from reference homogeneous dimers to heterogeneous polarized molecules. The 
CMR method is also demonstrated to be accurate for treating the electron correlation effects in some 
prototype systems where the current DFT and HF calculations fail. The extension of the method to 
crystalline solids is straightforward and promising, although some additional physics such as screening 
due to infinite system might cause complications.

Method
The minimization of the total energy of Eq. (3) with respect to Ψ 0 and {piΓ} amounts to solve two cou-
pled eigen-value equations self-consistently26. The bare many-electron Hamiltonian is generated by the 
quantum chemistry code GAMESS34. The GAMESS code was also used for the full CI, MCSCF and 
MASSCF calculations.
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