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High-mobility group box 1 (HMGB1), a prototypical damage-associated molecular pattern
(DAMP) molecule, participates in multiple processes of various inflammatory diseases
through binding to its corresponding receptors. In the early phase, sepsis is mainly
characterized as a multi-bacterial-induced complex, excessive inflammatory response
accompanied by the release of pro-inflammatory mediators, which subsequently
develops into immune paralysis. A growing number of in vivo and in vitro investigations
reveal that HMGB1 plays a pivotal role in the processes of inflammatory response and
immunosuppression of sepsis. Therefore, HMGB1 exerts an indispensable role in the
immune disorder and life-threatening inflammatory syndrome of sepsis. HMGB1 mainly
mediate the release of inflammatory factors via acting on immune cells, pyroptosis
pathways and phosphorylating nuclear factor-kB. Moreover HMGB1 is also associated
with the process of sepsis-related immunosuppression. Neutrophil dysfunction mediated
by HMGB1 is also an aspect of the immunosuppressive mechanism of sepsis. Myeloid-
derived suppressor cells (MDSCs), which are also one of the important cells that play an
immunosuppressive effect in sepsis, may connect with HMGB1. Thence, further
understanding of HMGB1-associated pathogenesis of sepsis may assist in
development of promising treatment strategies. This review mainly discusses current
perspectives on the roles of HMGB1 in sepsis-related inflammation and
immunosuppressive process and its related internal regulatory mechanisms.
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INTRODUCTION

Sepsis is the body’s maladjusted response to an infection. It is manifest as an excessive systemic,
inflammatory immune response in its early stage and as continuous immunosuppression in its later
phase. These processes may result in cell dysfunction and ultimately in organ failure (1). Effective
sepsis-specific therapies are still lacking. Most current therapeutics focus mainly on supporting
dysfunctional organs rather than on cures. Existing therapies include administration of antibiotics
to fight against various infections; restoration of fluid balance and use of a vasopressor to maintain
org January 2021 | Volume 11 | Article 6018151
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perfusion of vital organs; and utilization of mechanical support
of failed organs (such as mechanical ventilation in failed lungs,
dialysis-like techniques for renal failure, etc.).

Progress has been made on not only in development of
technologies but also in comprehensive investigation of the
pathogenesis of sepsis and of the diverse interactions between
pathogens and hosts. However, sepsis-induced mortality is still
unacceptably high typically about 30% and even as much as 40–
50% when shock develops (2). In additions, survivors of severe
sepsis also show an increased risk of post-sepsis syndrome,
such as cognitive impairment and functional disability, which
in turn contributes to an elevated risk of various mental and
psychological diseases (3).

HMGB1 has been implicated in the pathogenesis of multiple
diseases, including cancer, traumatic shock, and autoimmune
diseases (4, 5). It has been well proven that systemic HMGB1
levels are markedly increased in murine sepsis models and in
patients with sepsis (6). After treatment with lipopolysaccharide
(LPS), serum HMGB1 in mice increases from 8 h and peaks in 16
to 32 h (7). The delayed secretion of HMGB1 broadens the time
window of treatment opportunities for patients with sepsis using
HMGB1 antagonists. Besides, study has shown that reducing the
release of HMGB1 can effectively improve the survival of mice
suffering from sepsis (8).

In this review, we review some new insights into the roles of
HMGB1 associated with inflammation, immunosuppression in
sepsis. Understanding the contributions of HMGB1 to the
pathogenesis of sepsis may facilitate development of potentially
effective therapeutic strategies to shorten the course of the
disease as much as possible, and to improve the prognosis and
survival rate of sepsis patients.
INSIGHTS ON HMGB1

HMGB1, a multi-functional and highly conserved nucleoprotein
with 215 amino acid residues, includes two tandems, positively
charged DNA-binding regions, A box and B box, together with a
negatively charged tail consisting of a string of amino acid residues.
The A box has no innate pro-inflammatory activity, but can
specifically antagonize the cytokine and pro-inflammatory
activities of HMGB1 (9). The B box comprises most of the pro-
inflammatory properties of HMGB1. Amino acid residues 89-108
of HMGB1, located in the top 20 of B box, are the main region for
stimulating cytokine release (10). Two nuclear localization sites
(NLS) in the A and B boxes, respectively, regulate the capacity of
HMGB1 to be transported into the cytoplasm. HMGB1 consists of
three isoforms: disulfide HMGB1, fully reduced HMGB1 and
sulfonyl HMGB1, among these disulfide HMGB1 is the only
isoform with the pro-inflammatory activity (11).

As one of the earliest confirmed members of the damage-
associated molecular pattern family and a prototypical alarm
molecule, HMGB1 initiates and maintains the immune response
during inflammation (7). The immune function of extracellular
HMGB1 is completely dependent on the redox status of its three
conserved cysteine residues, at locations 23 and 45 in box A and
at location 106 in box B, that regulate receptor binding ability
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(12). HMGB1 is translocating outside the cell mainly through
two pathways: passive release and active secretion. Passive
HMGB1 release mainly occurs in different forms of cell death,
for instance, pyroptosis, apoptosis, and necrosis (13). HMGB1
released by different forms of dead cells has different redox states.
When emancipated after pyroptosis, it is usually in the disulfide
form, after apoptosis in the fully oxidized form and after necrosis
in fully reduced or disulfide forms (7). Disulfide HMGB1 and
fully reduced HMGB1 can be converted to each other according
to the redox state of the internal and external environment of the
cell, while fully oxidized HMGB1 is an irreversible form (14).

HMGB1 can be actively released by a variety of cells, including
endothelial cells, hepatocytes, macrophages, and monocytes (6).
Active HMGB1 release is a complex process. First, transport from
the nucleus into the cytoplasm depends on posttranslational
modifications of NLS such as acetylation, methylation, and
phosphorylation, which may in turn be regulated by the JAK/
STAT1 signaling pathway and calcium/calmodulin-dependent
protein kinase (CaMK) IV (6). Secondly, cytoplasmic HMGB1 is
released to the extracellular environment by induction of
programmed pro-inflammatory cell pyroptosis or by exocytosis
of secretory lysosome the same pathway as IL-1b secretion (15).
HMGB1 is commonly detected in nucleated mammalian cells, and
its activity is closely related to its cellular location. During
homeostasis, nuclear HMGB1 performs an essential role in
maintaining the stability of cell functions through its involvement
in multiple processes such as DNA replication, transcription,
stabilizing nucleosome formation, and regulating gene expression
(16). In response to various injuries and inflammatory stimuli,
HMGB1 is transported from the nucleus to the cytoplasm and
participates in important pathways, for instance, in promotion of
inflammasomeactivation, initiationof autophagy, andregulationof
apoptosis (17–19). Once released to the extracellular environment,
HMGB1 attains the vital ability to induce chemokine/cytokine
production, stimulate neutrophil extracellular trap formation,
involvement in neuroimmune or metabolic activities, and other
activities (6). Translocation of HMGB1 from the nucleus to the
cytoplasm and ultimate extracellular secretion are also key
processes for HMGB1-mediated inflammation. Advanced
glycation end products (RAGE) and toll-like receptor 4 (TLR4)
are importantmembersof the innate immune system(20).HMGB1
exerts its biological functionmainly through binding to any of these
two receptors (21).
THE ROLE OF HMGB1 IN INFLAMMATION

Pro-inflammatory cytokines, released from various immune cells,
are considered to be essential mediators in the lethal effects of
endotoxins. Excessive release of cytokines is closely associated with
tissue damage, multiple-organ dysfunction or failure, and even
death (22). As an effective pro-inflammatory cytokine, HMGB1
plays a role in various inflammatory diseases, especially in sepsis. In
both experimental sepsis models and in sepsis patients (7, 11, 12),
the levels of HMGB1 in circulation are remarkably increased, and
the concentration of circulating HMGB1 is positively correlated
with the severity of inflammation and disease. HMGB1 can also
January 2021 | Volume 11 | Article 601815
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induce inflammatory anemia and cognitive impairment, which is
considered to be related to neuroinflammation, among sepsis
survivors (15, 23). Compared with other early -phase pro-
inflammatory contents, for instance tumor necrosis factor (TNF)
and IL-1b, HMGB1 began to appear 8 h and significantly increased
after initiation of sepsis (9). Thus, HMGB1 offers a relatively wider
time window for clinical treatment of sepsis patients with
progressive inflammation.

The early stage of sepsis is accompanied by excessive
inflammation, which is the main initial actor of organ
dysfunction. Because continued inflammation can have serious
consequences, including organ failure, it seems a reasonable
therapeutic goal to the auto-inflammatory response to avoid
excessive activation of the immune response and a cascade of
effects that induce cell and tissue damage. Earlier studies have
demonstrated that blocking strong expression of HMGB1 in
inflammatory diseases, such as rheumatoid arthritis, myositis, and
systemic lupus erythematosus can attenuate inflammation (24).
Recent studies have found that targeting HMGB1 can reduce
inflammatory response which in turn reduces sepsis associated
organ damage (25–28). Therefore, antagonizing HMGB1 in serum
or intervening in the pathway of HMGB1 mediated pro-
inflammatory pathways may facilitate development of potential
therapies in sepsis.
HMGB1 AND IMMUNE CELLS

HMGB1 promotes sepsis-induced organ dysfunction through
suppressing neutrophil ability to clear bacteria, and so enhancing
persistent inflammation. In both mice subjected to sepsis and
patients surviving septic shock, HMGB1 decreased the capacity of
neutrophil to kill bacteria through mediating neutrophil
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
dysfunction (21). Interestingly, in an abdominal sepsismicemodel,
Zhou et al. manifested that platelet-derived HMGB1 facilitated
neutrophil activationandreactiveoxygenspecies (ROS)generation,
whichwere critical for the ability of neutrophil to promote bacterial
clearance (29). These contradictory results indicate that the
functions of HMGB1 in sepsis are complex and different. Perhaps
the final balance of these effects determines whether the role of
HMGB1 in sepsis is beneficial or harmful. Additionally,
investigation showed that platelet-derived HMGB1 stimulated
neutrophil extracellular traps (NETs) formation in septic shock
patients and sepsis mouse model induced by cecal ligation and
puncture (CLP) (30). Research on an abdominal septic animal
model also showed that levels of NETs were significantly increased.
These increased NETs could recruit neutrophils to the lung and
promote the formation of pro-inflammatory compounds in
pulmonary (31). Apart from this effect, NETs could also stimulate
macrophages to secrete massive inflammatory mediators, tumor
necrosis factor-a (TNF-a), HMGB1, which boost systemic
inflammation (31). In an animal model of pulmonary fibrosis,
interaction of HMGB1 with phosphatidylserine on the surfaces of
apoptotic neutrophils inhibited the engulf of apoptotic neutrophils
bymacrophages (32). Therefore, apoptotic neutrophils remained to
generate pro-inflammatory contents of reactive oxygen species
Frontiers in Immunology | www.frontiersin.org 3
(ROS), which aggravated the pulmonary pro-inflammatory
environment and enhanced the lung tissue injury. Whether
HMGB1 plays the same role in sepsis is question that requires
additional investigation. As a member of innate immune
cells, macrophages act a vital role in initiating body’s immune
response. Studies on both patients with sepsis and sepsis animal
model indicated that HMGB1 could facilitate the release of
inflammatory cytokines from macrophages, such as: TNF-a,
interleukin-6 (IL-6) (33). However, the specific internal regulation
mechanism is still unclear. HMGB1 can not only promote the
release of inflammatory factors from macrophages, but also
facilitate the conversion of macrophages to an inflammatory
phenotype. In experimental mouse model of autoimmune
myocarditis, HMGB1 promoted macrophage transforming into
M1-like Phenotype owning pro-inflammatory activity in vitro
(34). Loss of endothelial cells (ECs) integrity can cause
inflammatory substances to leak into surrounding tissues, and so
facilitate tissue damage and inflammation (35). HMGB1 in
circulation from patients subjected to sepsis promoted ECs
apoptosis, which in turn increased endothelial (36). The Internal
mechanism may be related to the expression levels of some
proteins mediated by HMGB1 (Figure 1A).
HMGB1 AND PYROPTOSIS

In sepsis, pyroptosis is a special form of programmed cell death,
which is accompanied by release of multiple inflammatory
compounds, including IL-18 and IL-1b. Normal pyroptosis
defends the host from bacterial infection and reduces organ
damage. However, excessive pyroptosis can lead to multiple organ
dysfunction or failure and septic shock, or to increased chances of
secondary infection (37, 38). Pyroptosis contains two chief
pathways: one canonical, caspase 1-dependent pathway, and a
noncanonical pathway associated with caspase4/5 and caspase11
(39). Caspase4/5 mainly regulates human-related pyroptosis, while
caspase11 mainly participates in animal-related pyroptosis.

The nucleotide binding and oligomerization domain-like
receptor family pyrin domain-containing protein 3 (NLRP3)
inflammasome, a molecule is highly sensitive to both DAMPs and
pathogen-associated molecular patterns (PAMPs). When oxidized
to form cysteine 23-cysteine 45 bonds, HMGB1 can signal through
TLR4-MD2 and act as a priming factor for NLRP3 inflammasome
activation (40). When activated by HMGB1, NLRP3 can activate
caspase-1 through recruiting nucleotide-binding domain and
leucine-rich repeat (NLR) family, caspase recruitment domain
(CARD) containing 4 (NLRC4), apoptosis associated speck like
protein (ASC), and finally initiating a canonical pathway of
pyroptosis and prompting the production of inflammatory
factors in sepsis (41). Other research on sepsis model also
indicated that hepatocyte-derived HMGB1 transported LPS into
the cytosol of macrophages and endothelial cells, via RAGE-
mediated internalization (23). Subsequently, LPS activated a
noncanonical pyroptosis pathway induced by caspase-11, which
in turn increased inflammation and the lethality of sepsis (23).
Furthermore, neutralizing extracellular HMGB1 or inhibition of
HMGB1-LPS binding could prevent caspase-11-dependent
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pyroptosis and death in endotoxemia (23). Caspase-11-mediated
pyroptosis of renal tubular epithelial cells is also a pivotal point
during septic acute kidney injury (42). However, caspase-11
knockout can attenuate pathological kidney damage and improve
survival, in both in vitro and in vivo experiments in mice (42). In
addition, investigation also revealed that HMGB1 alone initiated
ASC-dependent and caspase-11-independent pyroptosis (43).
Yang et al. (44) indicated that in hemorrhagic shock, HMGB1
stimulates lung endothelial cell (EC) endocytosis through the
RAGE receptor, which in turn facilitates the activation and
release of cathepsin B from ruptured lysosomes. This process is
then followed by the formation of pyroptosomes and activation of
caspase-1, leading to EC pyroptosis and increased lung damage
(44). The lung is the most readily targeted organ during the process
of sepsis. Thus, it would be worthwhile investigating whether the
pathway plays the same role in sepsis and whethermanipulation of
that pathway could provide an effective intervention. Similarly, in a
septic mouse model, NETs-derived HMGB1 induced macrophage
pyroptosis through the same signaling pathway demonstrated by
Yang et al. (45). Recent investigation performed byWang et al. (46)
manifested that HMGB1 acted as an vital intermediary molecule in
the process of TNF-a induce pyroptosis in M1macrophages in the
animal model of acute liver failure induced by LPS (Figure 1B).
HMGB-RAGE/TLRS-NF-ΚB SIGNALING
PATHWAYS

HMGB1 exerts its pro-inflammatory effects mainly by binding to
multiple membrane receptor proteins, including TLR2, RAGE,
and TLR4 (16). The important role of the HMGB1-RAGE/TLRs
axis is to phosphorylate nuclear factor-kB (NF-kB), facilitating
secretion of various proinflammatory cytokines (47).

In sepsis-induced animal model of lung damage, study show that
the protective role of Xuebijing (XBJ) may be via inhibiting
HMGB1/RAGE axis to decrease pro-inflammatory cytokines
releases (48). Additionally, literature documented the combination
Frontiers in Immunology | www.frontiersin.org 4
of HMGB1 and RAGE can trigger a series of signal transduction
pathways, which can directly activate NF-kB or indirectly through
the mitogen-activated protein kinase (MAPKs) pathway or other
ways, thereby promoting the release of inflammatory factors (49).
However, the specific details of the activation of the NF-kB pathway
by the HMGB1-RAGE axis are not yet clear in sepsis. Moreover,
multiple studies on animal models of sepsis found that suppression
HMGB1/TLR4/NF-kB signaling pathway could attenuate
inflammation response and ultimately reduce the damage of vital
organs as well (50, 51). It is worth noting that in a sepsis rat model,
serum-derived HMGB1 accumulates in the renal tissue and urine
and turn renal tubular epithelial cells (TECs) into inflammatory
promoter mediators, which facilitate the release of pro-
inflammatory cytokines through binding to TLR4. Moreover, The
process accompanied by the activation of MAPK and NF-kB as well
(52). Apart from this, study also show that TLR4 and TLR2
receptors convey signals through a MyD88-dependent/
independent pathway, which can activate NF-kB (53, 54).

The studies listed above all show that HMGB1 can mediate
inflammation response in sepsis by binding to RAGE or TLRs.
However, literature also report ifTLR4 is functionally inactivated or
absent, macrophages containing both RAGE and TLR4 receptors,
cannot generate cytokines when initiated by any isoforms of
HMGB1 (55). Besides, in LPS-induced mouse model of acute
lung injury (ALI), HMGB1 can simultaneously activate the TLR4,
TLR2, and RAGE/NF-kB signaling pathways to promote the
activation of absent in melanoma 2 (AIM2) inflammasome in
macrophage and the polarization of M1 macrophages, followed
by production of interleukin−1b (IL-1b) and IL-6 (56). Therefore,
the specific mechanism of HMGB1/TLRs/RAGE/NF-kB pathways
that mediate inflammation in sepsis need further exploration
(Figure 1C).

Therefore, HMGB1 participates in the release of pro-
inflammatory factors in sepsis in a variety of ways. Whether
these pro-inflammatory pathways affect each other or which is
the dominant pathway and the specific regulation process of
these pathways need further study.
A B C

FIGURE 1 | High-mobility group box-1 (HMGB1)-associated regulatory pathways of inflammation in sepsis. (A) HMGB1 and immune cells. HMGB1 promote NETs formation
of neutrophil, ECs apoptosis to mediate inflammation; HMGB1 can also directly promote macrophages to release inflammation factors, such as: TNF-a, IL-6. (B) The role of
HMGB1 in pyroptosis. Extracellular HMGB1 induces both canonical and noncanonical pyroptosis pathways by binding to their corresponding receptors. (C) HMGB1-RAGE/
TLRs-NF-kB signaling pathways. HMGB1 binds to receptors, containing receptor for advanced glycation end products (RAGE), Toll-like receptor 2 (TLR2), and Toll-like
receptor 4 (TLR4) on the cell membrane, to phosphorylate nuclear factor-kB, which regulates the generation of inflammatory mediators.
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THE ROLE OF HMGB1 IN
IMMUNOSUPPRESSION

It is well known that following an early cytokine storm, late phase
sepsis is always accompanied by long-term chronic inflammation
and sustained immunosuppression (57, 58). Patients with severe
sepsis have a long course of disease and usually exhibit persistent
inflammation-immunosuppression and catabolic syndromes,
leading to many adverse clinical consequences. The specific
mechanisms of the syndrome are currently unknown. However,
increasing evidence indicates that alteration of myelopoiesis,
expansion of immature myeloid-derived suppressor cells
(MDSCs), and reduction of effector T-cell function, are all
contributors to the immunosuppressive pathology of sepsis.
HMGB1 plays a unique role in the development of post-sepsis
immunosuppression.Dynamicmonitoring indexesofHMGB1and
cellular immunity are vital for assessing chronic inflammation
processes, immune status, and prognoses of patients with severe
sepsis (59). However, a consensus on how HMGB1 applies its
immunomodulatory function in sepsis remains to be
further demonstrated.
HMGB1 AND NEUTROPHILS

High level of HMGB1 acts as a specific role in the development of
immunosuppression during late phase of sepsis. Research revealed
thatHMGB1 could inhibit NADPHoxidase activation, leading to a
deficiency in oxidative burst and dysfunction of neutrophil-
dependent bacterial killing mechanisms in an experimental sepsis
model and in patients surviving septic shock (21). Additionally,
these neutrophils with immunosuppressive phenotypes not only
participate in the development of late-phase immunosuppression,
but also affect newly generated neutrophils.

Early research also demonstrated that HMGB1 binding to
RAGE receptor could effectively inhibit NADPH oxidase
activation in neutrophils (60). However, the mechanism needs
to be further confirmed in sepsis.
HMGB1 AND MDSCS

Decreasing the numbers of immune cells caused by apoptosis of
lymphocytes and imbalance of immune function is one of the
main mechanisms of immunosuppression in sepsis (61).
Myeloid-derived suppressor cells (MDSCs) have recently been
correlated with the profound immunosuppression in sepsis and
can suppress T-cell proliferation via a variety of mechanisms
(62). MDSCs not only inhibit effector T cells, but they also
mediate the expansion of regulatory T cells (Tregs) a recognized
type of immunosuppressive cell under inflammatory conditions
(63). One important factor is that release of ROS molecules is
also one of the main mechanisms by which MDSCs inhibit T
cells (64, 65).

Generation of ROS is essential not only for the
immunosuppressive function of MDSCs, but also seems to keep
Frontiers in Immunology | www.frontiersin.org 5
these cells in an undifferentiated state (66). ROS is one of the critical
regulators in the control of HMGB1 release (5). However, whether
ROS derived from MDSCs promotes the production of HMGB1
needs further verification. In the tumor micro-environment,
HMGB1 maintains the survival of MDSCs through facilitating
autophagy, which promotes the potency of MDSCs to restrain
anti-tumor immunity and accelerate tumor progression (67). Thus,
it ismeaningful to speculatewhetherHMGBIpromotes the survival
of MDSCs and maintains the immunosuppressive function of
MDSCs via inducing autophagy of MDSCs in sepsis. Li et al.
suggested that in tumors, the release of HMGB1 mediated by
inflammasomes further induces the expression of CD274/PD-L1,
which results in immunosuppression (68).T-cell depletion in sepsis
is caused mainly by programmed cell death-1 (PD-1) interaction
with its ligand (PD-L1), and the use of antibodies to PD-L1 can
improve the survival rate in sepsis (69). Moreover, investigation
recently show that MDSCs might act a immunosuppressive effect
via PD-L1/PD-1 axis in sepsis mouse model (70). Whether any of
these molecules are mediated by HMGB1 or whether HMGB1
promotes the survival ofMDSCs throughother specificpathwaysor
enhances its immunosuppressive capacity in sepsis is still unknown
and needs further research. There have been many reports about
MDSCS inhibiting T cell proliferation and function. However, few
investigationshave focused on the role ofMDSCsonB-cells. Recent
research shows that human M-MDSCs, significantly inhibits
function of human B cells and alters the subsets of B-cell in vitro
(71). Therefore, MDSCs could play an important role in
immunosuppression, which might be caused by simultaneously
inhibiting the functions of T cells and B cells. Thence, exploring the
role between HMGB1 and MDSCs is of great significance in
discovering new sepsis-related immunotherapy strategies.

In contrast, Liu et al. have concluded that HMGB1 could
reverse immunosuppression in sepsis, when released at moderate
levels (72). Only when HMGB1 is over-released can it facilitate
immune paralysis. Furthermore, once activated by caspase-1,
HMGB1 can antagonize apoptosis-induced tolerance through
the RAGE signaling pathway in dendritic cells (61). Thence,
Whether HMGB1 exerts immunosuppressive effects may also be
related to the concentration and activation mode of HMGB1.
CONCLUSION

HMGB1 is a contradictory molecule in sepsis. It not only mediates
inflammation response, but also plays an important role in the
immunosuppression of sepsis. In this review, we mainly introduce
the relevant pathways of HMGB1 in mediating inflammation in
sepsis. At present, there are relatively few studies on the
immunosuppressive effect of HMGB1 in sepsis. However, the
immunosuppressive effect of MDSCs in sepsis and the related
mechanism have been preliminary studied. Exploring the possible
regulatorymechanism betweenHMGB1 andMDSCs in sepsismay
provide new ideas for the immunotherapy of sepsis. It is regrettable
that there are relatively few investigations on when HMGB1 acts a
pro-inflammatory or immunosuppressive effect in sepsis.
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Therefore, in order to provide more accurate targeted therapy for
sepsis, more detailed studies on HMGB1 are needed.
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