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Abstract: A rare three-coordinate germanone [IPrN]2Ge=O
(IPrN=bis(2,6-diisopropylphenyl)imidazolin-2-imino) was
successfully isolated. The germanone has a rather high
thermal stability in arene solvent, and no detectable change
was observed at 80 °C for at least one week. However, high
thermal stability of [IPrN]2Ge=O does not prevent its
reactivity toward small molecules. Structural analysis and
initial reactivity studies revealed the highly polarized nature
of the terminal Ge=O bond. Besides, the addition of
phenylacetylene, as well as O-atom transfer with 2,6-
dimethylphenyl isocyanide make it a mimic of nucleophilic
transition-metal oxides. Mechanism for O-atom transfer
reaction was investigated via DFT calculations, which
revealed that the reaction proceeds via a [2+2] cyclo-
addition intermediate.

Whereas carbonyl compounds are irreplaceable and highly
versatile building blocks in today’s organic synthesis, their
heavier analogues (R2E=O, E=group 14 element), are still rare
and have been much less explored. Specifically germanones
(R2Ge=O), were long thought to be elusive and unstable
intermediates,[1] until the first evidence of organogermanium
oxides was reported by Satgé in 1971.[2] The high reactivity
stems from the unfavorable pπ-pπ overlap between oxygen
and electropositive germanium atoms, that results in weak and
polarized Ge� O bonds.[3] Thermodynamic and kinetic stabiliza-
tion was utilized to prevent their oligomerization/
polymerization,[3g] thus affording several milestones in germa-
none chemistry. Besides the stable heavier ketones R2Ge=X with
a terminal heavier group 16 element (X=S, Se, or Te),[4] the
isolation of several donor-acceptor- or solely donor-stabilized
Ge=O complexes has been achieved by employing additional

Lewis acids or bases.[5] Following this strategy, the seminal
breakthrough towards tetra-coordinate germanones I was
described by Driess in 2009 (Scheme 1). Coordination of NHC or
4-N,N-dimethylaminopyridine (DMAP) results in a distorted
tetrahedral geometry around the electron-deficient germanium
center.[5a,b]

More recently, we have shown the successful isolation of
the NHC-stabilized germa-acylium ion II, which was utilized in
catalytic CO2 functionalizations (Scheme 1).

[6] In 2012, Tamao,
Matsuo and coworkers reported the first isolation of the
“genuine” germanone III with a three-coordinate germanium
atom multiply bonded to oxygen, which is stabilized by the
rigid and bulky Eind groups (Eind=1,1,3,3,5,5,7,7-octaethyl-s-
hydrindacen-4-yl; Scheme 1).[7a] The landmark discovery opened
the door for the chemistry of heavier group 14 carbonyls.[8]

Whilst significant advances have been made, the isolation of
acid-base free germanones still remains challenging.

In 2017, we successfully isolated the first stable neutral
acyclic three-coordinate silanones by combining π-donating N-
heterocyclic imino (NHI) and σ-donating silyl groups.[8e] More-
over, in 2018, the group of Dielmann reported two NHI
supported Lewis base free oxophosphonium monocations,
which represent the first example of a phosphacarbonyl
species.[9] Motivated by these results, we set out to stabilize the
polarized Ge=O moiety by using two NHI ligands.[10] Accord-
ingly, we found that the bis(imino)germylene,[11] reported by
the group of Rivard, could be an ideal precursor for our
targeted three-coordinate germanones. Herein we disclose the
isolation, structural characterization, and initial reactivity study
of a three-coordinate germanone with two NHI ligands.

The bis(imino)germylene 1 was synthesized in a modified
literature-known procedure.[11] Reaction of GeCl2*dioxane with
two equivalents of IPrNLi (IPrN=bis(2,6-diisopropylphenyl)
imidazolin-2-imino) in dry THF gave 1 in high yield (88%).
Indeed, treatment of a toluene solution of 1 with gaseous N2O
(1.0 bar) at room temperature led to the desired product 2 as
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Scheme 1. Selected examples of germanones, as well as the NHC-stabilized
germa-acylium Ion II.
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an orange solid (89%; Scheme 2). The bis(imino)germanone 2
has a rather high thermal stability in arene solvent; no
detectable change was observed in the 1H NMR spectrum of 2
in C6D6 at 80 °C for at least one week. The characteristic Ge=O
stretching vibration was found at 912 cm� 1 in the IR spectrum
(calc. 907 cm� 1), which is comparable to the reported Ge=O
stretching in Eind2Ge=O (III; 916 cm� 1).

Pale-yellow crystals of 2 were obtained from a saturated
solution in Et2O at � 30 °C. Single crystal X-ray diffraction (SC-
XRD) analysis unambiguously confirmed the monomeric struc-
ture of 2 in the solid state (Figure 1a).[12] In addition, the Ge=O
moiety in 2 lies within a protecting pocket formed by the
flanking shielding ligands (Figure 1b). The molecular structure
revealed a trigonal planar geometry at the germanium center
(sum of bonding angles: 360°) and the Ge1� O1 bond length of
2 (1.6494(10) Å), which is almost identical to that in Eind2Ge=O
(III; 1.6468(5) Å), and generally shorter than that in base-
stabilized tetra-coordinate germanones (1.664–1.718 Å).[5] The
Ge� N bonds (Ge1� N1 1.7819(12) Å / Ge1� N4 1.7825(12) Å) are
shortened and neighboring N� C bonds (N1� C1 1.2872(18) Å /
N4� C28 1.2914(18) Å) are elongated, compared to that in
precursor 1 (Ge� N: 1.8194(15) Å; N� C: 1.273(2) Å), thus

suggesting admixture of a partial metalimide character in the
neutral complex 2.[10]

Density Functional Theory (DFT) calculations were per-
formed to understand the electronic structure of 2. We found
that the Wiberg Bond Index (WBI; Table S3) indicates partial
double bond character for Ge=O (1.30). Natural Population
Analysis showed a positive Ge center (+1.89; Table S3) and a
negatively charged O center (� 1.02), whereas Natural Bond
Orbital analysis shows only one Ge� O bond (Table S2). Analyz-
ing the molecular orbitals (Figure S35) shows that the HOMO is
mainly located on the π-system of the IPrN groups, while the
LUMO is associated with the π-system of the phenyl rings of 2.
HOMO� 3 and LUMO+9 are the orbitals that are directly
associated with the Ge=O π-bonding (Figure S35), which depict
an O-dominated π-orbital and a Ge-dominated π*-orbital,
respectively. Interestingly, HOMO� 3 and LUMO+9 indicate
very little coupling to the N atoms of the IPrN groups, which
also suggests that Ge=O can be described as a double bond
although the zwitterionic resonance structure 2’ (Scheme 2)
should not be neglected based on the other computational
metrics.

The polarized Ge=O bond of 2 is reflected by the following
reactivity study (Scheme 3 and 4). The products in all cases
were identified by multinuclear and 2D NMR spectroscopy, and
elemental analysis (EA; see Supporting Information for details).
Germanone 2 shows reactivity toward pinacolborane (HBpin),
bromotrimethylsilane (TMSBr) and phenylsilane (PhSiH3), with
polarized B� H, Si� Br or Si� H single bonds, to immediately
afford the corresponding 1,2-adducts 3, 4 and 5 at room
temperature. The 1H NMR signal of the Ge� H bond in 3 appears
at 5.04 ppm, which is similar to that in 5 (4.78 ppm).

Compared to the analog PhSiH3 reaction product of III
(Eind2Ge(H)OSiH2Ph; Ge� H: 7.94 ppm), the Ge� H signal in 5 is
significantly upfield shifted, which could be attributed to the
strongly π-electron donating NHI ligands. In consequence, full
conversion of 2 to 5 was observed after 30 min, whereas III was

Scheme 2. Synthesis of bis(imino)germanone 2 from bis(imino)germylene 1.

Figure 1. Molecular structure (a) and space filling representation (b) of 2.
Thermal ellipsoids are shown at 50% probability level. Hydrogen atoms are
omitted for clarity. Selected bond lengths [Å] and angles [°]: Ge1� O1
1.6494(10), Ge1� N1 1.7819(12), Ge1� N4 1.7825(12), N1� C1 1.2872(18),
N4� C28 1.2914(18), O1� Ge1� N1 125.94(6), O1� Ge1� N4 125.41(6),
N1� Ge1� N4 108.65(6), Ge1� N1� C1 127.81(10), Ge1� N4� C28 125.02(10). Scheme 3. Reactivity of bis(imino)germanone 2.

Chemistry—A European Journal 
Communication
doi.org/10.1002/chem.202102972

15915Chem. Eur. J. 2021, 27, 15914–15917 www.chemeurj.org © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Wiley VCH Freitag, 05.11.2021

2164 / 221362 [S. 15915/15917] 1

www.chemeurj.org


reacted for one day with PhSiH3 until completion of the reaction
could be confirmed.[7a]

Moreover, 2 reacted with the C=O bond of benzaldehyde
(PhCHO), to smoothly furnish the cyclic product 6. The
formation of the four-membered heterocycle in 6 was con-
firmed by 1H/13C HSQC and HMBC NMR spectroscopy, revealing
a singlet at 99.7 ppm for the ring carbon atom, and a singlet at
5.10 ppm for the ring proton.

Since the formation of products 3 to 6 can be attributed to
the highly polarized Geδ+� Oδ� bond, it has been the scope to
test the reactivity of 2 towards other small molecules. Treat-
ment of 2 with H2 and NH3 showed no conversion and reaction
with CO2 formed an unidentified product mixture. Upon
exposure towards MeOH, germanone 2 was directly converted
into the imine IPrNH as a result of high proton affinity of the
imidazolin-2-iminato ligand. However, the reaction of 2 with a
terminal alkyne (phenylacetylene, PhCCH) at room temperature
resulted in direct conversion to the hydroxoacetylide complex 7
in good yield (81%; Scheme 3). The acetylide complex 7,
identified by 2D NMR spectroscopy, shows a sharp OH signal in
the 1H NMR spectrum at � 0.77 ppm (C6D6). This reactivity is
reminiscent of pyridine-stabilized Ti(IV) oxo complex
Cp*2(pyridine)Ti=O (Cp*=η5-C5Me5) reported by Bergman and
coworkers.[13]

More interestingly, reaction of 2 with 0.5 equivalent of 2,6-
dimethylphenyl isocyanide (CNXyl) led to a mixture of the [2+

2] cycloaddition product 8 (50% NMR yield) and the O-atom
transfer product 1 (50% NMR yield; Scheme 4). Several attempts
to separate product 8 from the reaction mixture remained
unsuccessful. To clarify the mechanism, we performed the
reaction of 2 with commercially available 10 (1 equiv.) at room
temperature, which immediately resulted in the desired com-
pound 8 in nearly quantitative yield.

Computational analysis using DFT was carried out to under-
stand the reactivity of 2 with CNXyl (Figure S34). We found that
the [2+2] cycloaddition product 9 is an energetically favored

intermediate (� 15.4 kcal/mol), while the dissociation and formal
O-atom transfer leads to 10 (� 28.0 kcal/mol), which can react
with another molecule of 2 to provide the thermodynamically
stable product 8 (� 52.3 kcal/mol). We note that the calculated
high barriers (20.5 kcal/mol and 22.5 kcal/mol) are in general
agreement with the observed very slow reaction at room
temperature and reaction mechanism can explain the observed
mixture of products (1+8). We also studied other possible
pathways but all attempts to locate the direct coordination of
CNXyl to Ge and a GeOC three membered ring intermediate
with an exocyclic=NXyl unit were not successful. Additionally,
we found a direct O-atom transfer mechanism, but it was less
favorable than the cycloaddition pathway (26.0 kcal/mol; Fig-
ure S34).

For comparison, the reactivity of a rhenium(III) terminal oxo
complex, (η2-DHF)(BDI)Re=O, (DHF=dihydrofulvalene; BDI=
N,N’-bis(2,6-diisopropylphenyl)-2,4-dimethyl-β-diketiminate)
with isocyanides, R� NC (R= tBu, 2,6-xylyl) was described in
2018.[14] This is suggested to be initiated by the nucleophilic
character of the rhenium oxo moiety. Moreover, similar
reactions of (Tbt)(Tip)Ge=X (X=S, Se; Tbt=2,4,6-tris[bis
(trimethylsilyl)methyl]phenyl; Tip=2,4,6-triisopropylphenyl) and
PhN=C=S have been reported by Tokitoh.[3d] Therefore, in this
reaction, germanone 2 acted not only as a heavy ketone, but
also as a mimic of nucleophilic transition metal oxides (TMO). In
fact, the O-atom transfer reaction with isocyanides is proto-
typical for TMO.

To clarify the reaction mechanism of O-atom transfer by
aiming at the isolation of isocyanide complexes similar to
known silicon derivatives,[15] we conducted the reaction of 1
with CNXyl. Surprisingly, 1 does not react with CNXyl (1 equiv.)
even at elevated temperatures.

In summary, we have achieved the synthesis and isolation
of bis(imino)germanone 2 with a trigonal planar geometry.
Thanks to the efficient stabilization by two bulky and strongly
π-donating NHI substituents, germanone 2 is remarkable stable
in arene solvent for at least one week. High stability makes it
easier to handle and allows us to investigate its reactivity
towards various molecules. The addition reactions of 2 with
pinacolborane (HBpin), bromotrimethylsilane (TMSBr), phenyl-
silane (PhSiH3), and benzaldehyde (PhCHO) demonstrated
polarized Geδ+� Oδ� reactivity. In addition, the conversion of
phenylacetylene (PhCCH), as well as the O-atom transfer
reaction with 2,6-dimethylphenyl isocyanide (CNXyl) displayed
its transition metal oxide-like behavior. This similarity may
provide new opportunities for main group metal mediated
catalytic applications in the future.
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