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a b s t r a c t

This experiment was conducted to investigate the effect of dietary 1a-hydroxycholecalciferol (1a-OH-D3)
in calcium (Ca)- and phosphorous (P)-deficient diets on growth performance, carcass characteristics,
tibia related parameters, and immune responses of broiler chickens. A total of 280 one-day-old broiler
chickens (Ross 308) were assigned to 20 floor pens and 4 dietary treatments with 5 replicates. Dietary
treatments consisted of starter diets (starter diet of treatment A: 1% Ca, 0.73% total phosphorus [tP];
starter diet of treatment B: 0.85% Ca, 0.64% tP þ 5 mg/kg of 1a-OH-D3; starter diet of treatment C: 0.85%
Ca, 0.59% tP þ 5 mg/kg of 1a-OH-D3; starter diet of treatment D: 0.85% Ca, 0.54% tP þ 5 mg/kg of 1a-OH-
D3), grower diets (grower diet of treatment A: 0.86% Ca, 0.68% tP; grower diet of treatment B: 0.73% Ca,
0.59% tP þ 5 mg/kg of 1a-OH-D3; grower diet of treatment C: 0.73% Ca, 0.55% tP þ 5 mg/kg of 1a-OH-D3;
grower diet of treatment D: 0.73% Ca, 0.50% tP þ 5 mg/kg of 1a-OH-D3) and finisher diets (finisher diet of
treatment A: 0.81% Ca, 0.64% tP; finisher diet of treatment B: 0.68% Ca, 0.56% tP þ 5 mg/kg of 1a-OH-D3;
finisher diet of treatment C: 0.68% Ca, 0.52% tP þ 5 mg/kg of 1a-OH-D3; finisher diet of treatment D: 0.68%
Ca, 0.48% tP þ 5 mg/kg of 1a-OH-D3). Results showed that body weight gain (BWG) and feed intake (FI) of
broilers in treatment B were similar to those of broilers in treatment A at the end of the trial (P < 0.05).
Broilers in treatments C and D had lower BWG and FI than those in treatment A during the whole trial
(P < 0.05). Feed conversion ratio, carcass traits and relative weight of lymphoid organs were not affected
by dietary treatments (P > 0.05). Dietary treatments had no significant effect on antibody titers against
Newcastle and Influenza disease viruses as well as sheep red blood cells. Dietary treatments had no
significant effects on tibia ash and tibial dyschondroplasia score. Broilers fed Ca-P deficient diets had
lower tibia Ca and P than those in treatment A (P < 0.05). In conclusion, results indicated that broilers fed
Ca-P deficient diets supplemented with 5 mg/kg 1a-OH-D3 failed to achieve the same tibia Ca and P
values as broilers fed nonphytate phosphorus adequate diets.
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1. Introduction

A major issue facing the poultry industry is maintaining bone
quality while decreasing feed cost and phosphorus (P) excretion to
the environment. In recent years, public pressure on poultry pro-
ducers has increased to reduce excessive P wastage in the manure,
which stimulated researchers into ways to increase the availability
of dietary phytate phosphorus (PP) content. Several methods have
been investigated to improve available PP utilization. Supplemen-
tations of low P diets with phytase have been shown to improve
dietary P digestibility in sows (Torrallardona et al., 2012; Sands
uction and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is
nses/by-nc-nd/4.0/).
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et al., 2001) and broilers (Jiang et al., 2013; Pieniazek et al., 2017;
Woyengo et al., 2010; Ravindran et al., 2006). Consistently, Pillai
et al. (2006) reported that inclusion of Escherichia coli phytase to
P-deficient diets could improve growth performance, bone quality,
and carcass yield in broiler chickens. Mitchell and Edwards (1996)
reported the ability of 1,25-dihydroxycholecalciferol to enhance
performance parameters and tibia related indices of young
chickens by increasing dietary P absorption and retention.

Several trials have indicated affirmative efficacy of 25-OH-D3
supplementation in broiler's diets on performance criteria (Fritts
and Waldroup, 2003) and PP utilization (Zhang et al., 1997) which
thereby makes it suitable to be included in poultry feed. It could be
possible to use 1a-hydroxycholecalciferol (1a-OH-D3) as an active
vitamin D analog to be substituted for cholecalciferol in broiler
feed. Edwards et al. (2002) reported that the 1a-OH-D3 is approx-
imately 8 times more effective than cholecalciferol. Landy and
Toghyani (2014) indicated the ability of 1a-OH-D3 to be replaced
for cholecalciferol in broiler chickens. Han et al. (2009) reported
that interaction between phytase and 1a-OH-D3 in diets containing
2.9 g/kg nonphytate phosphorus (NPP) could improve tibia related
parameters in broiler chicks, while it could not improve perfor-
mance parameters. Han et al. (2015) reported that supplementation
of 5 mg/kg 1a-OH-D3 in diets containing 0.30% of NPP could improve
growth performance and tibia mineralization of broiler chickens.
Landy et al. (2015) reported that supplementation of broiler diets
with 5 mg/kg 1a-OH-D3 and 500 FTU/kg of phytase could not
maximize growth performance and tibia parameters.

Kolb et al. (2000) and Van der Stede et al. (2000) reported that
cholecalciferol and 1,25-dihydroxycholecalciferol have immuno-
modulatory effects. Bouillon et al. (2000) compared the efficacy of
cholecalciferol and 1,25-(OH)2-D3 to treat cancer and skin disorders
in mice. They reported that 1,25-(OH)2-D3 helped mice to treat
cancer, skin, and immune related disorders. Vazquez et al. (2018)
suggested that supplementation of 25-OH-D3 to diet of broilers
containing cholecalciferol could improve cellular immune
responses.

Most of the studies on 1a-OH-D3 only focused on the starter
rearing period, and few experiments conducted on growing and
finishing phases. Moreover, no study has evaluated the effect of 1a-
OH-D3 in P-deficient diets on the immunity of broiler chickens.
Therefore, this experiment was conducted to investigate the effect
of dietary 1a-OH-D3 supplementation in Ca-P deficient diets on
growth performance, carcass characteristics, immunity, and tibia
related parameters in broiler chickens.

2. Materials and methods

2.1. Ethical matters

Broilers were raised in accordance with the U.S. National In-
stitutes of Health Guide for the Care and Use of Laboratory Animals.
All procedures used in this study were approved by the Ethical
Table 1
Dietary treatment in starter, grower, and finisher phases.

Treatments 1a-OH-D3, mg/kg Starter period (0 to 14 d)

Ca, % tP, %

A1 e 1.00 0.73
B2 5 0.85 0.64
C2 5 0.85 0.59
D2 5 0.85 0.54

tP ¼ total phosphorus.
1 Ca and tP adequate diets without 1a-OH-D3.
2 Ca-P deficient diets with 1a-OH-D3.
Committee of Islamic Azad University, Isfahan branch, Iran
(approval ref no. 2016-003).
2.2. Birds, diets, feeding, and management

Two hundred and eighty as-hatched chicks (Ross 308) were
purchased from a local hatchery, weighed and randomly allocated to
20 pens (120 cm� 120 cm� 80 cm) with 14 chicks per pen. Dietary
treatmentswere as follows: starter diets (starter diet of treatment A:
1% Ca, 0.73% total phosphorus [tP]; starter diet of treatment B: 0.85%
Ca, 0.64% tPþ5mg/kgof 1a-OH-D3 [VitaminDerivatives Inc., Georgia,
USA]; starter diet of treatment C: 0.85% Ca, 0.59% tPþ 5 mg/kg of 1a-
OH-D3; starterdiet of treatmentD: 0.85%Ca, 0.54% tPþ 5mg/kgof 1a-
OH-D3), grower diets (growerdiet of treatment A: 0.86%Ca, 0.68% tP;
growerdiet of treatmentB: 0.73%Ca, 0.59% tPþ 5mg/kgof 1a-OH-D3;
growerdiet of treatmentC: 0.73%Ca, 0.55% tPþ 5mg/kgof 1a-OH-D3;
growerdietof treatmentD:0.73%Ca, 0.50% tPþ5mg/kgof1a-OH-D3)
and finisher diets (finisher diet of treatment A: 0.81% Ca, 0.64% tP;
finisherdietof treatmentB:0.68%Ca,0.56%tPþ5mg/kgof1a-OH-D3;
finisherdietof treatmentC:0.68%Ca,0.52%tPþ5mg/kgof1a-OH-D3;
finisher diet of treatment D: 0.68% Ca, 0.48% tP þ 5 mg/kg of 1a-OH-
D3) (Table 1). Broilers were fed the starter diets from 0 to 14 d
(Table 2), grower diets from 15 to 28 d (Table 3), and finisher diets
from 29 to 42 d (Table 4) according to Aviagen nutritional recom-
mendation except for Ca and P. Broiler chickens had free access to
mash feed andwater throughout 6weeksof trial. The lighting system
consisted of 23h of light fromd0 to 3, 20h of light fromd4 to 14, and
18 h of light fromd 15 to 42. The room temperaturewas controlled at
33 �C for thefirst week, and then gradually reduced by 3 �C perweek
to a final temperature of 23 �C.
2.3. Feed analyses

Feed samples were dried by oven at 100 �C for 16 h. Dry matter,
tP, and Ca contents of each feed sample from the 4 experimental
diets were measured. Calcium and tP contents of the feed were
analyzed by the ICPOES method 2011.14 (AOAC, 1990).
2.4. Performance and carcass characteristics

At the end of trial, body weight and feed intake (FI) were
recorded on a pen basis, for the determination of body weight gain
(BWG) and average daily feed intake. Feed conversion ratio (FCR)
was calculated accordingly. Mortality was recorded daily. On d 42 of
experiment, 2 chickens per replicate were chosen based on the
averageweight of pens, weighed and slaughtered. Carcass yieldwas
calculated by dividing eviscerated weight by live weight. Abdom-
inal fat pad was removed, weighed, and calculated as a percentage
of live weight.
Grower period (15 to 28 d) Finisher period (29 to 42 d)

Ca, % tP, % Ca, % tP, %

0.86 0.68 0.81 0.64
0.73 0.59 0.68 0.56
0.73 0.55 0.68 0.52
0.73 0.50 0.68 0.48



Table 3
Ingredients, calculated and analyzed nutrient content of grower diets (g/kg, as fed
basis).

Item Treatments1

A B C D

Ingredients
Corn, 8% CP 564.0 575.0 577.5 579.0
Soybean meal, 44% CP 368.0 366.0 365.0 365.0
Soybean oil 30.0 27.2 26.5 26.0
Monocalcium phosphate 12.9 9.1 7.1 5.2
CaCO3 14.4 12.5 13.3 14.1
NaCl 3.0 3.0 3.0 3.0
Trace mineral premix2 2.5 2.5 2.5 2.5
Vitamin premix3 2.5 2.5 2.5 2.5
DL-methionine 2.2 2.2 2.2 2.2
L-lysine 0.4 0.4 0.4 0.4

Calculated composition
Metabolizable energy, kcal/kg 3,000 3,000 3,000 3,000
Crude protein 207 207 207 207
Calcium 8.6 7.3 7.3 7.3
Nonphytate phosphorus 4.3 3.4 3.0 2.5
Total phosphorus (tP) 6.8 5.9 5.5 5.0
Digestible methionine þ cysteine 8.0 8.0 8.0 8.0
Digestible lysine 10.5 10.5 10.5 10.5

Analyzed nutrient content
Calcium 8.1 7.8 7.0 7.8
tP 7.0 5.7 5.6 5.2

1 Treatment A was Ca and tP adequate diets without 1a-OH-D3, and treatments
B, C, D were Ca-P deficient diets with 5 mg/kg of 1a-OH-D3.

2 Provided the following per kilogram of diet: Mg, 120 mg; Fe, 40 mg; Cu, 16 mg;
Zn, 100 mg; Se, 0.3 mg; I, 1.25 mg.

3 Provided the following per kilogram of diet: vitamin A, 9,000 IU; vitamin D3,
5,000 IU; vitamin E, 5 IU; vitamin K, 3 mg; vitamin B1, 2 mg; riboflavin, 6 mg;
nicotinic acid, 60 mg; pantothenic acid, 15 mg; pyridoxine, 3 mg; biotin, 0.1 mg;
folic acid, 1.75 mg; vitamin B12, 0.016 mg; choline, 3 mg.

Table 4
Ingredients, calculated and analyzed nutrient content of finisher diets (g/kg, as fed
basis).

Item Treatments1

A B C D

Ingredients
Corn, 8% CP 613.7 624.0 627.2 628.8
Soybean meal, 44% CP 322 320 319 319
Soybean oil 29.0 26.0 25.0 24.5
Monocalcium phosphate 12.0 8.4 6.5 4.7
CaCO3 13.8 12.1 12.8 13.5
NaCl 3 3 3 3
Trace mineral premix2 2.5 2.5 2.5 2.5
Vitamin premix3 2.5 2.5 2.5 2.5
DL-methionine 1.5 1.5 1.5 1.5

Calculated composition
Metabolizable energy, kcal/kg 3,050 3,050 3,050 3,050
Crude protein 190 190 190 190
Calcium 8.1 6.8 6.8 6.8
Nonphytate phosphorus 4.0 3.2 2.8 2.4
Total phosphorus (tP) 6.4 5.6 5.3 4.8
Digestible methionine þ cysteine 7 7 7 7
Digestible lysine 9.1 9.1 9.1 9.1

Analyzed nutrient content
Calcium 8.6 6.5 6.9 6.3
tP 6.6 5.4 5.1 5.0

1 Treatment A was Ca and tP adequate diets without 1a-OH-D3, and treatments
B, C, D were Ca-P deficient diets with 5 mg/kg of 1a-OH-D3..

2 Provided the following per kg of diet: Mg, 120 mg; Fe, 40 mg; Cu, 16 mg; Zn,
100 mg; Se, 0.3 mg; I, 1.25 mg.

3 Provided the following per kg of diet: vitamin A, 9,000 IU; vitamin D3, 5,000 IU;
vitamin E, 5 IU; vitamin K, 2 mg; vitamin B1, 2 mg; riboflavin, 5 mg; nicotinic acid,
40 mg; pantothenic acid, 15 mg; pyridoxine, 2 mg; biotin, 0.1 mg; folic acid, 1.5 mg;
vitamin B12, 0.016 mg; choline, 3 mg.

Table 2
Ingredients, calculated and analyzed nutrient content of starter diets (g/kg, as fed
basis).

Item Treatments1

A B C D

Ingredients
Corn, 8% CP 542.3 556.2 558.0 561.3
Soybean meal, 44% CP 390.0 387.0 387.0 386.0
Soybean oil 22.4 18.3 17.6 16.8
Monocalcium phosphate 15.0 10.5 8.7 6.4
CaCO3 17.3 15.0 15.7 16.6
NaCl 3.0 3.0 3.0 3.0
Trace mineral premix2 2.5 2.5 2.5 2.5
Vitamin premix3 2.5 2.5 2.5 2.5
DL-methionine 3.1 3.1 3.0 3.0
L-lysine 1.9 1.9 1.9 1.9

Calculated composition
Metabolizable energy, kcal/kg 2,900 2,900 2,900 2,900
Crude protein 215 215 215 215
Calcium 10.0 8.5 8.5 8.5
Nonphytate phosphorus 4.8 3.8 3.3 2.8
Total phosphorus (tP) 7.3 6.4 5.9 5.4
Digestible methionine þ cysteine 9.0 9.0 9.0 9.0
Digestible lysine 12.2 12.2 12.2 12.2

Analyzed nutrient content
Calcium 9.4 8.8 8.0 9.0
tP 7.0 6.6 5.7 5.3

1 Treatment A was Ca and tP adequate diets without 1a-OH-D3, and treatments
B, C, D were Ca-P deficient diets with 5 mg/kg of 1a-OH-D3.

2 Provided the following per kg of diet: Mg, 120 mg; Fe, 40 mg; Cu, 16 mg; Zn,
100 mg; Se, 0.3 mg; I, 1.25 mg.

3 Provided the following per kg of diet: vitamin A, 11,000 IU; vitamin D3, 5,000 IU;
vitamin E, 7.5 IU; vitamin K, 3 mg; vitamin B1, 3 mg; riboflavin, 8 mg; nicotinic acid,
60 mg; pantothenic acid, 15 mg; pyridoxine, 4 mg; biotin, 0.15 mg; folic acid, 2 mg;
vitamin B12, 0.016 mg; choline, 3 mg.
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2.5. Immune responses

On d 9 of the experiment, broiler chickens from each pen
(n ¼ 14) were injected with a single dose (0.2 mL) of commercially
vaccine against Newcastle (NDV) and avian influenza disease vi-
ruses (AIV; serotype H9N2) subcutaneously. Two male broilers
from each pen were bled by a puncture of the brachial vein on d 19
of post-vaccination to collect serum. Serum samples were applied
to hemagglutination inhibition in order to measure antibody titers
against NDV and AIV and expressed as log2. On d 24 of trial, 1 mL of
1% sheep red blood cells (SRBC) was injected intravascularly to 2
broilers per pen. After 6 d, blood samples were taken and individual
sera were tested for antibody production. Antibody titers were
expressed as the log2 (Wegmann and Smithies, 1966). Lymphoid
organs were sampled on d 42 of trial. In this respect 2 male broilers
were randomly selected from each pen, slaughtered, and lymphoid
organs (bursa of Fabricius and spleen) were removed, weighted,
and calculated as a percentage of live body weight.

2.6. Tibia parameters

At the end of trial, 2 chickens per penwere selected based on the
average weight of the pen and sacrificed by exsanguinations, and
the left and right tibias were excised. The right tibia was evaluated
for tibial dyschondroplasia (TD) as described by Edwards and
Veltmann (1983). Tibia ash content was determined by removing
the left tibia from broilers and ashing the bones on a dry fat-free
basis (AOAC, 1995). Calcium and P contents of tibia ash were
analyzed by the ICPOES method 2011.14 (AOAC, 1990).

2.7. Statistical analysis

Performance, tibia quality, and immune related parameters were
analyzed via Analysis of Variance (ANOVA) using the General Linear



Table 6
Effect of dietary1a-OH-D3 in Ca-P deficient diets on performance of broilers in the
whole experimental period.
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Model procedure of SAS (SAS Inst. Inc., Cary, NC). Means were
deemed significance at P � 0.05 and compared using Tukey test.
Treatments1 FI, g/d BWG, g/d FCR, g/g

A 107.3a 59.3a 1.81
B 107.5a 59.1a 1.82
C 101.7b 56.2b 1.81
D 97.6c 51.9c 1.88
SEM 1.11 1.08 0.04
P-value 0.02 0.02 0.06

FI ¼ feed intake; BWG ¼ body weight gain; FCR ¼ feed conversion ratio.
a, b, c Values in the same column not sharing a common superscript differ (P < 0.05).

1 Starter diet of treatment A: 1% Ca, 0.73% total phosphorus [tP]; starter diet of
treatment B: 0.85% Ca, 0.64% tP þ 5 mg/kg of 1a-OH-D3; starter diet of treatment C:
0.85% Ca, 0.59% tP þ 5 mg/kg of 1a-OH-D3; starter diet of treatment D: 0.85% Ca,
0.54% tP þ 5 mg/kg of 1a-OH-D3. Grower diet of treatment A: 0.86% Ca, 0.68% tP;
grower diet of treatment B: 0.73% Ca, 0.59% tPþ 5 mg/kg of 1a-OH-D3; grower diet of
treatment C: 0.73% Ca, 0.55% tP þ 5 mg/kg of 1a-OH-D3; grower diet of treatment D:
0.73% Ca, 0.50% tP þ 5 mg/kg of 1a-OH-D3. Finisher diet of treatment A: 0.81% Ca,
0.64% tP; finisher diet of treatment B: 0.68% Ca, 0.56% tP þ 5 mg/kg of 1a-OH-D3;
finisher diet of treatment C: 0.68% Ca, 0.52% tP þ 5 mg/kg of 1a-OH-D3; finisher diet
of treatment D: 0.68% Ca, 0.48% tP þ 5 mg/kg of 1a-OH-D3.

Table 7
Effect of dietary1a-OH-D3 in Ca-P deficient diets on carcass yield, and relative
weight of abdominal fat, and lymphoid organs of broilers at 42 d of age.

Treatments1 Relative organ weight, %

Carcass yield Abdominal fat Spleen Bursa of Fabercius

A 71.3 1.21 0.138 0.106
B 70.5 1.01 0.124 0.101
C 71.3 1.05 0.111 0.072
D 71.9 0.92 0.117 0.088
SEM 0.88 0.152 0.011 0.014
P-value 0.09 0.08 0.23 0.06

1 Starter diet of treatment A: 1% Ca, 0.73% total phosphorus [tP]; starter diet of
treatment B: 0.85% Ca, 0.64% tP þ 5 mg/kg of 1a-OHD3; starter diet of treatment C:
0.85% Ca, 0.59% tP þ 5 mg/kg of 1a-OHD3; starter diet of treatment D: 0.85% Ca,
0.54% tP þ 5 mg/kg of 1a-OHD3. Grower diet of treatment A: 0.86% Ca, 0.68% tP;
grower diet of treatment B: 0.73% Ca, 0.59% tP þ 5 mg/kg of 1a-OHD3; grower diet
of treatment C: 0.73% Ca, 0.55% tP þ 5 mg/kg of 1a-OHD3; grower diet of treatment
D: 0.73% Ca, 0.50% tP þ 5 mg/kg of 1a-OHD3. Finisher diet of treatment A: 0.81% Ca,
0.64% tP; finisher diet of treatment B: 0.68% Ca, 0.56% tPþ 5 mg/kg of 1a-OHD3; finisher
3. Results

3.1. Growth performance and carcass yield

Data on the growth performance indices of broilers in starter,
grower and finisher periods are summarized in Table 5. During the
starter phase (0 to 14 d), broilers in treatment D had lower
(P < 0.05) FI than those in treatments A, B, and C. Furthermore,
broilers in treatment D had higher (P < 0.05) FCR than those in
treatments A, B, and C. In the starter period, body weight gain was
higher in treatment A than treatments B, C, and D.

In the grower phase, broilers in treatment D had lower (P < 0.05)
BWG than those received diets of treatments A, B, and C. Moreover,
dietary treatments failed to induce any significant effect on FCR,
though broilers in treatment A had better FCR values than those in
treatments B, C and D. Broilers in treatment A had significantly
higher (P < 0.05) FI than those in treatments C, and D, but did not
significantly differ from those in treatment B.

During the finisher phase, broilers in treatments A and B had
significantly higher (P < 0.05) BWG than those in treatment D, but
did not differ from treatment C. There was no significant difference
in FCR among treatments in this period. Broilers in treatment D had
significantly lower (P < 0.05) FI than those in treatments A and B,
but did not differ from those in treatment C.

For broilers in treatment B, BWG, FI, and FCR were similar to
those fed Ca-P adequate diets added with 1a-OH-D3 (Table 6). At
42 d of age, broilers in treatment D, had significantly (P< 0.05) lower
FI than those in treatments A, B, and C. Significant differences among
treatments were observed in BWG of broilers during the entire trial.
Broilers in treatments D and C had lower BWG than those in treat-
ments A and B. Overall FCR values were better for treatments A, B
and C than for treatment D whereas the results were not signifi-
cantly different. There were no significant differences in the carcass
yield and abdominal fat of broilers among treatments (Table 7).
diet of treatment C: 0.68% Ca, 0.52% tPþ 5 mg/kg of 1a-OHD3; finisher diet of treatment
D: 0.68% Ca, 0.48% tP þ 5 mg/kg of 1a-OHD3.
3.2. Immune responses

There were no significant differences in the weight of lymphoid
organs among treatments (Table 7). Dietary treatments had no
significant effects on the antibody titers against AIV, NDV, and SRBC
(Table 8).
Table 5
Effect of dietary1a-OH-D3 in Ca-P deficient diets on performance of broilers during start

Treatments1 Starter period (0 to 14 d) Grower perio

BWG, g/d FI, g/d FCR, g/g BWG, g/d

A 23.8a 33.2a 1.39b 54.0a

B 21.7b 32.0a 1.45ab 53.1a

C 22.5ab 32.0a 1.43b 52.5a

D 19.5c 30.0b 1.53a 44.1b

SEM 0.44 0.41 0.02 1.03
P-value 0.03 0.04 0.04 0.04

BWG ¼ body weight gain; FI ¼ feed intake; FCR ¼ feed conversion ratio.
a, b, c Values in the same column not sharing a common superscript differ at P < 0.05.

1 Starter diet of treatment A: 1% Ca, 0.73% total phosphorus (tP); starter diet of treatme
0.59% tPþ 5 mg/kg of 1a-OH-D3; starter diet of treatment D: 0.85% Ca, 0.54% tPþ 5 mg/kg o
B: 0.73% Ca, 0.59% tPþ 5 mg/kg of 1a-OH-D3; grower diet of treatment C: 0.73% Ca, 0.55% t
1a-OH-D3. Finisher diet of treatment A: 0.81% Ca, 0.64% tP; finisher diet of treatment B: 0.
tP þ 5 mg/kg of 1a-OH-D3; finisher diet of treatment D: 0.68% Ca, 0.48% tP þ 5 mg/kg of 1
3.3. Parameters of tibia

Effects of experimental diets on tibia parameters in broiler
chickens are presented in Table 9. Tibia ash of broilers did not
significantly differ among experimental treatments, whereas it
er, grower, and finisher periods.

d (15 to 28 d) Finisher period (29 to 42 d)

FI, g/d FCR, g/g BWG, g/d FI, g/d FCR, g/g

93.6a 1.69 73.6a 149.8a 2.04
90.8ab 1.71 74.6a 148.7a 2.01
87.4b 1.78 70.7ab 143.0ab 2.02
81.6c 1.84 66.3b 138.2b 2.01
1.25 0.03 1.51 1.76 0.03
0.02 0.06 0.04 0.05 0.08

nt B: 0.85% Ca, 0.64% tP þ 5 mg/kg of 1a-OH-D3; starter diet of treatment C: 0.85% Ca,
f 1a-OH-D3. Grower diet of treatment A: 0.86% Ca, 0.68% tP; grower diet of treatment
Pþ 5 mg/kg of 1a-OH-D3; grower diet of treatment D: 0.73% Ca, 0.50% tPþ 5 mg/kg of
68% Ca, 0.56% tP þ 5 mg/kg of 1a-OH-D3; finisher diet of treatment C: 0.68% Ca, 0.52%
a-OH-D3.



Table 9
Effect of dietary 1a-OH-D3 in Ca-P deficient diets on tibial parameters of broilers at
42 d of age.

Ttreatments1 Tibia ash, % Phosphorus, % Calcium, % TD scores

A 48.7 25.3a 35.2a 1.10
B 48.9 23.2b 32.3b 0.80
C 47.3 22.5c 32.4b 1.20
D 47.2 22.1c 32.7b 1.40
SEM 0.98 0.33 0.44 0.35
P-value 0.07 0.02 0.04 0.26

TD ¼ tibial dyschondroplasia.
a, b, c Values in the same column not sharing a common superscript differ (P < 0.05).

1 Starter diet of treatment A: 1% Ca, 0.73% total phosphorus [tP]; starter diet of
treatment B: 0.85% Ca, 0.64% tP þ 5 mg/kg of 1a-OH-D3; starter diet of treatment
C: 0.85% Ca, 0.59% tP þ 5 mg/kg of 1a-OH-D3; starter diet of treatment D: 0.85%
Ca, 0.54% tP þ 5 mg/kg of 1a-OH-D3. Grower diet of treatment A: 0.86% Ca, 0.68%
tP; grower diet of treatment B: 0.73% Ca, 0.59% tP þ 5 mg/kg of 1a-OH-D3; grower
diet of treatment C: 0.73% Ca, 0.55% tP þ 5 mg/kg of 1a-OH-D3; grower diet of
treatment D: 0.73% Ca, 0.50% tP þ 5 mg/kg of 1a-OH-D3. Finisher diet of treatment
A: 0.81% Ca, 0.64% tP; B: 0.68% Ca, 0.56% tP þ 5 mg/kg of 1a-OH-D3; C: 0.68% Ca,
0.52% tP þ 5 mg/kg of 1a-OH-D3; D: 0.68% Ca, 0.48% tP þ 5 mg/kg of 1a-OH-D3.

Table 8
Effect of dietary 1a-OH-D3 in Ca-P deficient diets on antibody titers against New-
castle and Influenza viruses on d 28 of trial and sheep red blood cells (SRBC) on d 30
of trial.

Treatments1 Newcastle (Log2) Influenza (Log2) SRBC (Log2)

A 5.15 5.75 9.87
B 5.35 5 9.45
C 5.75 5.25 9.75
D 5.25 5 9.75
SEM 0.32 0.35 0.41
P-value 0.09 0.35 0.27

1 Starter diet of treatment A: 1% Ca, 0.73% total phosphorus [tP]; starter diet of
treatment B: 0.85% Ca, 0.64% tP þ 5 mg/kg of 1a-OH-D3; starter diet of treatment
C: 0.85% Ca, 0.59% tP þ 5 mg/kg of 1a-OH-D3; starter diet of treatment D: 0.85%
Ca, 0.54% tP þ 5 mg/kg of 1a-OH-D3. Grower diet of treatment A: 0.86% Ca, 0.68%
tP; grower diet of treatment B: 0.73% Ca, 0.59% tP þ 5 mg/kg of 1a-OH-D3; grower
diet of treatment C: 0.73% Ca, 0.55% tP þ 5 mg/kg of 1a-OH-D3; grower diet of
treatment D: 0.73% Ca, 0.50% tP þ 5 mg/kg of 1a-OH-D3. Finisher diet of treatment
A: 0.81% Ca, 0.64% tP; finisher diet of treatment B: 0.68% Ca, 0.56% tP þ 5 mg/kg of
1a-OH-D3; finisher diet of treatment C: 0.68% Ca, 0.52% tP þ 5 mg/kg of 1a-OH-D3;
finisher diet of treatment D: 0.68% Ca, 0.48% tP þ 5 mg/kg of 1a-OH-D3.
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tended to decrease in treatments C and D. Broilers in treatment A
had significantly (P < 0.05) higher tibia Ca than those in treatments
B, C, and D. Broilers in treatment D had significantly (P< 0.05) lower
tibia P than those in treatments A and B but did not differ from
treatment C. Dietary treatments failed to induce any marked effect
on TD score, whereas it tended to enhance TD in treatments C and D
(P > 0.05).
4. Discussion

4.1. Performance and carcass yield

Previous studies on 1a-OH-D3 in broilers have focused on the
starter period, in which 1a-OH-D3 improved performance related
parameters (Biehl and Baker, 1997; Edwards, 2002). The supple-
mentation of 1a-OH-D3 could not maximize BWG, FI, and FCR of
broilers received Ca-P deficient diets during this experiment from
d 1 to 42, whereas the results indicated that BWG, FI, and FCR were
similar for broilers in treatment B compared with those fed the
Ca-P adequate diet.

In agreement with our results, Han et al. (2009) reported that
1a-OH-D3 could not improve performance of broiler chicks when
NPP content in basal diets was up to 2.9 g/kg and vitamin D3 was
adequate. Edwards (2002) reported that supplementation of 1a-
OH-D3 in basal diets with tP of 7.0 g/kg and without cholecalciferol
could increase performance of broilers. Landy and Toghyani (2018)
reported the possibility of interaction between 1a-OH-D3 and
cholecalciferol. Therefore, the efficiency of 1a-OH-D3 in diets with
or without cholecalciferol should be investigated in broilers
chickens. Ledwaba and Roberson (1769) evaluated the ability of 25-
OH-D3 to increase the digestion and absorption of dietary Ca and P,
and their results indicated that dietary 25-OH-D3 increased the
digestion of PP at a lower concentration of dietary Ca. Probably, the
Ca level applied in the current trial was not suitable to cause a
beneficial effect on growth performance, since there are reports of
significant improved performance criteria in broilers receiving di-
ets supplemented with 0.4% Ca (Han et al., 2012) which is consid-
erably lower level compared with the level used in our trial. It
seems that dietary Ca levels reduce the efficacy of 1a-OH-D3 in P-
deficient diets in broiler chickens.

4.2. Immune responses

Dietary 1,25-dihydroxycholecalciferol and cholecalciferol have
been proposed to exhibit immunomodulatory effects (Kolb et al.,
2000; Van der Stede et al., 2000), so enhanced antibody titers
were expected. However, in the current trial, dietary treatments did
not induce any marked influence on the relative weights of
lymphoid organs and homural immune responses. Results of a trial
conducted by Chou et al. (2009) indicated that a supplementation
of 25-OH-D3 could enhance humoral immune responses in chal-
lenged broilers. Gomez-Verduzco et al. (2013) indicated that the
supplementation of dietary high levels of cholecalciferol (2,000 IU/
kg) in comparison with the levels recommended by NRC (1994)
enhanced the antibody titer against NDV, and the supplementa-
tion of 25-OH-D3 enhanced the cellular immunity of broiler
chickens. Vazquez et al. (2018) reported that the supplementation
of 25-OH-D3 to diets containing cholecalciferol improved cellular
immune responses in broiler chickens. There has been a dearth of
information on the effect of 1a-OH-D3 on immune responses in
broiler chickens, thus further investigations are warranted.

4.3. Tibial parameters

In the present trial, the tibia ash of broilers did not differ among
treatments, whereas it tended to decrease in birds fed dietary
treatments C and D. Broilers in Ca-P deficient diets had significantly
lower tibia Ca and P compared with those given Ca-P adequate
diets. Driver et al. (2005) reported that broilers fed diets containing
1a-OH-D3 and phytase had lower tibia ash than those fed normal P
diet. However, Snow et al. (2004) reported that interaction between
phytase and 1a-OH-D3 had an affirmative influence on PP release in
broilers from 1 to 21 d of age. In this experiment, we evaluated the
efficacy of 1a-OH-D3 alone, considering the interaction between
1a-OH-D3 and phytase, and the efficiency of 1a-OH-D3 either alone
or in combination with phytase is worthy to be investigated in
broilers chickens further.

In the current trial, we evaluated the efficacy of 1a-OH-D3 in
Ca-P deficient diets containing 5,000 IU cholecalciferol/kg of diets.
Biehl and Baker (1997) reported that the supplementation of 1a-
OH-D3 in purified diets could improve the tibia ash only in broilers
fed diets without cholecalciferol. Landy et al. (2015) reported that
in Ca-P deficient diets and without vitamin D3 supplementation,
1a-OH-D3 improved tibia parameters in broiler chickens. However,
when vitamin D3 was enough, the tibia quality of broilers was not
improved by dietary 1a-OH-D3 supplementation. Atencio et al.
(2005) reported that the supplementation of 25-OH-D3 increased
the hen-day egg production in broiler breeders but only at very low
levels of dietary vitamin D3 supplementation. Similarly, Edwards
(2002) indicated that an interaction between cholecalciferol and
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calcitriol exists in tibia ash. It seemed that 1a-OH-D3 could not
improve tibia parameters via high levels of cholecalciferol inclusion
in the diet in our experiment.

Ledwaba and Roberson (1769) reported that dietary 25-OH-D3
enhanced PP digestion at low levels of dietary Ca compared with
diets containing high levels of Ca. Han et al. (2012) investigated the
relationship between dietary Ca levels (0.40%, 0.60%, 0.80%, 1.00%,
and 1.20% Ca) and 1a-OH-D3 in P-deficient diets. Results indicated
that 1a-OH-D3 had the highest activity at a lower concentration of
dietary Ca. It seemed that 1a-OH-D3 could not improve tibia pa-
rameters in our experiment due to the applied dietary Ca levels.

In our study, dietary treatment failed to induce any marked ef-
fect on TD score, whereas it tended to enhance in birds in treat-
ments C and D. In another trial, the supplementation of 1a-OH-D3
as a replacement for cholecalciferol in broiler diets increased TD
score (Landy and Toghyani, 2014). Edwards (1990) investigated
effects of vitamin D analogs in order to inhibit TD in broiler
chickens and reported that the supplementation of vitamin D an-
alogs except 24R,25-(OH)2D3 could induce favorable influences on
incidence and severity of TD compared with the control group.
Edwards and Veltmann (1983) reported that diets containing high
levels of Camight prevent TD and the incidence of TD in 2-week-old
chicks was only 13% when received with a diet containing 1.1% Ca
and 0.55% available P, but was 39% in diets containing 0.8% Ca. The
present study was in agreement with the results reported by
Edwards and Veltmann (1983), when dietary Ca and P levels were
decreased and 5 mg/kg of 1a-OH-D3 was supplemented (treatments
C and D), the average TD score was increased as a result of lower
tibia Ca and P contents.

5. Conclusion

In conclusion, results indicated that broilers fed Ca-P deficient
diets supplemented with 5 mg/kg of 1a-OH-D3 were unable to
achieve the same tibia Ca and P content as broilers fed Ca-P
adequate diets without 5 mg/kg of 1a-OH-D3. Considering the
possibility of interaction between 1a-OH-D3 and cholecalciferol,
the efficiency of 1a-OH-D3 in diets containing different levels of
cholecalciferol should be investigated in broilers chickens.
Furthermore, considering the interaction between 1a-OH-D3 and
phytase, the efficiency of 1a-OH-D3 alone or in combination with
phytase should be investigated in broilers chickens.
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