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Abstract
This article reviews recent advances in ‘microbiome studies’: molecular, statistical and graphical techniques to
explore and quantify how microbial organisms affect our environments and ourselves given recent increases in
sequencing technology. Microbiome studies are moving beyond mere inventories of specific ecosystems to quantifi-
cations of community diversity and descriptions of their ecological function.We review the last 24 months of pro-
gress in this sort of research, and anticipate where the next 2 years will take us. We hope that bioinformaticians
will find this a helpful springboard for new collaborations with microbiologists.
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INTRODUCTION
We live in a microbial world, with microscopic

organisms filling discrete ecosystems in such envir-

onments as soil, lakes and oceans, the human gut or

skin, and even computer keyboards. Though micro-

biota include bacteria, archea, viruses and microscop-

ic eukaria, we will consider only bacterial examples

in this article. Bacteria comprise most of the Earth’s

biomass and richness [1]. They dominate ecological

functions such as carbon cycling, greenhouse gas

emission and oxygen production. Ninety per cent

of the cells in a human body are bacterial, as are

99% of the gene transcripts [2]. However, most of

the microbial world has been inaccessible to us, a

kind of biological ‘dark matter’, since we do not

know how to culture over 97% of all bacteria, and

since older cultivation-independent microbial survey

techniques such as TRFLP (Terminal Restriction

Fragment Length Polymorphism), ARISA

(Automated Intergenic Spacer Analysis) and gradient

gel electophoresis have significant limitations. ‘Next

Generation’ sequencing technologies have enabled,

for the first time, high-throughput microbial sam-

pling [3].

Current microbiome studies extract DNA from a

microbiome sample, quantify how many representa-

tives of distinct populations (species, ecological func-

tions or other properties of interest) were observed in

the sample, and then estimate a model of the original

community. Ambitious projects are underway to

catalog microbial life for the entire Earth, the

ocean and the human body [4–6]. Surveys of tran-

scriptomes and entire genomes have revealed more

than half of all known protein sequences. Existing

methods for estimating richness and community

structure from observed samples are becoming
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more refined, improving model estimation, confi-

dence quantification and comparative methods

[7–9]. Finally, interactive, visual techniques are

emerging with which to explore these complicated

data sets prior to formal analysis.

The new sequencing technologies have idiosyn-

cratic strengths and weaknesses, which are not fully

understood, and are beyond the scope of this review

[10]. Currently, most researchers use the Roche

454 GS-FLX or Illumina GAIIx/HiSeq2000 sequen-

cing platforms. The Roche 454 GS-FLX Titanium

can now generate in excess of 1 million reads per

run, which takes 23 h, with read lengths up to

1000 bp (average �500 bp); the average run gener-

ates 750 Mbp of sequencing data. The Illumina

HiSeq2000 platform can now generate �4 billion

paired-end reads per run (with two flow cells of

1 billion fragments each), which takes 10 days,

with (usually) 150 bp paired-end reads to create an

�250-bp product; the average run generates 1 Tbp

of sequencing data. Of course, there is wide variation

between individual labs for these statistics. Emerging

technologies, such as single molecule sequencing and

smaller single lab devices are not widely used yet, and

Sanger sequencing of large-insert libraries is still sig-

nificant [11].

Recent bioinformatics advances have significantly

improved sequencing and assembly errors detection

and correction. Several packages provide pipelines to

bring these new algorithms into the lab [12, 13].

Bioinformaticists continue to improve algorithms

for detecting specific types of error, such as chimeric

sequences [14] and precise but inaccurate reads

[15, 16].

In this review, we survey recent advances in

genome-based analytical techniques to measure the

diversity of complete microbial communities. There

are, of course, many other ways for analytical scien-

tists to advance microbiome studies, which we do

not review here, such as new quality control meth-

ods, large-scale data curation, knowledge mining and

novel data-analytic techniques such as metaproteo-

mics and advanced mass spectrometry. So, for work-

ing purposes here we consider a ‘microbiome’ to be a

well-defined patch of an ecosystem, such as all bac-

teria in a prescribed sector of the ocean or all bacteria

from a specific body part of several humans. We use

microbial ecology terminology rather than statistical

conventions, so that a ‘population’ is a collection of

all organisms of a given species, a ‘community’ is a

collection of ‘populations’ that share a specific

ecosystem, and a ‘sample’ or ‘specimen’ is a physical

extract from a given microbiome. Finally, we limit

references for the most part to recent publications

that serve as jumping off points for further explor-

ation, rather than a complete literature survey.

In this article, first we discuss studies based on 16S

rRNA amplicons. Next, we review analyses of meta-

genomic and metatranscriptomic data from shotgun

sequencing of multiple genomes or genome tran-

scripts. We then consider advances and limitations

in statistical techniques for diversity estimation.

Then we discuss visual analytics, hypothesis gener-

ation by visually exploring these very large sequence

data sets. Finally, we speculate on how microbiome

studies may change in the next 2 years.

16S RRNA AMPLICONANALYSIS
Hypervariable regions of individual, highly con-

served genes, such as the small ribosomal subunit in

noneukaryotes, have served as proxies for species

since Woese and Fox [17–19] first used them to

demonstrate that archea were a separate kingdom.

With new sequencing technologies based on the

polymerase chain reaction (PCR) it became possible

to sample all the 16S rRNA genes in a specimen

without having to isolate and cultivate organisms in

order to amplify DNA separately. By tagging speci-

mens with molecular barcodes, labs can multiplex

several treatments and controls into a single sequen-

cing run, making it possible to survey and compare

different specimens with very few sequencing jobs,

dramatically shrinking the time between sample

preparation and data analysis and the sequencing

costs.

The 16S rRNA gene remains a good but far from

ideal molecular marker for microbial diversity, and

there is no obvious alternative. 16S rRNA genes

from hundreds of thousands of organisms have

been fully sequenced and classified [13, 20]. As

with all databases, ribosomal databases are growing

larger and better, so analysis relying on them can

only improve. The secondary structure of the 16S

rRNA molecule is well characterized, at least for

reference strains, which makes it possible to perform

fast, secondary structure driven alignments [21, 22].

However, as with any single gene, the diversity of

the 16S rRNA gene does not always reflect phylo-

genetic relationships or metabolic potentials that are

known from other sources [23]. Current studies

rarely resolve sequences below the family level
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(even for known strains) due to limited database

depth, though the algorithms themselves are capable

of finder resolution. Consequently, results are often

reported at the order or even phyla level, even

though different species or even strains are likely to

have very different roles in microbiomes. Database

sequences are surely biased samples of reality, since

they assume at least that their targets are amenable to

existing sequencing and annotation methodologies.

They have been further biased by a historical fixation

on potential pathogens and environmental contam-

inants. However, the 16S rRNA gene is likely to

remain the most reliable and broadly applicable

marker for some time.

To date, only small 16S rRNA gene fragments,

rather than entire genes or genomes, have been

amenable to sequencing. Primers exist for hypervari-

able regions known as V1 through V9, of widely

varying lengths and phylogenetic resolution [24].

Different regions, and combinations of regions,

have different strengths and weaknesses [25, 26].

Historically, human microbiome surveys typically

sample from regions near V3, while environmental

surveys often sample from regions near V6, though

evidence indicates that V2 and V4 are less error

prone and most project in the NIH Human

Microbiome Project use the V3–V5 region [27]. As

sequencing technologies and protocols improve,

projects are sequencing longer regions, such as

V3–V5 (from the beginning of V3 to the end of

V5) or V6–V9. Eventually, it may become routine

to use the entire 16S gene, multiple marker genes, or

even entire genomes.

There are two types of algorithms for inferring

microbiome diversity and structure from ‘clean’

sequences, and both have improved greatly in the

last 2 years.

Clustering methods group sequences by similarity,

computing statistics from the number and size of

clusters. Clustering methods are sensitive to how

one measures similarity and what similarity threshold

one uses [25, 28]. Older distance clustering methods

begin by comparing all pairs of sequences, producing

massive distance matrices. Newer algorithms com-

pute clusters on the fly, requiring far less computer

memory. Clusters are often called Operational

Taxonomic Units (OTUs), a term borrowed from

systematics, though the basis for clustering does not

always reflect organismal phylogeny or functional

diversity. Recent studies have shown that, in general,

average neighbor clustering (usually at a 97%

similarity threshold) following single linkage cluster-

ing (usually at a 98% similarity threshold) works

better for estimating community diversity than alter-

natives [16]. Very few algorithms exist that rigor-

ously fit statistical models to sequence data in order

to estimate microbiome structure (see below).

Classification methods, on the other hand, weight

their analysis with metadata such as estimates

of phylogenetic or functional relationships.

Increasingly sophisticated algorithms, including

Bayesian inference, match experimental sequences

to those in existing databases [13, 20, 29], which

are continually updated [13, 29]. Classification meth-

ods, including phylogeny-informed analyses [30, 31],

help with research projects where it is important to

know more than the diversity of a microbiome; for

instance the number of organisms likely to be related

to potential pathogens or the likely functional cap-

acity of a community. UniFrac algorithms estimate

between-population (so called ‘beta’) diversity,

informed by estimated phylogenetic divergence

between samples [32]. These techniques will im-

prove over time with rapidly improving databases

and phylogenetic estimation algorithms. However,

they are limited by the very small number of

sequenced organisms relative to what exists in

nature, by the computational complexity of current

phylogenetic estimation algorithms, and by the

problematic nature of the species concept for bac-

teria. Moreover, many organisms in the databases are

still unclassified, having been recalcitrant to current

taxonomic methods [25, 33].

METAGENOMICS/
METATRANSCRIPTOMICS
Researchers use metagenomic and metatranscrip-

tomic sequencing to explore the functional and ex-

pressed potentials of microbial communities. Most

studies have performed extensive sequencing of bac-

terial communities [34]. But viral [35] and eukaryotic

[36] communities have also been studied. Indeed,

recent metagenomic data analysis is being used to

expand the breadth of perceived phylogenetic

space [37].

The difficulty of assembling and annotating the

data, due to short read lengths, has been the primary

challenge to analyzing high-throughput metage-

nomic/metatranscriptomic data [38]. Assembly is im-

portant for the reconstruction of genes and operons

for functional assignment and improved annotation
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of taxonomy [39], but also for re-assembly of

whole genomes from metagenomic DNA [40].

Independently of assembly problems, functional an-

notation is a difficult problem, compounded by the

sheer quantity of sequence data. Consequently, auto-

mated annotation has become routine, with little or

no manual assessment of accuracy [41]. One of the

most appropriate ways of defining the accuracy of

assembly and annotation of metagenomic data are

to use in silico simulated data from fragmented gen-

omes [42] or actual fragmented genomic DNA from

known organisms [43].

Nonetheless, comparative metagenomics remains

one of the most powerful ways to explore gene dis-

tribution across different ecosystems [44]. Several

tools and technologies exist for comparing functional

community dynamics across different metagenomic

data sets [45]. Current techniques are limited by dif-

ficulties in contextualizing sequencing data with en-

vironmental metadata from the target ecosystem

[46]. However, techniques are being developed to

improve these analyses, once environmental meta-

data about the niche space in which the community

was structured becomes available [47].

It is possible to model complex community dy-

namics in relation to the chemical and physical

dynamics of the ecosystem, even without exhaustive

sequence and environmental data. For example, tools

exist to derive the abundance of gene/transcript

fragments annotated to known enzyme activities

from metagenomic and metatranscriptomic data

[48]. In addition, bioclimatic models are being de-

veloped to extrapolate the responses of bacterial

community structure to environmental change, and

how this will affect relative changes in the con-

sumption or production of metabolites in an

ecosystem [49].

STATISTICS FORDIVERSITY
ESTIMATION
The statistical challenges for microbiome studies are

to estimate population richness and diversity, model

community structure, quantify uncertainty and com-

pare estimates rigorously [50]. This is true whether

the analysis is based on clustering or classification-

based methodologies. We divide the relevant pro-

cedures into two groups: (i) methods that treat the

observed sample as the community and (ii) methods

that account for the existence of unobserved

(unsampled) organisms or taxa in the community.

The former group is represented by procedures

such as UniFrac [32]. These methods are extremely

useful and informative and are well-documented and

implemented in current software (e.g. mothur,

QIIME) so we do not address them here. The

latter group consists of quantitative, inferential stat-

istical procedures, that is, methods that estimate true

but unknown numerical measures of diversity, such

as the total taxonomic richness of a community,

both observed and unobserved). These methods are

described mainly in the theoretical statistical litera-

ture, which bioinformatics specialists are less likely to

read. So we focus on them in this expository article.

Most current techniques begin with frequency

count data, which groups observations into bins

and report the number of members of each bin.

There are two main approaches to richness estima-

tion from such count data. The classical or frequentist
approach is better represented both in the literature

and in available software. Coverage-based nonpara-

metric estimators like Chao and ACE are popular,

being simple to compute, and are available in bio-

informatics packages such as mothur and QIIME

[12, 51]. But they are known to underestimate the

true diversity in high-diversity situations, and to

behave erratically when outliers are present [50].

Recently, more stable but computationally intensive

parametric mixture models have been introduced.

Both types of estimate are available in a single pack-

age, CatchAll [7]. Further, CatchAll computes sev-

eral different estimates and returns a ranked

comparison of the ‘best’ analyses for a given data set.

The Bayesian approach, in contrast, begins with a

prior probability distribution that represents what is

known or believed about the diversity before col-

lecting any data. Using Bayes’ Theorem, this

approach then derives a posterior distribution using

the observed data, which yields the final estimate of

diversity along with error terms and confidence

intervals. There are two ways to define the prior.

In ‘objective’ or ‘non-informative’ Bayesian analysis

one minimizes the amount of information in the

prior so that it influences the end result as little as

possible; while in subjective or informative Bayesian

analysis the prior expresses the experimenter’s beliefs

about the diversity, or weights the results according

to known factors that are unrelated to the observed

data. Both have been studied in the diversity estima-

tion literature, but the objective Bayesian approach is

more widely accepted [52, 53]. Indeed it promises to

be statistically and computationally stable and
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flexible, and may well be a strong competitor to the

frequentist methods. But at present there is no simple

and generally accessible Bayesian diversity estimation

software, so we have less applied experience than

with the classical approach.

Recently, statistical methods have been developed

that adjust estimates according to patterns in or as-

sumptions about the frequency count data. For ex-

ample, the successive ratios of frequencies (the

number of doubletons divided by the number of

singletons, tripletons divided by doubletons, etc.)

have known statistical properties, which led to a

new estimation method (available in CatchAll)

[54]. Another example incorporates suspected unre-

liability of low frequency counts into diversity esti-

mates. Recent analyses of artificially constructed

communities with known diversity and structure in-

dicate that existing methods may systematically lead

to inflated low frequency counts. Strategies to ad-

dress such biases include: (i) using a Bayesian prior

weighted toward lower diversity values; (ii) reporting

lower bounds rather than direct estimates for the

total diversity; (iii) statistically separating the pro-

jected population into low and high-diversity com-

ponents and deleting or downweighting the latter

and (iv) by pooling low frequency counts up to

some cutoff (say, the singletons and doubletons)

and re-estimating the total diversity from these

left-censored data [55]. All of these strategies are stat-

istically feasible, although not all have been imple-

mented in software [CatchAll includes (ii) and (iii)],

and this remains an area of current research.

The next logical step is to move from estimating

the diversity of a single community (‘population’ in

the statistical sense) to comparing diversity levels

across two or more communities. Given reliable

richness estimates for individual communities, it is

straightforward to make statistical comparisons of

richness between microbiomes. It is considerably

more challenging to quantify how much population

structure is shared between two or more commu-

nities. One common metric for two communities is

the Jaccard index, which is the ratio of the number of

shared populations to the total number of popula-

tions observed. Other between-community diversity

metrics include Sørensen, Bray-Curtis and

Morisita-Horn [51]. However, these formulae are

often used to compare observed samples rather

than estimated communities, leading to statistically

indefensible practices such as discarding data to ‘nor-

malize’ samples to the same size. What is lacking is

between-community diversity metrics that account

for both observed and unobserved populations. This

appears to be a challenging statistical problem. Chao

et al. [8] provided a nonparametric estimator of the

true, community-level Jaccard and Sørensen indices.

But, few other solutions have been proposed [56].

Finally, microbiome studies need to model or pre-

dict richness and diversity using covariate data, such

as observable biological, chemical, or other environ-

mental variables. If the response or dependent vari-

able is simply the (estimated) richness then standard

statistical modeling techniques such as regression are

appropriate. But, modeling diversity and structure,

rather than just richness, as a function of the predict-

ors, requires techniques such as canonical corres-

pondence analysis [9].

All these analyses should be based on estimates

of unobserved structure, rather than exclusively

observed data, since substantial unobserved diversity

is typical of microbial ecology studies.

VISUALIZINGTHERESULTS
Microbiome data are inherently high dimensional

and complex. Suppose the goal of a project is to

relate bacterial community structure at a particular

body site to clinical observations. A typical data set

might include a list of hundreds of bacterial species

that are hierarchically organized into different

groups, including genera, families, orders, classes

and phyla. This is further complicated by informa-

tion about genes and pathways that are present in

each of the bacterial species and how these relate

to clinical endpoints. The genomic information of

the host, such as demographic data, patient specifics

and lifestyle data may also be important. The ultim-

ate challenge is to put these many different layers of

information together in a statistical or machine learn-

ing analysis to identify clinically useful patterns.

Given this level of data complexity, it is important

for the researcher to have tools with which to visu-

alize and explore data. Visual interaction allows the

researcher to critically explore the measurements

themselves for quality control, for discovering pat-

terns that lead to new hypotheses, and for interpret-

ing results. Also, it is often desirable to communicate

results visually to other scientists and clinicians.

However, it is challenging to choose the right visu-

alization technique for the right type of data or in-

formation, given that there are so many information

visualization methods [57].
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Several different information visualization meth-

ods have been useful for the analysis of microbiome

data. For example, heat maps, introduced >50 years

ago [58], have become popular and useful for visua-

lizing population structure in large microbial com-

munities and for clusters of expression patterns in

genomics [59]. A heat map consists of a 2D grid or

matrix of colored squares where each square repre-

sents an observation of a variable and the color of the

square is proportional to the value of that observa-

tion. It is common to order the squares along the

two axes with additional categorical data such as bac-

terial phyla and tissue type. For example, a recent

study by Wu et al. [60] explored the relationship be-

tween long-term dietary patterns and gut microbial

enterotypes. This study used Spearman correlations

to estimate the association between different nutri-

ents and bacterial genera in 98 healthy volunteers. It

summarized the results with a heat map, where each

column represented different taxa, each row repre-

sented a different nutrient and the color of each

square represented the magnitude of the correlation,

with darker red representing stronger positive correl-

ations and darker blue representing stronger negative

correlations. Wu et al. also performed a hierarchical

cluster analysis to organize the results into visual pat-

terns that were easier to interpret. For example, the

authors found that fat-related nutrients tended to be

more similar in the correlations across taxa than other

nutrient groups. In addition to heat maps, the au-

thors also used principal components analysis (PCA)

to identify linear combinations of gut microbial taxa

associated with long-term diet. They used 2D and

3D scatterplots to identify clusters of patients defined

by the first two or three principal components. This

type of multivariate analysis is inherently visual and

can prove to be a very useful information visualiza-

tion tool for microbiome analysis.

Some recent projects move beyond visualization

into visual analytics, which closely integrates compu-

tational analysis and visualization and human–com-

puter interaction [61]. This is distinct from

information visualization, which focuses on methods

such as heat maps for showing high-dimensional re-

search results, and scientific visualization, which

focuses on the mathematics and physics of visualizing

complex objects. What distinguishes visual analytics

is the integration of data analysis with visualization

methods so that data analysis can be launched directly

from the visualization, and the visualization adjusted

in response to the data analysis. Computer hardware

such as the Microsoft Surface Computer or the

Apple iPad enable and democratize visual analytics.

All of this combined with a 3D visualization screen

or display wall provides a modern visual analytics

discovery environment that immerses users in their

data and research results.

For example, Ravel et al. [62] used movies to ex-

plore and display the temporal variation in the vagi-

nal microbiome of 396 women from different racial

groups, and work is underway to incorporate tem-

poral and patient metadata. The use of movies allows

users to interact with the visualization in a way that is

not possible with static images. As another example,

one can extend the traditional heat map by integrat-

ing and rendering additional information along the

z-axis [63]. This additional visual dimension

enhances the visual discovery process. In this study,

the authors implemented the 3D heat map using a

commercial 3D video game engine called Unity 3D.

(The authors chose the Unity3D development tool

because it uses Mono, the open-source, cross-

platform. NET implementation, so as to not be lim-

ited to code libraries supplied by the vendor.) Unity

makes graphic-user interface (GUI) code easy to

write, enabling rapid prototyping, and the workflow

for incorporating assets from other tools such as

Maya and Photoshop is straightforward. An add-

itional advantage is that Unity can use Direct3D on

Windows machines, which allows users to employ

off-the-shelf drivers to view 3D heat maps in stereo

on suitable equipment. OpenGL would require ex-

plicit coding to see the view from each eye to pro-

duce stereo. The ability to easily see 3D heat maps in

stereo is important given the widespread and emer-

ging availability of 3D televisions and computer

monitors, and leveraging game development systems

for data analysis engages powerful market forces to

enhance scientific analyses.

Another important benefit of using video game

engines for visual analytics is that they make it pos-

sible to interact with the 3D visualization as you

would in a video game. Animation, sound and

point and click interaction with the data on the

screen enable the user to experience their data in

creative ways. The end result is an open-source soft-

ware package that combines human–computer inter-

action and visualization in a 3D heat map in a way

that is not possible with common analysis tools such

as Microsoft Excel or R. Figure 1 illustrates the GUI

for the 3D heat map software package. Also, illu-

strated is one view of the microbiome data from
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Moore et al. [63]. The software allows you to load

data from an SQLite database, select color schemes,

select visualization settings and even perform a clus-

ter analysis as a way to organize the results. Here,

each row represents a different microbe. The height

and side color (green to red) of the bars represent the

relative abundance of each microbe while the col-

umns represent different patients (colored yellow to

blue) at different time points in chronological order.

A 3D mouse or keyboard controls and a standard

mouse make it possible to interactively explore the

data. A central challenge for adapting these kinds of

visualization tools for microbiome data will be the

integration of phylogenetic information.

WHERETHINGSAREGOING
Sequencing technologies will continue to improve in

both accuracy and throughput, and bench top se-

quencers will become standard equipment in

individual labs. Amplicon techniques will rely more

on whole gene samples, perhaps from multiple

genes, removing the bias associated with selecting

fixed fragments of a particular gene. This will in-

crease the need for tools that deduce phylogenies

from gene genealogies. Complete 16S rRNA gene

sequences will remain the standard for microbial sys-

tematics for some time. However, we anticipate that

amplicon analysis will become a quick screening

technique, preliminary to more detailed metage-

nomic studies, rather than the final stage in ecological

analysis.

The ideal data set for genomic-based microbial

studies of any given ecosystem, including those asso-

ciated with animals, including humans, is a complete

genome for every organism at a given time in the

ecosystem. When combined with temporal observa-

tions, it might be possible to completely characterize

the genetic diversity of the system by sequencing the

dominant organisms as the system changes. When

Figure 1: Screenshot of the 3D heat map application showing menus for data selection, chart style, viewpoint,
chart view and cluster analysis. Each menu can be minimized or hidden. Illustrated are human microbiome data.
Each row is a microbe with the name shown on the y-axis. Each column is a different subject and time point.
The z-axis represents the relative abundance of the microbes. The 3D heat map makes it possible to add additional
layers of information in the fourth and fifth dimensions, using colors (see online documents).
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the temporally situated, approximated genomes of

the dominant members are sequenced, it may be

possible to generate comprehensive models of mi-

crobial metabolism and interactions and to design

experiments that manipulate the system by adding

or removing specific populations. The most obvious

route toward such comprehensive data sets is single

genome isolation and sequencing [64]. This technol-

ogy is currently performed by isolating single micro-

bial cells and sequencing them directly. It is used to

identify the functional potential of organisms and to

design economically feasible, rather than exhaustive,

shotgun metagenomics studies. Naturally, it will be

difficult to sample very low-abundance organisms, or

to sample deeply enough to detect minor genomic

variations. Limited coverage is a technological chal-

lenge, which is likely to be overcome by new tech-

nologies. But sequencing depth, may be endemic to

microbiome studies if small genomic variations are

discovered that significantly alter community

functions.

But the ultimate objective of microbiome studies

is to build complete, predictive models of how

microbiomes interact and respond to stimuli such

as climate change, agricultural practices and disease

[65]. Parameterizing such complex models will con-

tinue to require metatranscriptomic and other ‘omic’

studies of the expressed capability of community

members [33, 66, 67]. Using techniques such as au-

tonomous collection and preservation of microbial

communities for metatranscriptomic analysis com-

bined with quantitative characterization of transcrip-

tion in metatranscriptomic data, we may start to see a

revolution in our ability to quantify functional cap-

ability [68, 69].

Statistical improvements will occur in parametric

model estimation, error and uncertainty bounds, and

in comparing diversity statistics, especially in terms of

comparison of communities. These improvements

are likely to include refined techniques for censoring

unreliable data, without first characterizing where

the noise comes from. We also anticipate that soft-

ware tools will become more available for sophisti-

cated analyses, but that interpreting results will still

require statistical expertise.

Information visualization and visual analytics will

become standard parts of microbiome research

workflows. Integration into statistical computing

software such as R is already underway, so that ana-

lyses can be launched directly from visualization ap-

plications. The ability to launch statistical analyses

directly from the visualization environment opens

the door to making discoveries that are inspired by

visual cues, rather than preconceived hypotheses that

are dependent on existing knowledge.

Key points

� Next-generation sequencing technologies have made it possible
to collect thorough samples of nucleotide sequence data from
givenmicrobial ecosystems.

� Comprehensive samples of particular genes or gene fragments,
including amplicons, processed with recently developed soft-
ware can lead to accurate characterizations of microbial com-
munity richness and diversity.

� Comprehensive samples of all genomic or transcriptomic data in
a given microbial ecosystem, metagenomics, with recently de-
veloped software, can lead to accurate characterizations of mi-
crobial community function.

� Statistical methods for estimating the structure of microbial
populations is moving beyond mere quantification, making it
possible to begin developing predictivemodels.

� Visual analytics, which combines interactive, visual exploration
of gene-based and metagenomic data sets with statistical ana-
lysis software, is developing rapidly.
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6. Brüls T, Weissenbach J. The human metagenome: our
other genome? HumMol Genet 2011;20:142–8.

7. Bunge J. Estimating the number of species with CatchAll.
Pac Symp Biocomput 2011;121–30.

8. Chao A, Chazdon RL, Colwell RK, Shen T-J.
Abundance-based similarity indices and their estimation
when there are unseen species in samples. Biometrics 2006;
62(2):361–71.

9. Legendre P, Legendre L. NumericalEcology, Vol. 24, 3rd edn
(Developments in Environmental Modelling). Amsterdam:
Elsevier, 2012.

10. Suzuki S, Ono N, Furusawa C, et al. Comparison of se-
quence reads obtained from three next-generation sequen-
cing platforms. PLoSONE 2011;6(5):e19534.

11. Brochier-Armanet C, Deschamps P, López-Garcı́a P, et al.
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