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Lately, growing attention in the health sciences has been paid to the dynamics of
heart rate as indicator of impending failures and for prognoses. Likewise, in social
and cognitive sciences, heart rate is increasingly employed as a measure of arousal,
emotional engagement and as a marker of interpersonal coordination. However, there
is no consensus about which measurements and analytical tools are most appropriate in
mapping the temporal dynamics of heart rate and quite different metrics are reported in
the literature. As complexity metrics of heart rate variability depend critically on variability
of the data, different choices regarding the kind of measures can have a substantial impact
on the results. In this article we compare linear and non-linear statistics on two prominent
types of heart beat data, beat-to-beat intervals (R-R interval) and beats-per-min (BPM). As
a proof-of-concept, we employ a simple rest-exercise-rest task and show that non-linear
statistics—fractal (DFA) and recurrence (RQA) analyses—reveal information about heart
beat activity above and beyond the simple level of heart rate. Non-linear statistics unveil
sustained post-exercise effects on heart rate dynamics, but their power to do so critically
depends on the type data that is employed: While R-R intervals are very susceptible to
non-linear analyses, the success of non-linear methods for BPM data critically depends on
their construction. Generally, “oversampled” BPM time-series can be recommended as
they retain most of the information about non-linear aspects of heart beat dynamics.
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INTRODUCTION
As many other physiological processes, heart beat activity has long
been considered a process that strives for equilibrium, making
regularity indicative of a healthy heart (West, 2006). However, just
like many other behavioral and physiological processes, heart beat
activity is in fact highly irregular, even during rest (Van Orden
et al., 2011). Recent lines of research in physiology even suggest
that irregularity in heart beat activity is crucial for health and
fitness, turning conventional wisdom on its head. For example,
using Detrended Fluctuation Analysis (DFA), Peng et al. (1995)
showed that heart beat activity in healthy participants follows a
fractal pattern called 1/fαnoise or pink noise. Fractal geometry
(Mandelbrot, 1997) seeks to quantify the “roughness” of a sur-
face, but the concept is equally applicable to time-series data: If a
process shows strong fractal characteristics, it does not adhere to
equilibrium around any specific scale (e.g., a heart rate of 90 beats
per min).

Expanding on the findings of Peng et al. (1995), Goldberger
et al. (2002) show that heart beat activity of patients with con-
gestive heart failure and atrial fibrillation deviated from healthy
“pink” heart rate, in that heart beat fluctuations were less com-
plex, either being less “rough” in the fractal sense or being indeed
characterized by an equilibrium, albeit an unhealthy one.

Another complexity metric (or set of metrics) that has gained
increasing popularity for the analysis of physiological processes

and heart beat activity is Recurrence Quantification Analysis
(Marwan, 2013a,b). This time-series analysis technique orig-
inates from a chaos-theoretical perspective and is based on
phase-space reconstruction of time-series: Takens (1981) showed
that the full dynamics of a system of coupled variables can be
reconstructed from a single, one-dimensional time-series of that
system’s behavior.

Recurrence Quantification Analysis has, for example, been
used to predict the onset of epileptic seizures: Based on the
electro-cardiogram (ECG) record of a patient, a clear pre-seizure
change in the ECG was shown at about half a minute prior to
seizure onset (Zbilut et al., 2002). Similarly, Wessel et al. (2003)
showed that recurrence analysis performed on R-R interval data
from a patient who suffered from cardiac arrhythmia predicted
the onset of ventricular tachycardia. Beyond potential clinical
applications, RQA of heart beat activity has gained increasing
popularity in the social sciences, for example as an index of group
membership during significant social interactions (Konvalinka
et al., 2011).

Even though they quantify different aspects of heart beat
dynamics, both techniques (recurrence and fractal analyses) share
conceptual similarities in that they are most powerfully applied to
measurements that stem from interaction-dominant (Bak, 1996)
or coupled component systems (Takens, 1981). Hence, these
methods excel at quantifying phenomena that are characterized
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by the simultaneous presence of structure and irregularities, a
mixture that is a natural behavioral outcome of systems that
are characterized by interdependencies. Furthermore, both tech-
niques capitalize on variability: Fractal analysis seeks lawful rela-
tionships between magnitude and frequency of variability over
different (time-) scales, and Recurrence Quantification Analysis
uncovers different kinds of dynamic structures. In other words,
these non-linear analysis techniques rely on variability that is
often viewed as unwanted noise from the perspective of linear
statistics—for example when a reliable estimate of average heart
rate is pursued. As a consequence, when this noise is removed
through data processing or data collection procedures in order
to improve the estimation of central tendencies, the result might
be a considerable loss of sensitivity of non-linear statistics.

Accordingly, the aim of this study is twofold: First, to inves-
tigate whether non-linear statistics (Fractal and Recurrence
Analysis) show greater sensitivity for assessment of heart beat
activity when compared to the simple “level” of heart rate.
Second, to compare the extent to which two standard heart beat
measurements, the beat-to-beat interval (R-R interval) and the
beats-per-minute (BPM), differ in the degree to which they con-
tain information about the heart beat dynamics. It is generally
to be expected that in order to utilize the full statistical power
of non-linear methods—which capitalize on the variability of a
signal—the R-R interval should be preferred over standard BPM
data. However, since the potential problem with BPM data lies in
the smoothing implicit in its construction, we also test two alter-
native versions of BPM construction in order to assess to what
extent heart beat variability can be retained in a BPM signal and
whether this has a significant positive impact on the non-linear
statistics.

EXPERIMENT AND HYPOTHESIS
BPM is assumed as the standard statistic for clinical practice
(Moody, 2013) and accordingly it is the only output of several
devices for the collection of heart beat activity. Furthermore,
some studies might critically depend on the retained temporal
structure of heart rate time-series characteristic of BPM (but not
R-R interval) for the correlation with other time series data (see
e.g., Konvalinka et al., 2011). However, the BPM measure is in fact
a smoothed heart beat profile due to the moving window averag-
ing that is inherent in its construction. R-R intervals, on the other
hand, preserve the natural variability of heart rate activity that is
lost in BPM.

In order to assess the impact of the type of underlying time-
series data (R-R interval vs. BPM) on the assessment of linear

(average HR) and non-linear (Fractal and Recurrence structure)
characteristics of heart beat activity, we set up a simple exer-
cise experiment. Participants were asked to sit and rest, then
cycle (light exercise), and rest again after exercise. Each phase
(rest, exercise, and rest) took 15 min. A review of the literature
regarding the impact of exercise or other sources of physiologi-
cal arousal on Fractal and Recurrence characteristics of heart beat
activity yielded the following predictions, summarized in Table 1,
together with the expected changes in average heart rate.

While the average heart beat interval should decrease dur-
ing cycling (corresponding to an increased BPM), the long-
range correlations of heart beat activity (as measured by
the fractal scaling exponent) should increase during cycling.
Similarly, the general dynamic stability and complexity of
heart beat activity (quantified by the RQA measures of
%Recurrence, %Determinism, MeanLine, MaxLine and L-
Entropy) are expected to increase during cycling compared to
rest. %Recurrence captures the overall repetitiveness of the sig-
nal, %Determinism captures the extent to which the signal repeats
itself in adjacent trajectories, MeanLine captures the average
length of these trajectories and MaxLine captures the maximum
length of these trajectories. Finally, L-Entropy is the information
entropy of the distribution of repeating trajectories and captures
the complexity of heart beat activity1.

Crucially, we expect higher sensitivity of non-linear measures
applied to R-R interval data compared to standard BPM data.
Furthermore, we explore the possibility to recapture some of the
non-linear properties of alternative, “oversampled” constructions
of the BPM data (see the Data Analysis section for details).

PARTICIPANTS
Seven participants (all male students from the University of
Aarhus ranging from 22 to 34 years of age) were included in
the study. In accordance with our inclusion criteria, all partici-
pants were healthy volunteers with no history of any respiratory
or cardiovascular disease and were not taking any medication at

1Recurrence Quantification Analysis offers many outcome variables that
could quantify changes in heart beat in this experiment. However, we
chose only to present the statistics, %Recurrence, %Determinism MeanLine,
MaxLine and L-Entropy statistics. This was done for the following reasons:
First, these five statistics are the ones most commonly used in the litera-
ture (Giuliani et al., 1998; Marwan et al., 2002; Wessel et al., 2003; Acharya
et al., 2011). Second, the effects observed in these five measures are redundant
with the effects observed in other recurrence variables (i.e., LAM, TT, VMAX,
VENTR).

Table 1 | Expected changes in heart beat activity patterns.

Measure Pre-rest-phase Cycling-phase Post-rest-phase References

Number of beats per minute Low High Low e.g., Burton et al., 2004

Scaling exponent Low High Low Baumert et al., 2006; Aoyagi et al., 2007;
Busha, 2010; Castiglioni et al., 2011

Recurrence measures of
dynamics stability and complexity

Low High Low Mohr et al., 2002; Liu et al., 2004

Summary of expected changes in heart rate level and dynamics during rest and exercise, as reported in other research articles on related topics.
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the time of the study. Furthermore, all participants were required
to have a minimum level of fitness, and exercise regularly (1–
6 h a week): Participants in the sample reported to exercise on
a weekly basis between 3 and 6 h. Since we recruited a relatively
homogeneous sample of participant and all analyses rested on
within-subject comparisons, the sample size was deemed to be
sufficient given the expected effect sizes reported in the litera-
ture (see Table 1). Furthermore, we conducted both sensitivity
and post-hoc power analyses to assess the appropriateness of the
statistics.

To minimize external influences on the autonomic nervous
system, participants were asked to consume a light meal no later
than 2 h (main meals and dairy products 4 h) prior to the study.
They were likewise asked to refrain from smoking, alcohol, and
caffeine in the 12 h prior to testing, and no physical exercise was
permitted 24 h before testing. Furthermore, participants were not
allowed to talk during the experimental sessions.

APPARATUS
A conventional commercial home-cycle was used for exercise
task at a low level of intensity. Polar Team2 (Polar, 2013) chest-
strapped heart rate monitors were used to record participants’
heart beat activity as R-R intervals with millisecond accuracy (as
specified by the manufacturer)2.

PROCEDURE
Upon arrival, the measurement device (the Polar Team2 heart
rate monitor) was attached to participant’s chest and baseline
blood pressure (Normal ECG) was taken. Then, participants
received instructions about the experiment and filled in forms
and questionnaires (consisting of demographic questions, ques-
tions regarding health status, as well as written consent). This gave
participants’ heart beat activity time to settle down. After that, the
experimental protocol started and participants were asked to rest
in a sitting position on a chair for 15 min. Then, participants were
asked to step up on the home trainer right next to their chair and
cycle lightly for 15 min. Subsequently, participants were asked to
step down from the cycle and rest again in the chair for 15 min.
Finally, participants were debriefed.

DATA ANALYSIS
Analyses were performed on the R-R interval data obtained from
the Polar heart beat monitor and on corresponding BPM data
series which were constructed from the R-R intervals. Three dif-
ferent BPM measures were calculated: the reciprocal of each of the
R-R interval series was averaged over non-overlapping intervals
of 6, 1 and 0.3 s, respectively. Figure 1 illustrates the process.

Following the output option for BPM of the Polar Team2 soft-
ware we discarded the decimals in the moving window of 6-s,
while they were kept in the moving windows of 1 and 0.3 s.
Employing three measures allows us to test the impact of the
smoothing on the variability of the data: The smaller the win-
dow size for the calculation of the BPM series, the weaker the

2The mobile devices for the measurement of R-R intervals by Polar have
generally show excellent agreement with measurements obtained from ECGs
(e.g., Laukkanen and Virtanen, 1998; Vanderlei et al., 2008; Weippert et al.,
2010).

FIGURE 1 | The top row displays one participants R-R intervals during

the first 5 s of rest. The bottom row display the reciprocal of the R-R
intervals sampled at milliseconds and scaled to BPM of the same record.
For example, in order to construct BPM data at the level of 0.3 s, this data
series is split up in non-overlapping windows of 300 ms over which the
level of beats-per-minutes is averaged (displayed by the slim red windows
on the left hand side of the lower panel). To construct BPM data at the level
of 1.0 s intervals, this window is enlarged to 1000 ms (exemplified by the
big green windows on the right hand side of the lower panel). To construct
BPM data at the level of 6.0 s intervals, this window would need to be
further enlarged to 6000 ms and would be shifted across the data series in
1000 ms steps (not displayed).

smoothing. Similarly, the information retained in the decimals
will equally diminish the influence of the smoothing process and
keep more of the variability of heart beat activity that is cru-
cial for non-linear analysis techniques (Figure 2 illustrates three
different BPM series together with the resulting data). Roughly
speaking, the three BPM series correspond to three somewhat
different kinds of data: The BPM series that results from a mov-
ing 6-second-window (BPM6.0) is a highly smoothed record of
heart beat activity, while the BPM series resulting from the non-
overlapping 1-s window (BPM1.0) is substantially less smoothed,
and corresponds more to a down-sampled version of the RR-
intervals. Finally, the BPM series of non-overlapping 0.3-s inter-
vals (BPM0.3) is similar to an interpolation between RR-intervals,
oversampling—instead of smoothing out—heart beat variability.

For each participant’s record we separated each phase (pre-
rest, cycling, post-rest) by removing the first and last 100 data
points (equaling at about 1 min of recording) of each phase before
and after transition into the next phase. This was done in order to
minimize the impact of the transient changes from one phase into
the next.

For the estimation of fractal scaling exponents, expressed
as Hurst exponents, we used a custom MatLab script to con-
duct Detrended Fluctuation Analysis (DFA), which is the current
standard for estimating scaling properties of heart beat activ-
ity (Bravi et al., 2011). The analysis was conducted with the
following parameter settings: Removal of linear trends in the
DFA-detrending-process, minimum bin size of 4 and maximum
bin size equal to ¼ of the maximum length of the data set. We
followed the recommendations of Holden (2005) for data prepa-
ration. Before subjecting the data to analysis, we determined the
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FIGURE 2 | Example heart beat data of one participant

throughout a whole rest-exercise-rest session. Left panel:
Example of one participant’s RR-interval-series (top) and the
corresponding BPM-data (BPM0.3, BPM1.0, and BPM6.0).

Right-panel: A close-up of the heart beat data for the first
minute of the pre-resting phase. As can be seen, the BPM0.3
data retains a lot of the variability seen in R-R intervals, while
most of this variability is lost in the BPM6.0 data.

profile of the data—fractional Gaussian noise (fGn) vs. fractional
Brownian motion (fBm)—to select the correct method for the
calculation of the Hurst exponents: Data with a fGn profile needs
to be integrated before subjection to DFA, while this is not the
case for fBm-type data. We examined the power spectral density
(PSD) of each data series and determined their profile by plot-
ting the powers against their associated frequencies on log-log
axes (Delignières and Marmelat, 2013). A regression line is fit-
ted to the scaling region on this plot and the slope of the line
estimates the profiles of the data. Slopes between 0 and −1 indi-
cate fGn-type data, while slopes between −1 and −2 indicate
fBm-type data. The steepest slope obtained from all data sets was
−0.96. Hence, all data was treated as fGn and integrated before
subjection to DFA.

For the estimation of recurrence variables we used Norbert
Marwan’s Commandline Recurrence Plots software (Marwan,
2013a,b). The delay and embedding parameters were estimated
for each data set by the first local minima of the average-mutual-
information function and the false-nearest neighbor function,
respectively (Abarbanel, 1996; Webber and Zbilut, 2005). The
average parameter values were used across all participants: Delay
of 10 and Dimension of 3 for R-R-intervals, Delay of 20 and
Dimension of 3 for 6-s and 1-s BPM data, and Delay of 20 and
Dimension of 4 for the 0.3-s BPM data3. The Euclidean norm for
phase-space re-scaling was used in all cases. The radius param-
eter was set to yield 2% of recurrent points for the first resting
phase (pre-rest) for each participant. The same radius was then
kept for the analysis of each participants cycling and post-rest

3We tested the effects over a variety of parameter setting, using delays between
1 and 20 and dimensions between 3 and 6 for R-R intervals, as well as delays
between 10 and 30 and dimensions between 3 and 6 for the three BPM-series.
The overall results remained stable across the different parameters.

phase. When a resulting recurrence plot yielded less than 1%
of recurrent points, then the radius parameter was adjusted for
that data set to yield 1% of recurrence (Zbilut et al., 2002).
This was the case for one time-series set of BPM0.3 data during
cycling.

In order to compare the different linear and non-linear statis-
tics across the rest and exercise conditions, we utilized the fol-
lowing analysis strategy: After the averages, scaling exponents,
and recurrence measures were computed for each participants
during each of the three phases (pre-rest, cycling, post-rest), the
moments were subjected to a repeated-measures ANOVA (SPSS
13, 2013) with the within-subject factor “exercise” (3 levels: pre-
rest, exercise, post-rest) for each of the four data series (RR,
BPM6.0, BPM1.0, BPM0.3) separately. Follow-up comparisons
were made using paired-sample t-tests in order to assess the exact
location of the global effects (only p-values are presented). Post-
hoc power analyses were conducted to assess the appropriateness
of the statistics (Faul et al., 2007). Finally, we used the measure
of partial Eta2, which reports the proportion of variance that is
uniquely explained by the independent variable to investigate the
change of statistical power across the measures for the different
data types (R-R intervals, BPM6.0, BPM1.0, and BPM0.3).

RESULTS
SENSITIVITY ANALYSES
Pearson correlation coefficients between repeated measures were
above 0.180 in all cases except for L-Entropy in BPM1.0 and
BPM6.0, for which they were r = 0.007 and r = 0.011, respec-
tively. A sensitivity analysis for a sample of 7 participants revealed
that effects above F = 4.45 will be reliably detected. Post-hoc
power analyses are therefore only reported for effects smaller
than this.
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AVERAGE HEART RATE
Figure 3 presents the average length of RR-intervals and the aver-
age number of BPM for all three BPM-series. As expected, all
four data series yield a clear increase in heart rate for the cycling
phase, expressed as higher BPM and lower R-R, compared to the
pre-resting and post-resting conditions [all F(2, 12) > 26.93, all
p < 0.001].

Post-hoc tests confirmed that the effect of exercise was due to
differences between the two resting phases and the cycling phase
(all p > 0.001), while the pre- and post-resting phases yielded
similar levels of heart rate (all p > 0.292).

DETRENDED FLUCTUATION ANALYSIS
Figure 4 presents the average Hurst exponents of R-R intervals
and the three BPM-series. While RR-intervals [F(2, 12) = 6.51,
p = 0.006] and BPM0.3 [F(2, 12) = 4.06, p = 0.045] reveal a reli-
able effect of exercise on the fractal structure of heart beat activity,
no such effect is apparent in the BPM6.0 and BPM1.0 data [both
F(2, 12) < 0.78, both p > 0.418]. Post-hoc power analyses reveal a
100% chance to detect this effect in BPM0.3 and a 75.1% chance
to detect it in BPM6.0 and BPM1.0.

FIGURE 3 | Average heart rate for R-R intervals, BPM6.0, BPM1.0, and

BPM0.3. As can be seen, overall heart rate increases during exercise. Note
that R-R intervals are presented in beats per minute.

FIGURE 4 | Average Hurst exponents for R-R intervals, BPM6.0,

BPM1.0, and BPM0.3. For R-R interval and BPM0.3 data, the Hurst
exponents increase from pre-rest to exercise and stay on an elevated level
during post-rest. No effects are apparent in the BPM1.0 and BPM6.0 data.

Post-hoc tests for the RR-interval and BPM0.3 data revealed
that the difference in Hurst exponents was located in the transi-
tion from pre-rest to cycling (both p < 0.012), while the observed
Hurst exponents during post-rest were equally high compared
to those observed during cycling (both p > 0.272). Hurst expo-
nents of heart beat activity during post-rest were also reliably
higher compared to pre-rest in RR-intervals (p = 0.012) and still
marginally higher compared to pre-rest in BPM0.3 (p = 0.066).

RECURRENCE QUANTIFICATION ANALYSIS
Figure 5 presents the differences in recurrence measures between
rest and cycling for RR-intervals, and the BPM6.0, BPM1.0, and
BPM0.3 data.

For RR-intervals, we observed a consistent increase in all five
recurrence measures for the cycling phase compared to the rest
phases [all F(2, 12) > 9.05, all p < 0.002].

FIGURE 5 | Average %Recurrence (top), %Determinism (2nd to top),

MeanLine (3rd to top), MaxLine (4th to top) and L-Entropy (bottom) for

R-R intervals, BPM0.3, BPM1.0, and BPM6.0. For R-R intervals, all
recurrence measures generally increased during exercise compared to rest.
The statistical differences between rest and exercise are somewhat
diminished for BPM0.3, and are generally absent in the BPM1.0 and
BPM6.0 data (with the exception of %Determinism for the BPM1.0 data).
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For the BPM0.3 data, we observed an increase of %Recurrence,
MeanLine and Maxline during cycling [all F(2, 12) > 5.95, all p <

0.016), but no differences in %Determinism or L-Entropy [both
F(2, 12) < 1.36, both p > 0.298). Post-hoc power analyses reveal a
97.7% chance to detect such effects; thus, it is very unlikely that
our negative findings in this case can be attributed to sample size.

For the BPM1.0 data, we observed an increase of
%Determinism during cycling [F(2, 12) > 4.98, p = 0.027],
but no effect on any of the other measures [all F(2, 12) < 2.64,
all p > 0.112]. Also, there were no effects of exercise on any of
the recurrence measures for the BPM6.0 data [all F(2, 12) < 2.67,
all p > 0.110]. Post-hoc power analyses reveal a 100% chance
to detect such effects in both BPM1.0 and BPM6.0. Again, it is
very unlikely that the negative findings can be attributed to low
sample size.

If an effect of exercise on any of the recurrence measures was
observed, then post-hoc tests confirmed that the effect was due to
differences between the two resting phases and the cycling phase
(all p > 0.051), while the pre- and post-resting phases yielded
similar levels of heart dynamics (all p > 0.159).

STATISTICAL MODEL COMPARISON
Figure 6 depicts the explained variance (partial Eta2) of the sta-
tistical models as a function of data type (R-R, BPM0.3, BPM1.0,
BPM6.0). As can be seen, the overall level of heart rate (black
line) remains virtually unaffected by the choice of data type, while
the complexity measures (gray lines) loose statistical power as the
moving window size for the construction of the BPM-series is
increased.

DISCUSSION
The results of our study show that active exercise leads to an
increase in heart rate which is necessary to increase the supply
of oxygen and nutrients for the muscles and other participat-
ing organ systems (e.g., Burton et al., 2004). While this result
might seem trivial, we were also able to produce a more articu-
late picture of the effects of exercise with the help of complexity

FIGURE 6 | Relationship between explained variance and data type for

average heart rate and the complexity metrics. As can be seen,
complexity metrics work best for R-R intervals and generally less well for
BPM-type data. The power of the non-linear statistics decreases with
growing window sizes over which the BPM data is constructed. This is not
the case for average heart rate.

metrics. Interestingly, these effects could not be observed in stan-
dard preparations of BPM data, but only when the analysis was
based on R-R intervals or “oversampled” BPM data (BPM0.3).
Accordingly, we observed a clear loss of statistical power of the
complexity metrics in the BPM-data as a function of the window
size over which the BPM data was constructed.

In addition to expected increase of heart rate during exer-
cise compared to the two rest periods, we observed a general
increase in the dynamic stability of heart beat activity during
exercise, as evidenced by an across-the-board increase in recur-
rence measures of %Recurrence, %Determinism, MeanLine and
Maxline. These observed changes in the recurrence measures of
heart beat activity might capture the increase of constraints on
heart beat variability during exercise compared to rest, which
can be interpreted as the exercise condition creating a relatively
stronger attractor for heart beat fluctuations (e.g., Richardson
et al., 2007).

The final two measures, L-Entropy and the Hurst exponent
add to these findings indicating that heart beat fluctuations
became also more complex during exercise. This might indicate
a stronger coupling of heart beat activity to other relevant physio-
logical processes, such as breathing (Hirsch and Bishop, 1981). As
the interdependencies to other physiological processes increase,
heart beat activity becomes more complex since the activity of
other physiological systems is now more strongly reflected in the
heart beat dynamics in addition to the intrinsic dynamics of the
heart itself.

Particularly the gravitation of the fractal scaling exponent
toward H = 1 indicates a kind of complexity that could stem from
an increase in interaction-dominant dynamics that result form
the (successful) coordination of multiple physiological compo-
nents or processes (Bak, 1996; Goldberger et al., 2002; Webber,
2005). Interestingly, while the classical measure of heart rate
level as well as the non-linear recurrence measures classify the
two resting phases as similar (but different from the exercise
phase), the fractal scaling properties of heart beat activity are
different from the pre-resting phase to exercise, but remain
similar to exercise during post-rest. This could be an example
of known long-term carry-over effects in heart rate variability
(e.g., Akselrod et al., 1981; Terkelsen et al., 2012): A kind of
hysteresis effect that governs long-term development of physio-
logical processes (such as the long-term changes of heart phys-
iology and activity patters through repeated-short-term events,
as for instance exercise) and is better detectable by complex-
ity metrics compared to linear measures, such as the overall
level of activity or linear power-spectral density analysis (Webber
et al., 2009). The result is supported by findings of Karavirta
et al. (2009) indicating that long-term exercise gains in older
participants of endurance and strength training went together
with increased fractal scaling exponents of heart beat activity.
However, while this effect was shown on a time-scale of sev-
eral weeks, we observe comparable effects on a much shorter
time-scale.

Importantly, these results could not unanimously be obtained
from the BPM data series: While all four kinds of heart beat
activity time series (RR, BPM6.0, BPM1.0, BPM0.3) showed a
clear effect of the overall level of heart rate, the two BPM-series
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with down sampled and (heavily) smoothed data yielded
no results on the complexity metrics obtained from recur-
rence and fractal analysis (the exception being a compar-
atively small effect of exercise on %Determinism in the
BPM1.0 data).

In sum, while overall level of heart rate distinguishes well
between the exercise and rest periods, it is blind to the more
subtle relations between exercise, pre- and post-rest periods.
Non-linear statistics relying on R-R intervals appear to have the
highest sensitivity in describing heart rate dynamics, followed
by non-linear statistics on BPM decreasing in proportion to
down-sampling/smoothing. However, when the BPM data was
constructed in such a way as to over-sample the RR-intervals
(the BPM0.3 data), most of the effects observed in the RR-
intervals could be observed in the BPM data as well, even though
the overall strengths of the effects was somewhat weaker. Thus,
the oversampled BPM0.3 measure seems to be a better solu-
tion for studies that depend on evenly spaced measurements,
for example to correlate heart beat with other time series data
(e.g., Konvalinka et al., 2011).

In order to adequately assess heart beat dynamics, it is
highly recommendable to use non-linear statistics on R-R
intervals, which boosts the statistical power of non-linear
statistics. Crucially, non-linear statistics—such as Recurrence
Quantification Analysis and DFA—grant a more detailed per-
spective on temporal dynamics.

This study was intended as a proof-of-concept aimed at
comparing the sensitivity of different methods and measures of
heart rate reported in the literature. Our results suggest a consid-
erable detrimental effect of smoothing associated with BPM for
the estimation of non-linear aspects of heart rate variability. At
the same time, it points to the high potential of non-linear statis-
tics applied to R-R intervals or over-sampled BPM. Even consid-
ering the small number of participants, the statistical power of
the analyses shows that R-R intervals are a data type that yields
very reliable effects, and it is unlikely that the lack of effects in the
analyses involving BPM1.0 and BPM6.0 data is due to the limited
sample size. Taken together, this motivates important method-
ological considerations for the recording and analysis of heart rate
data for research that aims at systematic investigations of the role
of heart rate fluctuations in exercise, fitness, aging, and wellbeing.
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