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Abstract

Genome sequencing projects provide nearly complete lists of the individual components present in an organism, but reveal
little about how they work together. Follow-up initiatives have deciphered thousands of dynamic and context-dependent
interrelationships between gene products that need to be analyzed with novel bioinformatics approaches able to capture
their complex emerging properties. Here, we present a novel framework for the alignment and comparative analysis of
biological networks of arbitrary topology. Our strategy includes the prediction of likely conserved interactions, based on
evolutionary distances, to counter the high number of missing interactions in the current interactome networks, and a fast
assessment of the statistical significance of individual alignment solutions, which vastly increases its performance with
respect to existing tools. Finally, we illustrate the biological significance of the results through the identification of novel
complex components and potential cases of cross-talk between pathways and alternative signaling routes.
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Introduction

Genome sequencing projects provide nearly complete lists of the

genes and gene products present in an organism, including human

[1,2]. However, biological systems are often complex, and

knowledge of the individual components reveals little about how

they work together to create a living entity. Follow-up initiatives to

the sequencing projects have thus focused on deciphering the

thousands of interrelationships between proteins and have already

delivered the first drafts of whole species interactomes (e.g. [3–5]).

Moreover, large efforts are now being put into identifying the

changes that biological networks undergo in response to different

stimuli [6,7]. To understand and interpret this deluge of data we

need novel bioinformatics approaches able to tackle interactome

networks as a whole and to capture their complex dynamics and

emerging properties. Based on the success of sequence alignment

methods and comparative genomics, we expect that the global

comparison of interactomes from different species will vastly

increase our understanding of cellular events, evolution and

adaptation to changing environmental conditions, as well as shed

light on the evolutionary mechanisms that lead to species diversity

[8,9].

In the last years, several global and local pathway alignment

algorithms have been developed to extract the most out of

interactome networks (e.g. [10–15]). However, existing strategies

suffer from important limitations: For instance, the inability to

properly handle the large fraction of false negatives (i.e. not

reported interactions) present in the current versions of inter-

actome networks [16], and the lack of support for intra-species

comparison, hamper the detection of alternative routes and

prevent the identification of backup circuits and cross-talk between

pathways of the same species. In addition, most tools are tailored

towards detecting classical linear pathways or well-connected

permanent complexes, which we know are an exception, and are

much less effective at aligning dynamic networks of arbitrary

topology. Moreover, many current methods are based on

empirical scoring schemes and not backed-up by probabilistic

models, being thus unable to provide a clear assessment of the

statistical significance of alignment solutions [17]. Overall, these

obstacles, together with difficult front-end implementations, have

prevented the general applicability of network alignment methods.

Here, we describe a novel pairwise network alignment

algorithm that addresses all those limitations, featuring fast global

and local alignment of networks of arbitrary topology, both

between different species and within the same organism. In

addition, we benchmark its performance in several alignment tasks

(i.e. interactome to interactome, complex to interactome and

pathway to interactome) and illustrate the biological significance of

the results through the identification of novel complex components

and potential cases of cross-talk between pathways and alternative

signaling routes.

Results and Discussion

Network alignment strategy
Given two input networks and a set of homology relationships

between the proteins in those networks, the aim is to identify

conserved subnetworks, considering both the presence of false

positive and false negative interactions, as well as accounting for

small amounts of network rewiring during evolution. To solve this
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problem, we developed a novel method (NetAligner) that allows

fast and accurate alignment of protein interaction networks based

on the following six steps: (i) construction of an initial alignment

graph, (ii) identification of alignment seeds, (iii) extension of the

alignment graph, (iv) definition of the alignment solutions, (v)

scoring of the alignment solutions and (vi) assessment of their

statistical significance (Fig. 1).

We start by constructing an initial alignment graph, consisting

of pairs of orthologous proteins from the two input networks

placed as vertices and conserved interactions as edges between

vertices (i.e. overlaying the two networks). Orthology information

can either come from public databases, such as Ensembl [18], or

computed ad hoc from reciprocal BLAST [19] searches for those

pairs of species for which homology data is not readily available.

Each alignment graph vertex is assigned a probabilistic measure of

protein similarity (see Materials and Methods), and there is a vertex

probability threshold to filter out distant homology relationships,

which also helps in reducing the number of false positive

interactions originating from false protein matchings. The

algorithm then connects those vertices that represent pairs of

orthologues with conserved interactions. In the case of intra-

species network alignment, the matching of proteins between the

two input networks is instead based on a list of paralogous proteins

(or pairs of identical proteins if desired by the user).

A key issue in network biology is the large number of

interactions that have not yet been detected [20], and that

Figure 1. NetAligner strategy. 1) Pairs of orthologous proteins between the two input networks are identified, with the possibility to include or
exclude distant homologs. Each vertex in the network represents a pair of orthologs. Vertex probabilities are indicated by different shades of blue,
ranging from 0 (white) to 1 (blue). 2.) The initial alignment graph is constructed by drawing edges between vertices that are involved in a conserved
interaction (green). Likely conserved interactions for all pairs of orthologs with an interaction in at least one of the input networks can also be
considered (yellow). Edges with a low probability are filtered out based on the given edge probability threshold. 3.) To identify alignment solution
seeds, we search for connected components in the initial alignment graph (red ellipses). 4.) The alignment graph is then extended by connecting
vertices of different seeds through gap or mismatch edges (dashed lines) if the given orthologs are connected by indirect interactions in one or both
input networks, respectively. Again, the edge probability threshold is used to filter out false positives. 5.) Lastly, we search for connected components
in the extended alignment graph, which represent the final alignment solutions (red ellipses), and determine their statistical significance (see
Materials and Methods). These and all subsequent network representations were created with Cytoscape [53].
doi:10.1371/journal.pone.0031220.g001
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represent a clear limitation when comparing two interactomes.

Sharan et al. [12] tackled this issue by introducing a parameter to

estimate the fraction of missing interactions. Though, since it is a

global parameter, it cannot consider differences in the evolution-

ary pressures acting upon distinct proteins. This is crucial,

however, as interactions impose certain constraints on sequence

divergence and evolution [21,22], which may result in co-

adaptation at the residue level, either directly through correlated

mutations in the interaction interface [23] or indirectly via

allosteric effects [21,24]. In NetAligner, we profit from the

observation that interacting proteins evolve at rates significantly

closer than expected by chance [25] (even within the same

functional module [26]) to predict the probabilities for likely

conserved interactions based on the difference of the evolutionary

distances (or divergence in case of intra-species network alignment)

between the protein pairs involved in the interactions (see Materials

and Methods). NetAligner is hence the first network alignment

algorithm that directly addresses the issue of false negatives in

current interactomes by specifically predicting likely conserved

interactions. For all conserved or likely conserved interactions, we

then compute the probabilities of the corresponding edges in the

alignment graph, respecting both interaction conservation prob-

abilities and interaction reliabilities (see Materials and Methods), and

offer the possibility to set an edge probability threshold to filter out

false positive interactions by removing those edges from the

alignment graph that consist of mainly unreliable interactions (e.g.

those supported by only one publication).

After constructing the initial alignment graph, we identify core

conserved subnetworks, which serve as alignment seeds, by

searching for connected components in the graph using depth

first search (DFS). In contrast to many existing tools [10,14,27], we

consider all pairs of orthologous proteins simultaneously during

alignment seed identification, meaning that instead of constructing

one seed for each possible combination of interacting pairs of

orthologues, we include all of them into the same seed (as long as

they are connected through conserved or likely conserved

interactions). This circumvents the combinatorial explosion linked

to the construction of alignments with different sets of orthologues,

reducing algorithm complexity, and allows the accurate modeling

of evolutionary duplication events leading to one-to-many and

many-to-many orthology relationships [11,28].

To identify conserved subnetworks despite slight connectivity

changes, we extend the initial alignment graph through edges

allowing for gaps and mismatches, where pairs of orthologous

proteins in different seeds are connected through an indirect

interaction in one or both of the input networks, respectively. Note

that we search for gaps/mismatches only between, but not within

alignment seeds, since this would in most cases yield too many

potentially false positive hits, because alignment seeds represent

connected components of (likely) conserved interactions, and many

pairs of seed nodes could thus be bridged by indirect interactions.

Unlike existing tools for network alignment [10,29], we tolerate

gaps and mismatches of any length, although, due to the small-

world structure of most interactomes [30], we recommend to

restrict the maximum gap length to three edges to avoid

connecting unrelated proteins. To decide on the inclusion of gaps

and mismatches, we search for the shortest weighted paths in the

input networks that connect pairs of homologous proteins in

different seeds through a modified version of Dijkstra’s algorithm

[31], which considers only paths up to a user-defined length. Gap

and mismatch edges are penalized automatically [10], with their

probabilities being computed as the joint probability of the

individual interactions (see Materials and Methods), and edges with

probabilities below the user-defined threshold are filtered out.

We then identify the final alignment solutions by searching for

connected components in the extended alignment graph, again

using DFS. This, together with our strategy for finding alignment

seeds, ensures that the alignment solutions are maximal (i.e. no

pair of orthologous proteins is common to any two alignment

solutions). Since complexes or pathways that share components

are thus automatically part of the same alignment solution, we

circumvent the problem of having to merge overlapping solutions

in a postprocessing step that many existing tools have to execute

[10,12,13].

To assess the quality of an alignment solution represented by the

graph G, following the approach by Kelley et al. [10], we devised

the following overall scoring function SG to combine the individual

vertex and edge probabilities into a single score for each alignment

solution:

SG~a
X

v[V (G)

Svz(1{a)
X

e[E(G)

Se

with V (G) and E(G) denoting the sets of vertices and edges of G,

respectively, and a [ ½0,1� the vertex to edge score balance, which

allows the user to control the impact of vertex scores Sv and edge

scores Se on the final score. Those scores are calculated in the

same way to make them directly comparable:

Sv~log2 1zPA=A0
v

� �
, Se~log2 1zPA=A0,B=B0

e

� �

with PA=A0
v and PA=A0 ,B=B0

e being the probabilities of the vertex

A=A0 and of the edge between A=A0 and B=B0, respectively (see

Materials and Methods). Treating the underlying probabilities in the

same way when calculating the vertex and edge scores (i.e. by

taking the logarithm) ensures that the weight a directly determines

the vertex to edge score balance in the final scoring function.

Taking the logarithm does not affect the relative ranking of

alignment solutions, because all alignment solution scores are

calculated in this manner. Adding one to the probabilities only

ensures that the scores are positive and that alignment solutions

can be ranked by decreasing score, but does not affect the

alignment results.

To test the statistical significance of alignment solutions, we

implemented a fast Monte-Carlo permutation test that preserves

network topologies (see Materials and Methods) and thus allows to

discriminate significant solutions from simply high-scoring ones

(which also ensures that large alignment solutions are not

automatically significant). Alignment solutions with insignificant

p-values can also represent cases with many potential false positive

interactions. This is because those alignment solutions would

receive low scores and thus more likely get insignificant p-values in

the Monte-Carlo permutation test. In contrast to many existing

network alignment strategies [10,32], our significance test does not

involve rewiring of the input networks and performing additional

alignments, since this would require a considerable amount of

computational resources. Instead, we chose the much faster and

thus more practical option of building random backgrounds of

alignment solution scores separately for each alignment solution

based on random sampling of the input data. The NetAligner

program package and the associated web-tool can be downloaded

and accessed from http://sbnb.irbbarcelona.org/resources.

Interactome to interactome alignment
Because of the ever increasing number of comprehensive

interactomes available for species from all kingdoms of life, we

anticipate that one of the applications where NetAligner will have

Comparative Alignment of Biological Networks
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an immediate impact is precisely in the direct comparison of

whole-interactome networks to unveil conserved subnetworks.

This feature is particularly useful in those cases where little is

known for either of the species considered, which precludes the use

of annotation strategies relying on pre-existing information. In

addition, recent efforts to chart the rewiring of biological networks

in response to certain stimuli also make interactome to

interactome alignment strategies paramount to readily identify

the differential dynamic links between conserved biological modules

[6].

To assess the performance of our alignment method in the

identification of functional modules spanning out from the direct

comparison of two interactome networks, and compare it to the

current standards in the field, we created a benchmark set

consisting of 71 non-redundant conserved human/yeast complex

pairs, with a number of protein components ranging from 2 to 18

(Tables S1 and S2). We restricted our benchmark set to human

and yeast due to a lack of reliable datasets of protein complexes in

other model organisms for which interaction data is available. We

evaluated algorithm performance in terms of precision and recall

on several levels of detail, using a cross-evaluation procedure to

avoid parameter overfitting (see Materials and Methods and Fig.

S1A). Using default parameters (Table S3), we found that

NetAligner is, on average, able to automatically rediscover 44%

of the known complexes common to human and yeast (i.e. recall).

In addition, only about 15% of the significantly conserved

subnetworks identified between these two species correspond to

known complexes (i.e. precision), the rest representing potentially

novel functional modules. If we evaluate the results in terms of the

proteins belonging to complexes and thus the quality of the

alignment solutions found, the precision is 19% while the recall of

known protein components is 35% (Fig. 2A). Figures for the

individual runs can be found in the Table S2. These results

significantly outperform by more than tenfold the current standard

in the field [12] both in precision and recall, with p-values ranging

from 3:10{35 to 5:10{6, while requiring only a fraction of the

runtime (on average: NetworkBLAST 1,633 s, NetAligner 54 s).

Here, predicting likely conserved interactions did not increase

alignment performance, instead leading to the identification of

larger conserved subnetworks, consisting of several interconnected

functional modules. In fact, the performance increase compared to

NetworkBLAST is due to NetAligner being better at handling

binary and sparsely-connected complexes, while NetworkBLAST

is limited to the identification of conserved multi-protein

complexes that are well-connected. It is also worth stressing that,

although some predicted relationships that are considered

mispredictions in our benchmark are likely to be false positives,

others might represent novel complex components or connect

different complexes into higher order functional assemblies with

biological relevance, such as the 26S proteasome [33] (Fig. S2).

Indeed, the moderate levels of precision achieved when comparing

whole interactomes are in contrast to those attained when either

multi-protein complexes or pathways are known for one of the

species and can thus be used as queries (Fig. 2B and C). This

Figure 2. NetAligner performance in different alignment tasks. Performance of NetAligner (blue) measured in A) interactome to interactome,
B) complex to interactome and C) pathway to interactome alignment benchmarks in comparison to the current standard in the field (NetworkBLAST
[12] and IsoRank [14]; grey). Precision and recall are shown on the complex/pathway and protein level, separately for each species pair (e.g. H/Y for
human vs. yeast), using default parameters (see Materials and Methods). We calculated the statistical significance of the performance differences using
a two-sided Fisher’s exact test (with a standard p-value threshold of 0.05) and marked all significant values with an asterisk.
doi:10.1371/journal.pone.0031220.g002
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suggests that, since the algorithm is performing at a very high level

for known complexes/pathways, it is likely that many of the

significant hits identified in the whole-interactome comparison,

and that we considered as false positives, do in fact correspond to

functional modules not yet described. It is worth noting, however,

that the identification of conserved pathways through interactome

to interactome alignment is not yet possible given the current

interaction data, since the strict parameters required when

aligning thousands of interactions (to avoid finding only very

large conserved subnetworks) cannot account for the lack of

coverage of biological pathways in current interactomes.

An illustrative example of the biological relevance of this

application comes from the alignment of the yeast vs. human

interactomes, where we identified de novo the COP9 signalosome

(CSN) (alignment solution p-valuev10{4), a multifunctional

protein complex known to be conserved throughout eukaryotes

and critical for organism development [34]. The CSN participates

in ubiquitin-dependent proteolysis [34], and its components are

homologous to the proteins of the lid subcomplex of the 19S

regulatory particle of the proteasome. The conserved interactions

identified in the alignment support the hypothesis that the CSN

might be able to act as a substitute for the lid subcomplex of the

proteasome [34], providing a mechanistic rationale for why one

complex might be able to replace another, which cannot be gained

from comparing homologous proteins individually or using other

alignment strategies (Fig. 3A). In fact, NetworkBLAST was not

able to identify the match between the yeast 19/22S regulator and

the human CSN complex, correctly aligning only one protein

(RPN5 (yeast) to CSN4 (human)). On the other hand, the

(mismatch) connection between the pairs of homologous proteins

RPN11/CSN5 and CDC28/CDK2, revealed by NetAligner,

suggests a functional role of the CSN complex in cell-cycle control

through interaction with cyclins and cyclin-dependent kinases

(Fig. 3A). Indeed, the CSN has been found to be important for

cell-cycle entry and progression by promoting the degradation of

CDN1B (cyclin-dependent kinase inhibitor p27), which results in

the activation of the cyclin-dependent kinase CDK2 [35]. This

link to cell proliferation, identified by NetAligner, might help

explaining why overexpression of CSN components can lead to

oncogenesis in human [34,35]. Overall, NetAligner facilitates the

identification of conserved protein modules in different species

from interactome data only. While conserved interactions

highlight similarities in complex topology between two species,

the identification of non-identical yet similar network regions

through gaps and mismatches in the alignment permits to uncover

functional connections affected by minor network rewiring during

evolution.

Complex to interactome alignment
When protein complexes are well characterized for a given

species, we can use them as query to identify their counterparts in

Figure 3. Illustrative examples of different alignment tasks. A) Interactome to interactome alignment: alignment of the yeast to the human
interactome indicates that the COP9 signalosome (CSN) might be able to substitute the lid subcomplex of the proteasome and suggests a functional
role of the CSN in cell-cycle control through interaction with cyclins and cyclin-dependent kinases. B) Complex to interactome alignment: alignment
of the human DNA polymerase a - primase complex to the yeast interactome reveals a similar topology of the complex in the two organisms and
hints towards a potential cross-talk between the DNA polymerases a and d in yeast. C) Pathway to interactome alignment: alignment of the fly PI3K-
AKT-IKK signalling pathway to the human interactome predicts an IKKB homo- to IKKA/IKKB heteromultimer evolution and uncovers different
interaction patterns of IKK with the three AKT isoforms in human, indicating different roles in cellular signalling events. See main text for details.
Vertices represent pairs of orthologous proteins. Edges denote either conserved interactions (green), interactions in the query (blue) or target species
(yellow) that are likely conserved, gaps in the query (magenta) or target network (orange), or mismatches (dark red). The similarity of aligned proteins
on the sequence level is represented by the respective vertex probability, ranging from 0 (dissimilar; white) to 1 (highly similar; blue).
Phosphorylations (P) are shown as red spheres.
doi:10.1371/journal.pone.0031220.g003
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other organisms. To benchmark the performance of NetAligner in

this alignment task, we again used the set of 71 non-redundant

conserved human/yeast complex pairs, aligning each human

complex to the yeast interactome and vice versa (see Materials and

Methods). We determined the complex- and protein-level perfor-

mance as in the interactome to interactome alignment benchmark,

again using cross-evaluation to avoid parameter overfitting (see

Materials and Methods and Fig. S1B). Using the respective default

parameters (Table S3), we found that NetAligner could correctly

identify as the top-ranked significant solution 55% of the query

complexes with a precision of 81%, on average. These figures

decrease to 45% and 54%, respectively, when assessing the quality

of the alignment solutions found, using the number of correctly

identified protein complex components as a measure of perfor-

mance (Fig. 2B). In this case, our methodology also significantly

outperforms the current standard in the field, IsoRank [14] for this

particular task, doubling both precision and recall, with p-values

ranging from 3:5:10{21 to 5:2:10{5, with one insignificant

increase of recall from 20.3% to 37.5% for the yeast vs. human

comparison (p-value = 0.05). Here, the large increase in perfor-

mance comes from NetAligner being able to address the

incompleteness of current interactomes through the prediction of

likely conserved interactions beyond what is possible with gaps and

mismatches alone. Indeed, NetAligner was only able to outper-

form IsoRank once we activated the option to predict likely

conserved interactions, underlining the importance of this novel

functionality. We would like to highlight that NetAligner only

produces 0.71 significant solutions per complex on average,

meaning that its statistical assessment of the results is indeed very

good at avoiding the identification of partial complexes.

An example of the biological applicability of complex to

interactome alignment is the DNA polymerase a – primase

machinery, which we retrieved when aligning the set of human

complexes to the yeast interactome (alignment solution p-

value = 6:6:10{4). This complex is highly conserved and the only

eukaryotic DNA polymerase that can initiate DNA synthesis de

novo [36]. The alignment solution between the human and yeast

complexes, not detected by IsoRank (i.e. IsoRank correctly

matched only one protein, DPOLA (human) to DPOA (yeast)),

shows many conserved interactions between their components,

suggesting a similar topology in the two species (Fig. 3B). In

addition, NetAligner predicted the interaction between the two

primase subunits PRI1 and PRI2 in yeast, as well as the self-

interaction of DPOA2, to be likely conserved in human, proposing

new interactions to be tested experimentally. The inclusion of the

yeast DNA polymerase d and f subunits DPOD and DPOZ in the

alignment suggests that, if needed, they might be able to substitute

for the DNA polymerase a subunit DPOA, or a potential cross-talk

between the different DNA polymerases in yeast (Fig. 3B). Indeed,

Pavlov et al. [37] reported evidence that errors made by DNA

polymerase a during lagging strand replication are corrected by

DNA polymerase d. Thus, NetAligner is both able to identify

conserved complex topologies, as well as suggest likely conserved

interactions and cross-talk events between similar protein

complexes.

Pathway to interactome alignment
A similar procedure can be applied to identify biological

pathways of arbitrary topology and complexity in whole species

interactomes, and to assess pathway conservation across different

organisms or to identify alternative pathways and backup circuits

within a given species. To assess alignment performance in this

task, we compiled a benchmark set of 19 human/fly, 32 human/

yeast and 13 fly/yeast non-redundant conserved pathway pairs

(see Materials and Methods and Table S4), since these are the three

model organisms with the best coverage of their interactomes and

annotation of biological pathways. We aligned each pathway of a

given species to the interactomes of the other two organisms and

considered only the highest-ranked significant alignment solution

for each query pathway, evaluating algorithm performance on the

pathway-, protein- and interaction level and using cross-evaluation

to avoid overfitting (see Materials and Methods and Fig. S1C). Using

the given default parameters (Table S3), NetAligner correctly

identified a significant solution for 55% of the query pathways with

a precision of 80%, obtaining very similar results as for the

complex to interactome alignment task, despite the much higher

variation in the topologies of pathways. These figures decrease to

38% and 60%, respectively, when assessing the quality of the

alignments, using the number of correctly identified protein

components as a measure of performance (Fig. 2C and Fig. S3).

Again, our methodology significantly outperforms the current

standard in the field [14], with two notable but insignificant

increases of recall for the yeast/fly and yeast/human pairs, while

requiring only a fraction of the runtime (on average: IsoRank 46 s,

NetAligner 5 s). Like in complex to interactome alignment,

predicting likely conserved interactions turned out to be crucial

in outperforming IsoRank, again highlighting the importance of

this novel approach at addressing the large number of missing

interactions in current interactome networks. NetAligner always

finds less than a handful of significant alignment solutions per

query pathway (in most cases only one), showing a good

discretization of the complex interaction space into functional

subnetworks.

A clarifying example of the potential of this functionality is the

identification and alignment of fly pathways within the human

interactome, where we recovered 13 out of the 19 conserved

human pathways (68%) without any manual intervention. One of

these was the PI3K-AKT-IKK signalling pathway (alignment

solution p-value = 2:6:10{2), which is an important positive

regulator of the transcription factor NF-kB, resulting in the

transcription of anti-apoptotic genes [38]. In this three-step

signalling cascade, phosphatidylinositol-3 kinase (PI3K) phosphor-

ylates protein kinase B (AKT), which then activates I-kB kinase

(IKK), followed by phosphorylation and degradation of the NF-kB

inhibitor I-kB. While in fly there exists only one AKT (AKT1) and

one IKK isoform (IKKB), the human genome encodes three

closely related isoforms AKT1-3 [38], as well as two highly similar

isoforms IKKA and IKKB [39]. While NetAligner was able to

automatically recover ten out of the sixteen known protein

components of this pathway in human, IsoRank correctly matched

only two proteins (AKT1 (fly) to AKT3 (human) and O18683 (fly)

to P55G (human)). In addition to highlighting parts of the pathway

that are identical in the two species (Fig. 3C), NetAligner also

predicts that the interaction between human IKKA and IKKB is

likely conserved in fly, suggesting an IKKB homo- to IKKA/

IKKB heteromultimer evolution somewhere on the lineage from

fly to human. In contrast, both the missing interaction between

human IKKB and AKT2, as well as the indirect interactions

between IKK and AKT3 (represented as gaps in the alignment)

found by NetAligner, propose different roles for the three AKT

isoforms in cell signalling (Fig. 3C). Indeed, the three correspond-

ing genes were found to exhibit different expression profiles [40]

and AKT2 amplification is by far the most frequent aberration of

AKT genes in human cancer [38]. These findings illustrate the

ability of NetAligner not only to uncover conserved pathway

regions but, perhaps more importantly, its capacity to generate

hypotheses for investigating differences in pathway topology and

alternative signalling routes.
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Concluding remarks
We have presented a novel network alignment algorithm that

addresses the limitations of existing tools, with an emphasis on

being widely applicable by featuring fast alignment of small query

pathways or complexes to species interactomes and of whole

interactome networks. NetAligner is able to perform both inter-

and intra-species alignment of networks of arbitrary topology and

to accurately model evolutionary duplication events by supporting

one-to-many and many-to-many homology relationships. This in

turn allows the identification of conserved cellular pathways and

protein complexes between species as well as alternative signaling

routes to a given pathway in the same organism. In addition to

addressing the issue of false positives through interaction

reliabilities, this is the first network alignment algorithm to offer

the prediction, based on evolutionary distances, of likely conserved

interactions to counter the high amount of missing interactions in

current interactomes, which markedly improved the performance

of our program in complex/pathway to interactome alignment.

This, together with its fast assessment of the statistical significance

of alignment solutions and a user-friendly front-end, makes it

attractive for large-scale network comparisons. In addition, since

there does not yet exist an established benchmark set for network

alignment strategies, we would like to encourage the network

biology community to consider our benchmark suite for future

performance evaluations.

Similar to comparative genomics, which resulted in a deeper

understanding of genome function, organisation and evolution, we

expect comparative interactomics to vastly increase our knowledge

of cellular events, their evolution and adaptation to changing

environmental conditions or induced stimuli. With the ever

increasing number of interactome networks, accurate network

alignment methods will be paramount to identify common

modules and varying regulatory elements, draw evolutionary trees

based on complete cellular processes and study how certain

metabolic or signalling pathways have emerged.

Materials and Methods

Datasets of protein sequences
We collected protein sequences for human (H. sapiens), fly (D.

melanogaster) and yeast (S. cerevisiae) from UniProt release 15.0 [41]

by merging the set of sequences stored in Swiss-Prot (including

splice variants) and TrEMBL with experimental evidence on

protein or transcript level. After clustering by 100% sequence

identity, we ended up with non-redundant sets of 75,981 human,

23,296 fly and 6,121 yeast protein sequences.

Lists of orthologous proteins
We determined lists of orthologous proteins for all three species

combinations by performing a reciprocal BLASTP [19] search,

requiring an E-valuev10{10 and considering only hits in the

top10 of the BLASTP output to remove spurious hits. This

resulted in non-redundant sets of 91,112 human/fly, 19,558

human/yeast and 12,778 fly/yeast orthologs.

Computation of vertex probabilities
We computed the probability of each alignment graph vertex

A=A0 as the posterior probability of the two proteins A and A0

being homologous given their BLASTP E-value EA=A0 . This

calculation is based on the likelihood ratio of observing the

respective E-value under a homology model H and a null model

N (see Fig. S4). The null model consists of all pairs of proteins

between the two species, while the homology model consists only

of the subset of homologous pairs. We calculated the posterior

probability using Bayes’ theorem:

Pv HjEA=A0
� �

~
P EA=A0 jH
� �

P EA=A0 jN
� � :P(H)

with the prior probability set to:

P(H)~1=max
X=X 0

P EX=X 0 jH
� �

P EX=X 0 jN
� �

0
@

1
A

such that the pair of homologous proteins X=X 0 with the highest

likelihood ratio is assigned a vertex probability of 1 (default

parameter). We binned raw E-values based on their order of

magnitude and smoothed the likelihood ratios using monotone

regression (pool adjacent violators algorithm (PAVA) [10]).

Construction of whole organism interactomes
We built whole organism interactome networks for human, fly

and yeast from the interaction databases IntAct [42], MINT [43]

and HPRD (for human) [44]. We assigned a reliability to each

interaction based on the number of publications supporting it [10].

This resulted in non-redundant interactomes consisting of 53,290

interactions in human, 19,260 in fly and 60,721 in yeast.

Estimation of evolutionary distances
We estimated evolutionary distances (or divergence in case of

intra-species network alignment) between homologous proteins as

the number of amino acid substitutions per site d , calculated from

the fraction of identical residues q using the general equation

derived by Grishin [45] that accounts for substitution rate

variations both between different types of amino acids and

between different sites:

d~
ln(1z2d)

2q

We solved this equation numerically by iteration, using

d~
1

q
{1, which allows for the substitution rate to vary only among

sites, as the starting point, until the difference between subsequent

estimates of d was smaller than 10{10 (default parameter).

Calculation of interaction conservation probabilities
Given two species interactomes, for each pair of homologs

(A=A0,B=B0) that interact in at least one of the interactomes, we

calculated the probability P C
A=A0,B=B0

Dd

� �
~P CjDdA=A0 ,B=B0

� �
of

the respective interaction being conserved as the posterior

probability of interaction conservation given the difference

DdA=A0,B=B0 between the evolutionary distances of A and A0, and

B and B0. This calculation is based on the likelihood ratio of

observing the respective Dd under a conservation model C (all

pairs of homologs with a conserved interaction) and a null model

N (106 random pairs of homologs; see Fig. S5). We calculated the

posterior probability using Bayes’ theorem:

P CjDdA=A0,B=B0
� �

~
P DdA=A0 ,B=B0 jC
� �

P DdA=A0 ,B=B0 jN
� � :P(C)

with the prior probability set to:
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P(C)~0:9= max
X=X 0 ,Y=Y 0

P DdX=X 0 ,Y=Y 0 jC
� �

P DdX=X 0 ,Y=Y 0 jN
� �

0
@

1
A

such that the pair of homologous proteins (X=X 0,Y=Y 0) with the

highest likelihood ratio is assigned an interaction conservation

probability of 0.9 (default parameter). Likelihood ratios were

smoothed using monotone regression (PAVA [10]).

Computation of edge probabilities
We computed the probability of an edge e between the vertices

A=A0 and B=B0 of a given alignment solution depending on the

respective edge type:

PA=A0 ,B=B0
e ~

P eA,B
Q ,e

A0=B0
T

� �
| eA,B

Q |e
A0=B0
T

� �
,C

A=A0 ,B=B0
Dd

� �� �
:

(likely) conserved (i)

P
T

eQ[SWP A,Bð Þ
eQ,

T
eT [SWP A0=B0ð Þ

eT

0
@

1
A :

gap=mismatch (ii)

8>>>>>>>><
>>>>>>>>:

with eQ and eT being edges in the query and target network,

respectively, and eA,B
Q and eA0 ,B0

T direct interactions. C
A=A0,B=B0
Dd

denotes the event that the given direct interaction between A and

B or between A0 and B0 is conserved according to the difference of

the evolutionary distances Dd , while SWP A,Bð Þ and SWP A0,B0ð Þ
refer to the shortest weighted path between A and B, and between

A0 and B0, respectively. Assuming mutual independence of all

terms (based on the general notion that individual interaction

conservation probabilities and interaction reliabilities do not

depend on each other):

P eA,B
Q ,e

A0=B0
T

� �
| eA,B

Q |e
A0=B0
T

� �
,C

A=A0 ,B=B0
Dd

� �� �

~P eA,B
Q

� �
:P e

A0=B0
T

� �
z

P C
A=A0 ,B=B0
Dd

� �
: P eA,B

Q

� �
zP e

A0=B0
T

� �
{2:P eA,B

Q

� �
:P e

A0=B0
T

� �� �
ðiÞ

with P eA,B
Q

� �
and P e

A0=B0
T

� �
as interaction reliabilities, and

P C
A=A0 ,B=B0
Dd

� �
calculated as defined above;

P
\

eQ[SWP A,Bð Þ
eQ,

\
eT [SWP A0,B0ð Þ

eT

0
B@

1
CA~

PeQ[SWP A,Bð ÞP eQ

� �
:PeT [SWP A0,B0ð ÞP eTð Þ

ðiiÞ

with P eQ

� �
and P eTð Þ denoting interaction reliabilities.

Calculation of the statistical significance of alignment
solutions

We calculate p-values for all alignment solutions based on

random backgrounds of 10,000 scores each (default parameter),

which we generate independently for each alignment solution by

randomly sampling vertex probabilities and interaction conserva-

tion probabilities of the given species, as well as interaction

reliabilities of the given input networks (Monte-Carlo permutation

test). Our sampling procedure and calculation of random scores

respect edge types and preserve alignment solution topologies. To

assess the significance of the conservation of interactions rather

than the conservation of proteins [13], we do not randomize

homology relationships.

Non-redundant benchmark sets of complexes and
pathways

We constructed a non-redundant benchmark set of conserved

human/yeast complex pairs by collecting all manually-curated

yeast complexes from MPACT [46] and all human complexes

from CORUM [47] whose components are fully present in the

interactomes. Since some complexes are known to share

components, to avoid artificially inflating alignment performance,

we then clustered those complexes based on the overlap of their

components with the distance between two complexes c1 and c2

defined as:

d(c1,c2) ~ 1{
c1\c2j j

max c1j j, c2j jð Þ

and a distance threshold of 0.5. Similar to [28], we determined the

list of conserved complexes by requiring at least 2 and 25% of the

components of the given human complex to have at least one

ortholog in the respective yeast complex and vice versa. We

determined cluster-pair representatives by minimising the number

of unmatched components and maximising the number of

matched components in case of ties. This resulted in 71 conserved

human/yeast complex pairs, consisting of 64 non-redundant

human and 52 non-redundant yeast complexes (Table S1). We

limited our complexes benchmark set to human and yeast, because

there do not yet exist any curated databases of protein complexes

for other species.

We analogously constructed a non-redundant benchmark set of

conserved pathways between human, fly and yeast based on all

KEGG [48] pathways for which at least two thirds of the proteins

are present in the interactomes (only six human and fly pathways

are completely present), transforming protein-protein (PPrel) and

enzyme-enzyme (ECrel) relationships into binary interactions. We

clustered those pathways based on the overlap of their interactions

as defined above for complexes. We determined conserved

pathways between two species based on pathway names, which

is a controlled vocabulary in KEGG. This resulted in non-

redundant sets of 19 human/fly, 32 human/yeast and 13 fly/yeast

conserved pathway pairs (Table S4). We restricted our pathways

benchmark set to human, fly and yeast, since those three

organisms have the best interactome coverage and annotation of

biological pathways.

Benchmark evaluation and determination of default
parameters

We performed complex, pathway and interactome to inter-

actome alignment benchmarks using the non-redundant bench-

mark sets described above and considering only significant

alignment solutions (standard p-value threshold of 0.05). For the

interactome to interactome alignment benchmark, we determined

the best matching benchmark complex for each significant

alignment by minimizing the total number of unmatched proteins.

Using a similar evaluation criterion as in [49], an alignment

solution was deemed to ‘cover’ a given target complex if at least 2

and at least 50% of the target complex components were aligned.

We then calculated the number of true positives (TP) as the

number of distinct complexes covered; the number of false
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positives (FP) as the number of alignment solutions that do not

cover any complex; and the number of false negatives (FN) as the

number of complexes that are not covered. Next, we computed the

complex-level performance in terms of precision, recall and F

measure:

precision~
TP

TPzFP
; recall~

TP

TPzFN
; F~

2:precision:recall

precisionzrecall

To assess the protein-level performance and thus the quality of the

alignment solutions found, we determined the overlap between

each alignment solution and the respective complex it covers,

setting TP to the total number of distinct proteins in all overlaps;

FP to the total number of distinct proteins unique to alignment

solutions; and FN to the total number of distinct proteins unique to

covered complexes. We calibrated the NetAligner parameters

based on the highest average F measure of the complex- and

protein-level results separately for each species pair and, to avoid

overfitting, cross-evaluated the performance using those distinct

parameter sets over all species pairs, reporting average precision

and recall (see Fig. S1). Please note that, although the NetAligner

algorithm itself is symmetric, alignment results depend on the

order of the species (e.g. human vs. yeast or yeast vs. human), since

the vertex probabilities are based on proteome-wide BLAST E-

values, which in turn depend on the sequence composition of the

target species proteome. More importantly, in our benchmarks,

alignment solutions are always evaluated using the known

conserved complexes/pathways of the given target species. We

therefore measured the NetAligner performance always in both

alignment directions. For the complex to interactome alignment

benchmark, we built a network representation of each complex,

taking interactions from the respective interactome and added self-

interactions with a reliability of 0 for all singletons in order to not

lose any information about complex composition. Here, we

evaluated only the highest ranked significant alignment solution

and calculated the complex- and protein-level performance as

described above. Finally, for the pathway to interactome

alignment benchmark, we again considered only the highest-

ranked significant alignment solution, which was deemed to cover

a pathway if it contained at least 2 and at least 1/3 of the pathway

proteins (to compensate for the prevalence of transient interac-

tions, which are underrepresented in current interactome networks

[50]). We calculated the pathway-, protein- and interaction-level

performance analogously to the complex- and protein–level

performance described above. In case of the interaction-level

performance, we evaluated the interaction overlap between each

alignment solution and the respective pathway it covers, and

calibrated the NetAligner parameters based on the highest average

F measure of the pathway-, protein- and interaction-level results.

We again cross-evaluated the performance over all species pairs to

avoid overfitting and report average precision and recall (Fig. S1).

For each alignment task, we determined the set of default

parameters as those leading to the highest average F measure

over all evaluation levels and species pairs (Table S3). For the

performance comparison, both NetworkBLAST [12] and IsoRank

[14] were run with their respective default parameters, using the

same datasets of interactions, lists of orthologous proteins and

BLAST E-values [19]. Since the different alignment tasks

benchmarked in this work require different alignment strategies,

we applied NetworkBLAST and IsoRank only to the tasks for

which they have been designed for, i.e. IsoRank for complex/

pathway to interactome alignment, and NetworkBLAST for the

identification of conserved complexes through interactome to

interactome alignment. Please, note that the default parameters

implemented in these alignment algorithms are already fine tuned

to achieve a maximum accuracy for whole interactome compar-

isons and complex/pathway to interactome alignment, respective-

ly. In contrast, since NetAligner can be used for both global and

local network alignment, we first needed to determine the default

parameters for each type of alignment task as described above.

Nevertheless, since we used the average F-measure over all

evaluation levels and species pairs, the NetAligner default

parameters are only tuned for the given alignment task rather

than for a specific benchmark set. Moreover, we did not use the

newer implementations of NetworkBLAST and IsoRank (i.e.

NetworkBLAST-M [51] and IsoRankN [52]), since they are

intended for multiple network alignments, rather than pairwise

comparisons.

Supporting Information

Figure S1 NetAligner cross-evaluation performance in
different alignment tasks. Cross-evaluation performance of

NetAligner (blue) measured in A) interactome to interactome, B)

complex to interactome and C) pathway to interactome alignment

benchmarks in comparison to the current standard in the field

(grey). Precision and recall are shown on the complex/pathway

and protein level for all three alignment tasks, and for pathway to

interactome alignment also on the interaction level (see Materials

and Methods). The given species pair used for parameter calibration

is highlighted (e.g. H/Y for human vs. yeast). NetworkBLAST and

IsoRank were run with default parameters. Error bars denote one

standard error of the mean performance across all species pairs in

the benchmark.

(PDF)

Figure S2 Predicting likely conserved interactions in
interactome to interactome alignment recovers higher
order assemblies. Alignment solution example for human to

yeast interactome alignment, using the default parameters when

predicting likely conserved interactions (Table S3). Here, the

known interaction between PSA1 of the 20S core particle of the

yeast proteasome and RPN10 of the 19S regulatory particle is

predicted to be likely conserved in human between PSA1 and

PSMD4, suggesting that the complete 26S proteasome is

conserved in those two species. Performing interactome to

interactome alignment with NetAligner, predicting likely con-

served interactions, is thus able to identify conserved higher order

assemblies, such as the 26S proteasome. Vertices represent pairs of

orthologous proteins, while edges denote either conserved (green)

or direct interactions in yeast (yellow) that are likely conserved in

human. The similarity of aligned proteins on the sequence level is

represented by the respective vertex probability, ranging from 0

(dissimilar; white) to 1 (highly similar; blue/yellow).

(PDF)

Figure S3 NetAligner interaction-level performance in
pathway to interactome alignment using default param-
eters. Interaction-level performance of NetAligner (blue) measured

in the pathway to interactome alignment benchmark (see Materials and

Methods) in comparison to the current standard in the field, IsoRank

(grey). Precision and recall are shown separately for each species pair

(e.g. H/Y for human vs. yeast), using default parameters. We

calculated the statistical significance of the performance differences

using a two-sided Fisher’s exact test (with a standard p-value

threshold of 0.05) and marked all significant values with an asterisk.

(PDF)

Figure S4 Empirical distributions of BLAST E-values
for estimating vertex probabilities. Empirical probability
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distributions of BLASTP [19] E-values used for the Bayesian

estimation of vertex probabilities (see Materials and Methods) for all

species pairs. The Null model (all pairs of proteins between the two

given species) is shown in purple, while the Homology model

(subset of orthologous pairs of proteins) is shown in green. The

probability for the Homology model drops to zero at a BLASTP

E-value of 10210, since having an E-value below that threshold is a

requirement in our definition of orthology (see Materials and

Methods).

(PDF)

Figure S5 Empirical distributions of the differences of
evolutionary distances for estimating interaction con-
servation probabilities. Empirical probability distributions of

the differences of evolutionary distances used for the Bayesian

estimation of interaction conservation probabilities (see Materials

and Methods) for all species pairs. The Null model (106 random pairs

of orthologs between the two given species) is shown in purple,

while the Conservation model (all pairs of orthologs with a

conserved interaction) is shown in green.

(PDF)

Table S1 Non-redundant benchmark set of protein
complexes. List of 71 matching human/yeast complex pairs,

consisting of 64 non-redundant human complexes from the

CORUM database (Ruepp et al., 2010) and 52 non-redundant

yeast complexes from the MPACT database (Güldener et al.,

2006). Complex components are given as UniProt accession codes.

The individual lists of 64 and 52 non-redundant human and yeast

complexes are given on the following two sheets. The induced

complex networks that we constructed for the complex to

interactome alignment benchmark can be found in the NetAligner

program package.

(XLS)

Table S2 Benchmark set statistics and NetAligner
performance. Basic statistics on the total number of complexes

and pathways present in the benchmark set, as well as the range

and average number of protein components of those complexes

and the range and average number of proteins and interactions in

those pathways. The following sheets present the detailed statistics

about the performance of NetAligner in interactome to inter-

actome, complex to interactome and pathway to interactome

alignment (using the respective default parameters), including the

range and average number of proteins and interactions of

benchmark complexes and pathways that were recovered. The

+/2 indicates standard deviations. For each alignment task, after

showing the results when predicting likely conserved interactions,

we also present the results without predictions.

(XLS)

Table S3 Default parameters and expected average
performance for different alignment tasks. Default

parameters for interactome, complex and pathway to interactome

alignment, which can be set in the given input parameter file for

NetAligner. For interactome to interactome alignment, we show

the default parameters both for alignments excluding (0) and

including (1) the prediction of likely conserved interactions, since

they lead to a similar benchmark performance and the latter

allows the identification of higher order assemblies (such as the

26S proteasome; Supplementary Fig. 2), which might be desired in

certain cases. Below each set of parameters, we provide the

corresponding expected average performance (calculated across all

species pairs used in the benchmarks) in terms of precision and

recall on the complex/pathway, protein and/or interaction levels,

depending on the given alignment task (see Materials and Methods).

(DOC)

Table S4 Non-redundant pathways benchmark set. List

of 19 human/fly, 32 human/yeast and 13 fly/yeast non-redundant

conserved pathway pairs originating from the KEGG database

(Kanehisa et al., 2000). The 32 human/yeast and 13 fly/yeast

pathway pairs are given on the following two sheets. The binary

interaction network representations of these pathways that we

constructed for the pathway to interactome alignment benchmark

can be found in the NetAligner program package.

(XLS)
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19. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res 25: 3389–3402.

20. Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, et al. (2008) High-

quality binary protein interaction map of the yeast interactome network. Science

322: 104–110.

Comparative Alignment of Biological Networks

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e31220



21. Teichmann SA (2002) The constraints protein-protein interactions place on

sequence divergence. Journal of Molecular Biology 324: 399–407.

22. Cesareni G, Ceol A, Gavrila C, Palazzi LM, Persico M, et al. (2005)

Comparative interactomics. FEBS LETTERS 579: 1828–1833.

23. Pazos F, Valencia A (2002) In silico two-hybrid system for the selection of

physically interacting protein pairs. Proteins 47: 219–227.

24. Juan D, Pazos F, Valencia A (2008) Co-evolution and co-adaptation in protein

networks. FEBS LETTERS 582: 1225–1230.

25. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002)

Evolutionary rate in the protein interaction network. Science 296: 750–752.

26. Chen Y, Dokholyan NV (2006) The coordinated evolution of yeast proteins is

constrained by functional modularity. Trends Genet 22: 416–419.

27. Cootes AP, Muggleton SH, Sternberg MJE (2007) The identification of

similarities between biological networks: application to the metabolome and

interactome. Journal of Molecular Biology 369: 1126–1139.

28. Pache RA, Zanzoni A, Naval J, Mas JM, Aloy P (2008) Towards a molecular

characterisation of pathological pathways. FEBS LETTERS 582: 1259–1265.

29. Zhenping L, Zhang S, Wang Y, Zhang X-S, Chen L (2007) Alignment of

molecular networks by integer quadratic programming. Bioinformatics 23:

1631–1639.

30. Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s

functional organization. Nat Rev Genet 5: 101–113.

31. Dijkstra EW (1959) A note on two problems in connexion with graphs.

Numerische Mathematik 1: 269–271.

32. Hirsh E, Sharan R (2007) Identification of conserved protein complexes based

on a model of protein network evolution. Bioinformatics 23: e170–176.

33. Cheng Y (2009) Toward an atomic model of the 26S proteasome. Curr Opin

Struct Biol 19: 203–208.

34. Cope GA, Deshaies RJ (2003) COP9 signalosome: a multifunctional regulator of

SCF and other cullin-based ubiquitin ligases. Cell 114: 663–671.

35. Wei N, Serino G, Deng X-W (2008) The COP9 signalosome: more than a

protease. Trends Biochem Sci 33: 592–600.

36. Foiani M, Lucchini G, Plevani P (1997) The DNA polymerase alpha-primase

complex couples DNA replication, cell-cycle progression and DNA-damage

response. Trends Biochem Sci 22: 424–427.

37. Pavlov YI, Frahm C, Nick McElhinny SA, Niimi A, Suzuki M, et al. (2006)

Evidence that errors made by DNA polymerase alpha are corrected by DNA

polymerase delta. Curr Biol 16: 202–207.

38. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in

human cancer. Oncogene 24: 7455–7464.
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