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Fundamental differences between glassy dynamics
in two and three dimensions
Elijah Flenner1 & Grzegorz Szamel1

The two-dimensional freezing transition is very different from its three-dimensional

counterpart. In contrast, the glass transition is usually assumed to have similar characteristics

in two and three dimensions. Using computer simulations, here we show that glassy

dynamics in supercooled two- and three-dimensional fluids are fundamentally different.

Specifically, transient localization of particles on approaching the glass transition is absent

in two dimensions, whereas it is very pronounced in three dimensions. Moreover,

the temperature dependence of the relaxation time of orientational correlations is decoupled

from that of the translational relaxation time in two dimensions but not in three dimensions.

Last, the relationships between the characteristic size of dynamically heterogeneous regions

and the relaxation time are very different in two and three dimensions. These results strongly

suggest that the glass transition in two dimensions is different than in three dimensions.
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I
n two-dimensional (2D) solids, thermal fluctuations destroy
crystalline order, displacement correlations increase logarith-
mically and density correlations decay according to power

laws1,2. However, there can be long-range bond-orientational
order in 2D2. The transition from the 2D fluid phase to the solid
phase can occur in two steps with an intermediate phase
characterized by an exponential decay of the density
correlations and a power-law decay of the bond-orientational
correlations1,3. In contrast, in three-dimensional (3D) solids,
fluctuations do not destroy crystalline order4, and long-range
translational and rotational order emerge together at the freezing
transition.

Despite these differences between 2D- and 3D-ordered solids,
the formation of an amorphous solid on supercooling a fluid, that
is, the glass transition, is generally assumed to have similar
characteristics in 2D and 3D5. This assumption is reflected in the
trivial dimensional dependence of most glass transition theories6.

We show that structural relaxation of supercooled fluids in two
dimensions is different than in three dimensions. While we find
the transient localization often associated with glassy dynamics in
three dimensions, we do not find any transient localization in two
dimensions if we simulated systems large enough to remove any
finite size effects. Furthermore, the temperature dependence of
the bond-orientational correlation time is decoupled from that of
the translational relaxation time in two dimensions, but these
relaxation times have very similar temperature dependence in
three dimensions. Along with these differences in structural
relaxation, we also find that the characteristic size of regions of
correlated mobility, dynamic heterogeneities, increases faster with
the structural relaxation time in two dimensions than in three
dimensions, and these regions are more ramified in two
dimensions than three dimensions. Last, we show that the

structural relaxation and heterogeneous dynamics depends on the
underlying dynamics in two dimensions.

Results
Structural relaxation. To demonstrate the differences between
glassy dynamics in two and three dimensions, we focus on two
closely related glass-forming fluids: the 3D 80:20 binary
Lennard–Jones system introduced by Kob and Andersen7, and its
2D variant that has the same interaction potentials but a 65:35
composition to avoid crystallization8. To simulate the relaxation
in these systems, we used the standard Newtonian dynamics9. We
also simulated the 2D system using Brownian dynamics9 and we
comment on the differences between these two dynamics. See
Methods for the simulation details and the reduced units used to
present the results. We examined three other 2D glass formers
and one additional 3D glass former (see Methods for details of the
systems). We present some results for the additional 2D glass
formers in the main text and in Supplementary Material. The
figures showing results for the three additional glass formers are
labelled with the labels given in Methods, and figures without
labels show results for the Kob–Andersen mixtures.

In 3D, the dominant feature in the dynamics of deeply
supercooled glass-forming fluids is transient localization of
individual particles6, which is illustrated in the inset to
Fig. 1a. The transient localization results in characteristic
plateaus of the self-intermediate scattering function, Fsðk; tÞ ¼
N � 1h

P
n eik�½rnðtÞ� rnð0Þ�i (|k|¼ k¼ 7.2 in 3D and 6.28 in 2D),

shown in Fig. 1a, and the mean square displacement,
dr2ðtÞh i ¼ N � 1h

P
n½rnðtÞ� rnð0Þ�2i, shown in Fig. 1b. The

plateaus extend to longer and longer times on approaching the
glass transition. Similar plateaus are observed in the collective
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Figure 1 | Structural relaxation in two and three dimensions. (a) The self-intermediate scattering function Fs(k; t) for the 3D glass former for T¼ 1.0,

0.8, 0.7, 0.6, 0.55, 0.5 and 0.45 listed from left to right. The mode-coupling temperature T3D
c � 0:435. The inset shows a trajectory plot of one

small particle at T¼0.45 where the colour of the trajectory plot changes when the particle moves more than one large particle diameter s (length of the

black line) over a time of 0.1ta. (b) The mean square displacement hdr2(t)i for the 3D system showing the same temperatures as in a. (c) The bond-

orientational correlation function CQ(t) for the 3D glass former showing the same temperatures as in a. (d) The self-intermediate scattering function Fs(k;t)

for the 2D glass former for T¼ 1.0, 0.8, 0.7, 0.6, 0.5 and 0.45 listed from left to right. The inset shows a trajectory plot of a small particle, and no sudden

jumps are observed. (e) The mean square displacement hdr2(t)i for the 2D system showing the same temperatures as in d. (f) The bond-orientational

correlation function CC(t) for the 2D glass former showing the same temperatures as in d. (a–f) Results for the Kob–Andersen binary mixtures.
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scattering function, Fðk; tÞ ¼ N � 1h
P

n;m eik�½rnðtÞ� rmð0Þ�i, which
describes relaxation of the density field (not shown), and in the
correlation function quantifying bond-orientational correlations
in 3D, CQ(t), shown in Fig. 1c (see Methods for the definition of
CQ). Qualitatively similar slowing down of the translational and
bond-orientational relaxation in 3D glass-forming fluids is
analogous to the simultaneous appearance of translational and
rotational long-range order in 3D crystalline solids.

The transient localization observed in 3D glassy dynamics is
absent in 2D, as showed in the inset to Fig. 1d. Correspondingly,
there is no intermediate time plateau in the self-intermediate
scattering function in 2D (Fig. 1d). The final decay of Fs(k; t),
which in 3D is well described by a stretched exponential, is
replaced by a very slow decay in 2D. The intermediate time
plateau in the mean square displacement observed in 3D is
replaced by an extended sub-diffusive regime in 2D (Fig. 1e).

However, an intermediate time plateau is observed in the
correlation function quantifying bond-orientational correlations
in 2D, CC(t) (Fig. 1f; see Methods for the definition of CC).
Shown in Fig. 3a–c are Fs(k;T) and CC(t) for three additional 2D
glass formers and they behave similarly. Qualitatively different
behaviour of the translational and bond-orientational relaxation
in 2D glass-forming fluids is analogous to the absence of
the translational and the presence of the bond-orientational
long-range order in 2D solids1.

To quantify decoupling between translational and bond-
orientational relaxation, we compare the temperature dependence
of the relaxation times characterizing Fs(k;t) and C(Q,C)(t), where
Q and C refer to 3D and 2D correlation functions, respectively.
We define the translational relaxation time ta through the
relation Fs(k;ta)¼ e� 1 and the bond-orientational relaxation
time ty through C(Q,C)(ty)¼ e� 1. At the highest temperatures,
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Figure 3 | Translational and bond-orientational correlation functions in 2D. (a–c) The self-intermediate scattering function Fs(k;t) (solid lines) and the

bond-orientational correlation function CC(t) (dashed lines) for three additional systems in 2D. The labels denote which system, and the systems are

described in Methods. (d) The temperature dependence of the ratio of the bond angle relaxation time ty to the structural relaxation time ta.
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Figure 2 | Bond angle and translational relaxation times. (a) The ratio of the relaxation time for the bond-orientational correlation functions ty and the

self-intermediate scattering function ta for the 2D system (circles) and the 3D system (squares). The ratio ty/ta for the 3D system is approximately

constant and equal to 0.1–0.2 over the entire range of temperatures. The green circles are for Newtonian dynamics (ND) and the blue circles are results

for Brownian dynamics (BD). The error bars are the standard error computed from four independent trajectories. (b) The self-intermediate scattering

function Fs(k; t) (red lines) and the bond angle time correlation function CQ(t) (blue lines) rescaled by ta for the 3D system. (c) The self-intermediate

scattering function Fs(k;t) (green solid lines) and the bond angle time correlation function CC(t) (violet dashed lines) rescaled by ta for the 2D system.

(a–c) Results for the Kob–Andersen binary mixtures.
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the ratio ty/ta is less than one for both the 3D and the 2D glass
former (Fig. 2a). However, this ratio stays approximately constant
with decreasing temperature for the 3D glass former, but grows
monotonically for the 2D glass former. In Fig. 3a–c, we show
Fs(k;t) and CC(t) for three other 2D glass formers, which
demonstrates that the decoupling of the temperature dependence
of the translational and the bond-orientational relaxation time is
general feature of 2D glassy dynamics. In addition, in Fig. 2b,c, we
show that the final translational and orientational relaxation
satisfies the time–temperature superposition in 3D but not in 2D,
and we show corresponding figure for the 32:68 mixture
(see Methods) in 3D in Supplementary Fig. 1 and for 2D in
Supplementary Fig. 2. Figure 2c clearly demonstrates the
decoupling of the temperature dependence of the translational
and bond-orientational relaxation times in 2D.

Dynamic heterogeneities. The non-exponential decay of Fs(k;t) is
frequently attributed to the emergence of domains, referred to as

dynamic heterogeneities, in which the relaxation is spatially
correlated and significantly different (faster or slower) than the
average relaxation. While we find non-exponential decay in
Fs(k;t) for 3D and 2D glass formers, the nature of the decay is
very different and this difference is mirrored by differences in the
heterogeneous dynamics.

Shown in Fig. 4a–d are displacement maps showing the centre
of a four million particle simulation in 2D at T¼ 0.45. The maps
are created by colouring the particles, whose position is shown
at t¼ 0, according to the magnitude of their displacements
|rn(t)� rn(0)| between times 0 and t. The red particles have
moved a distance equal to or greater than the diameter of a larger
particle. There are large domains of particles that have moved less
than a particle diameter even at t¼ 10,000.

Considering the large dynamically heterogeneous regions in
Fig. 4a–d, it is unsurprising that we also find large finite size
effects. Shown in Fig. 4e is Fs(k;t) calculated for different size
systems at the same temperature as shown in Fig. 4a–d. A plateau
reminiscent of the plateau in 3D systems is present for the smaller
systems but gradually disappears with increasing system size.
Similar finite size effects are also evident in the mean square
displacement (Supplementary Fig. 3) and the inherent structure
dynamics (Supplementary Fig. 4).

To quantify dynamic heterogeneity shown in Fig. 4a–d,
we use a four-point structure factor S4(q;t)15 constructed from
overlap functions wn(a;t)¼Y(a� |rn(t)� rn(0)|), where Y( � ) is
Heaviside’s step function. The parameter a is chosen such that
N � 1h

P
n wnða; taÞi � Fsðk; taÞ, which results in a¼ 0.25 in 3D

and a¼ 0.22 in 2D. To characterize the slow domains, we
calculate S4ðq; tÞ ¼ N � 1h

P
n

P
m wnða; tÞwmða; tÞeiq�ðrnð0Þ� rmð0ÞÞi

(note that wn(a;t) restricts the sums over the particles that moved
less than a over a time t). The characteristic size of dynamically
heterogeneous regions is quantified through the dynamic
correlation length x4(t), which is determined from fitting S4(q; t)
for small q to the Ornstein–Zernicke form w4(t)/{1þ [qx4(t)]2}.
Here w4(t) is the dynamic susceptibility, which characterizes the
overall strength of the dynamic heterogeneity.

In Fig. 5a, we show the correlation between the translational
relaxation time, ta, and the dynamic correlation length calculated
at ta, x4(ta), for the 3D and 2D glass-forming fluids. While
for the 3D system we find that a power law is a poor description
for an extended range of ta, and a better description is
x4(ta)B[In(ta/t0)]2/3 (red line in Fig. 5b), we find that a power
law x4ðtaÞ � tba with b¼ 1.0±0.1 describes the full range of
results well for the 2D system. We show results for an additional
glass former in 2D and 3D, the 32:68 mixture, in Supplementary
Fig. 5. Note that similar power-law behaviour was observed in
simulations of 2D granular fluids10. In Fig. 5b, we show that the
relationship between the dynamic susceptibility and the dynamic
correlation length is fundamentally different in 3D and 2D. For
3D systems, w4(ta)Bx4(ta)3 at low temperatures, which implies
compact dynamically heterogeneous regions. For 2D systems,
we observe w4(ta)Bx4(ta)1.5, which suggests more ramified
dynamically heterogeneous regions, see Fig. 4d.

Dependence on the microscopic dynamics. Last, we discuss the
dependence of the long-time relaxation in 2D on the underlying
microscopic dynamics and two important consequences. In 3D,
an important finding is that the long-time dynamics does not
depend on the microscopic dynamics; the same long-time
dynamics has been observed in simulations using Newtonian7,
stochastic11, Brownian12 and Monte Carlo13 dynamics. This
result can be rationalized within the mode-coupling approach14.
Surprisingly, we find that in 2D the long-time dynamics is quite
different in the case of microscopic Newtonian and Brownian
dynamics. The results corresponding to the those shown in
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Figure 4 | Dynamic heterogeneities. (a–d) Displacement maps of the

centre of a system of 4 million particles that show the position of the

particles at t¼0 coloured by the displacement of the particle at a later time

t for T¼0.45. There are B250,000 particles in each map. The scale bar in

d corresponds to 100 larger particle diameters. (e) The self-intermediate

scattering function Fs(k; t) calculated for systems of 100 particles to 4

million particles. There are clear finite size effects for less than 1 million

particles. (a–e) Results are for the 2D Kob–Andersen mixture.
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Fig. 1d–f for the Newtonian case are shown in Fig. 6 for the
Brownian case. Notably, the decay of Fs(k;t) is strikingly different
for the Brownian simulations than for the Newtonian simulations.

Importantly, the temperature dependence of the translational
relaxation time is also decoupled from orientational relaxation
time in the case of Brownian dynamics (Fig. 2a) but the
ratio ty/ta is not as large for Brownian dynamics than for
Newtonian dynamics. In addition, we find a power-law relation-
ship x4ðtaÞ � tba between the dynamic correlation length and the
relaxation time but with b¼ 0.36±0.05, which is a different
exponent than obtained for Newtonian dynamics, see Fig. 5a.
However, we find that the relationship between the strength of
the dynamic heterogeneity and the dynamic correlation length in
2D is the same for Brownian and Newtonian dynamics, see
Fig. 5b. The latter two results show that the universality of the
relationships between the relaxation time and properties of
heterogeneous dynamics that we found in 3D15 is absent in 2D.
Furthermore, a full description of heterogeneous dynamics in 2D
must also include the influence of the microscopic dynamics, and
descriptions solely in terms of the structure or the potential
energy landscape are not sufficient in 2D.

Discussion
Glassy dynamics in 2D and in 3D are profoundly different. We
presented detailed results for one glass former and we verified

that the features of the translational relaxation and dynamic
heterogeneity are qualitatively the same for three additional 2D
glass formers. Our results call for a re-examination of the present
glass transition paradigm in 2D. We note that there is currently
no theoretical framework that accounts for the different dynamics
observed in the 2D glass-forming systems. However, we note that
the dynamic picture of the random first-order transition theory
breaks down for dimensions less than two, and has been
described as marginal for two dimensions16,17. Moreover,
insights gained from theoretical analysis of the 2D glassy
dynamics and glass transition might shed light onto slow
dynamics and the glass transition in 3D. It will also be
interesting to investigate if the differences between 2D and 3D
glassy dynamics are observable for glass-forming fluids in
confinement and at interfaces or surfaces, that is, for quasi 2D
systems.

Methods
Simulations. We simulated binary mixtures of Lennard–Jones particle in two and
three dimensions. The interaction potential is Vab(r)¼ 4Eab[(sab/r)12� (sab/r)6]
where EBB¼ 0.5EAA, eAB¼ 1.5EAA, sBB¼ 0.88sAA and sAB¼ 0.88sAA. The results
are presented in reduced units where sAA�s is the unit of length and EAA the unit
of energy. The unit of time for the Newtonian dynamics simulations is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2m=EAA

p

and the mass m is the same for both species. The Newtonian dynamics simula-
tions9 were performed using LAMMPS18 for the 2D and 3D simulations and
HOOMD blue for the 2D simulations19. The LAMMPS simulations were run in an
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NVE ensemble but there is significant energy drift for the HOOMD blue
simulations for the lowest temperatures. Therefore, we ran the HOOMD blue
simulations using an NVT Nosé–Hoover thermostat with a coupling constant
t¼ 10. We ran at least one LAMMPS NVE simulation at every temperature to
make sure that the conclusions did not depend on the thermostat. All the results
are averages over four or more production runs. The equations of motion for
the Brownian dynamics simulations9 are rn(t)¼ g� 1Fn(t)þ gn(t), where g¼ 1 is
the friction coefficient, Fn(t) is the force on particle n at time t and gn is a random
noise term. The random noise satisfies the fluctuation dissipation relation
ZnðtÞZmðt

0 Þ
� �

¼ 2kBTg� 1dðt� t
0 Þdnm1, where 1 is the unit tensor. The unit of

time for the Brownian dynamics simulation is s2g/EAA. The Brownian dynamics
simulations were run using a modified version of LAMMPS and our in house
developed code. Inherent structure trajectories were created by quenching
the system to the local potential energy minimum using the FIRE algorithm20.

We simulated 2D systems of 10,000 particles for TZ0.9 and 250,000 particles
for 0.5rTr0.8. At T¼ 0.45, we studied 4 million particles for the Newtonian
dynamics simulations, but 250,000 particles for the Brownian dynamics
simulations. We simulated 27,000 particles in 3D using Newtonian dynamics. To
check that the results are independent of the system size for each state point for the
2D Newtonian dynamic simulations, we ran 100,489 particle simulations and
checked to see if the results agreed with the 250,000 particle simulations. At
T¼ 0.45 they did not agree, and we increased the system size until we found
agreement between the 4 million particle system and an 8 million particle system.
For the 2D Brownian dynamics simulations, we found agreement between 10,000
particle simulations and 250,000 particle simulations for TZ0.45. For T¼ 0.4, we
found that a 100,489 particle simulation agreed with a 250,000 particle system.

We also examined the translational dynamics, bond-orientational and dynamic
heterogeneities for three additional systems in 2D and one additional glass-forming
system in 3D. The first system is the one studied in ref. 21 and consists of a
31.67:68.33 binary mixture with the potential Vab(r)¼ E(sab/r)12. The size ratios
are sAB¼ 1.1sAA and sBB¼ 1.4sAA. We simulated this system using 250,000
particles in 2D and 100,000 particles 3D. The number density r ¼ 0:719s� 2

AA in
2D and r ¼ 0:719s� 3

AA in 3D. The units for energy is E, length is sAA, time isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

AAm=E
p

, and temperature is E/kB. We denote this system with the label 32:68.
The second system was introduced in ref. 22, and consists of an 50:50

mixture of repulsive particles where the potential Vab(r)¼ E(sab/r)12. The size
ratios are given by sAB¼ 1.2sAA and sBB¼ 1.4sAA and the number density
r ¼ N=L2 ¼ 0:74718s� 2

AA . We simulated 250,000 particles for this second
additional system. The units for energy is E, length is sAA, time is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

AAm=E
p

and temperature is E/kB. We denote this system with the label 50:50.
The third system is the one introduced in ref. 23, which consists of

an 50:50 mixture of harmonic spheres with the interaction potential
Vab(r)¼ 0.5E(1� r/sab)2 for r � sab and Vab(r)¼ 0 otherwise. The size ratios are
given by sAB¼ 1.2sAA and sBB¼ 1.4sAA and r ¼ 0:699s� 2

AA . We simulated 250,000
particles for this third additional system. The units for energy is E, length is sAA

and time is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

AAm=E
p

. The unit for temperature is 10� 3E/kB. We denote this
system with the label Harm.

Bond-orientational correlation functions. To measure bond-orientational
relaxation times in 2D, we first define Cn

6ðtÞ ¼ ðNn
b Þ
� 1 P

m ei6ynmðtÞ, where ynm(t)
is the angle between particle n and particle m at a time t, Nn

b is the number of
neighbours of particle n, and the sum is over the neighbours of particle n at the
time t. The neighbours are determined through Voronoi tessellation3. The time
dependence of the bond angle correlations was monitored by calculating
CCðtÞ ¼ h

P
n C

n
6ðtÞ½Cn

6ð0Þ�
	i=h

P
n jCn

6ð0Þj2i, where * denotes the complex
conjugate.

To measure bond-orientational relaxation in 3D, we define
Qi

lmðtÞ ¼ ðNi
bÞ
� 1 P

j qlm½yijðtÞ;fijðtÞ�, where qlm(y,f) are the spherical
harmonics24 and the sum is over the neighbours of a particle i at a time t
determined through Voronoi tessellation. Next, we define the correlation
function QlðtÞ ¼ h½ð4pÞ=ð2lþ 1Þ�

P
i

Pl
m¼� l Qi

lmðtÞ½Qi
lmð0Þ�

	i. We calculated
CQ(t)¼Q6(t)/Q6(0) to monitor the decay of orientational correlations.

We note that the conclusions remain unchanged if we define neighbours as
being less than a distance equal to the first minimum of the pair correlation
function rather than through Voronoi tessellation.
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