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Methylation variabilities of inflammatory cytokines play important roles in the development of systemic lupus erythematosus
(SLE), rheumatoid arthritis (RA), and primary Sjögren’s syndrome (pSS). With heightened focus on personalized and precise
medicine, it is necessary to compare and contrast the difference and similarity of cytokine methylation status between the
3 most classic autoimmune diseases (AIDs). In this study, we integrated 5 Cytokine-Chips from genome-wide DNA
methylation datasets of the 3 kind of AIDs, delta-beta value was calculated for intergroup difference, and comprehensive
bioinformatics analyses of cytokine genes with aberrant methylations were performed. 125 shared differential methylation
variabilities (DMVs) were identified. There were 102 shared DMVs with similar methylation status; 3 hypomethylated
differential methylation regions (DMRs) across the AIDs were found, and all 3 DMRs were hypomethylated. DMRs
(AZU1, LTBR, and RTEL1) were likely to serve as activator in the inflammatory process. Particularly, AZU1 and LTBR
with hypomethylated TSS and first exon located in the promoter regions were able to trigger inflammation signaling cascades
and play critical roles in autoimmune tautology. Moreover, functional epigenetic module (FEM) algorithm showed that different
inflammatory networks are involved in different AIDs; 5 hotspots were identified as biologically plausible pathways in inducing
or perpetuating of inflammation which are epigenetically deregulated in AIDs. We concluded methylation variabilities among
the same cytokines can greatly impact the perpetuation of inflammatory process or signal pathway of AIDs. Differentiating the
cytokine methylation status will serve as valuable resource for researchers alike to gain better understanding of the epigenetic
mechanisms of the three AIDs. Even more importantly, better understanding of cytokine methylation variability existing
between the three classic AIDs will aid in identification of potential epigenetic biomarkers and therapeutic targets. This trial is
registered with ChiCTR-INR-16010290, a clinical trial for the treatment of rheumatoid arthritis with Warming yang and
Smoothening Meridians.

1. Introduction

Autoimmune diseases (AIDs) can result in the loss of
immune tolerance to self-antigens and involvement of
specific organ or multiple organs. AIDs affect ~8% of individ-
uals worldwide; annual incidence reported is still increasing

due to escalating environment pollution and improved
clinical diagnoses. The chronic nature of AID signifies a
heavy burden on economy and patients’ quality of life
[1, 2]. AIDs’ etiology is typically multifactorial. Aside from
genetics and environment factors, imbalance of inflamma-
tory mediator including cytokines and chemokines plays a
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critical role in the pathogenesis of AIDs. Cytokines can
form a complex cytokine regulatory network which affect
many important physiological functions of the human
body. Imbalance of the anti- or proinflammatory cytokines
can precipitate the development and perpetuation of
autoimmune processes and ultimately leads to progression
of AID.

DNA methylation of CpG dinucleotides is a well-studied
epigenetic mechanism; it interacts with other cellular regula-
tory components to regulate levels of gene expression instead
of by changing DNA sequence. Variability of gene expression
regulation may partly explain why a proportion of genetically
susceptible individuals do not manifest disease symptoms.
Epigenetic mechanism would be critical in understanding
the link between environmental factors, genetic influences,
development, and progression of diseases [3, 4]. Cytokine-
related genes have been demonstrated to be susceptible to
epigenetic regulation, such as essential genes for T-effector
pathways. Variability in DNA methylation levels contributes
to recruitment and expression balance of inflammatory
cytokines and to the development of AIDs. Identification
and quantification of methylation levels in AIDs would serve
as potential epigenetic biomarkers. Regulating methylation
level would also be a potential drug target for the develop-
ment of therapies.

AIDs share similar pathophysiology, subphenotypes,
and genetic factors but have their own unique clinical
manifestations in different patients [2]. In classic AIDs,
systemic lupus erythematosus (SLE), rheumatoid arthritis
(RA), and primary Sjögren’s syndrome (pSS), arthritis is
a common manifestation, but in RA patients, arthritis can
lead to bone erosion, which is not the case in most SLE and
pSS patients [5]. Several recent studies have assessed the
genome-wide DNA methylation profiling of SLE, RA, and
pSS; studies found that different clinical manifestations were
likely to be closely related to different methylation levels of
inflammatory cytokines. However, the specific differences
and relationships of the classic representatives of AIDs are
not fully studied.

In this study, we searched, merged, and selected a list
of cytokine-relevant genes which involved chemokines,
interferons, interleukins, lymphokines, transforming growth
factors, and tumor necrosis factors from Gene database and
employed a computational strategy by integrating multiple
Cytokine-Chip from genome-wide DNA methylation data-
sets of SLE, RA, and pSS. This study provides basis for future
research in exploring genetic association between SLE, RA,
pSS, and inflammation.

2. Materials and Methods

The workflow of this study was depicted in Figure 1.

2.1. Datasets. All methylated chip datasets used in this study
were retrieved from the Gene Expression Omnibus (GEO)
and the European Bioinformatics Institute (EBI). Then we
filtered the datasets via inclusion criteria as follows. (i) The
organism was human being and samples used to isolate
DNA belonged to peripheral blood; (ii) DNA methylation

status was detected by Illumina HumanMethylation450
BeadChip (450K Chip); (iii) raw data (.IDAT or .TXT
format) of enrolled dataset was available online.

2.2. Study Design and Subject Information. This study was
composed by three kinds of datasets of autoimmune diseases,
namely, dataset RA, dataset pSS, and dataset SLE. Each of
three all has two groups (case and control groups). Dataset
RA was sourced from GSE42861 [6] and consisted of 354
patients with RA, aged 51.15± 12.05, and 335 healthy indi-
viduals (age: 52.76± 11.45). This dataset was a Swedish
population-based case-control study, and the cases were
diagnosed by the American College of Rheumatology
(ACR) classification criteria for rheumatoid arthritis. Dataset
pSS was sourced from GSE75679 [7] and consisted of 48
patients with pSS (age: 56.54± 13.72) who fulfilled the
American-European Consensus Group (AECG) 2002 classi-
fication criteria for pSS [8]. The controls in this dataset were
50 healthy individuals (age: 55.04± 7.76) who were matched
with database of GSE42861 using random sample methods.
Dataset SLE was a collection of GSE59250 [9], GSE65097
[10], and GSE82218 [11]. And the diagnosis of SLE all was
performed according to ACR classification criteria for lupus
[12]. Details of subjects’ characteristics enrolled in this study
are shown in Additional File 1 Table S1. Finally, 684 patients
and 580 controls with autoimmune diseases were included in
our study and there is no statistical difference in gender and
age distributions in patients with autoimmune diseases and
controls, respectively (Figure S1 in Additional File 1).

2.3. Data Preprocessing. For each chip datasets, quality
control and data normalization were performed using the
minfi or ChAMP packages for R [13, 14]. And the following
quality criteria were performed: (i) failed probes’ ratio per
sample more than 10% or probes with <3% beads less than
5% of sample per probe must be discard; (ii) all probes
overlapped SNP loci from 1000 Genomes Project must be
removed [15]; (iii) all multihit probes and probes located in
Y chromosome were also discarded. After quality checking,
data was preprocessed using beta-mixture quantile dilation
normalization strategy [16].

2.4. Generation of Cytokine-Chips. In order to identify the
similarities and differences of three autoimmune diseases in
inflammation, we produced a Cytokine-Chip by annotation
methods. Firstly, we searched, merged, and selected a list of
cytokine genes which included chemokines, interferons,
interleukins, lymphokines, transforming growth factor, and
tumor necrosis factors from Gene database (https://www.
ncbi.nlm.nih.gov/gene/). There are 656 cytokine-relevant
genes in this gene list, and descriptions and characteristics
of these genes are shown in Additional File 2 and in
Additional File 1 Figure S2, respectively. Then we found
out all methylated probes in 450K Chip according to the gene
list above. So these found probes formed a new beadchip that
measured the DNA methylation of inflammation-relevant
genes. There were 9948 probes in it, and these probes covered
3393 GpG islands (34.11%), 684 shelves (6.88%), and 2254
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shores (22.66%), which are mainly located on chromosomes
1, 2, 6, and 19 (Additional File 1 Figure S2B and S2C).

2.5. Analysis of DMVs of Each Datasets. The previous analysis
has given 5 Cytokine-Chips for 5 chip datasets. Because data-
set RA and dataset pSS corresponded to one Cytokine-Chip,
but dataset SLE corresponded to three, we performed the
standard pipeline for RA and pSS, and SLE also conducted
meta-analysis based on the standard pipeline.

The standard pipeline to identify DMPs was accom-
plished using dmpFinder algorithm in minfi package
[13, 17]. We selected significant DMPs between cases
and controls after applying Benjamini-Hochberg method
(FDR< 0.05). But for dataset pSS, we used a stringent
method (the P value is corrected by Bonferroni method and
adj. P < 0 05, Δβ ≥ 0 01) due to its controls from stochastic

sampling. The meta-analysis was completed by Meta package
[18], and the P values of meta-analysis were corrected
through setting Benjamini-Hochberg-adjusted threshold of
0.05. DMRs, genomic regions with abnormal methylation
levels, were defined as clusters of probes having at least 2 con-
secutive probes within 1 kb distance in which methylations
were significantly enriched or depleted between two groups.
We identified DMRs (≥5 neighboring positions) and mapped
to human genome (hg19) using DMRcate method with R
package “ChAMP.” Meanwhile, we also performed stringent
threshold (adj. P < 0 05, Δβ ≥ 0 01) to reduce the potential
impact of extreme β value on methylation difference and to
identify potentially biologically important CpG sites.

2.6. Identifying Differences and Similarities of DNA
Methylation. The Δβ was used to assess differences and
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Figure 1: Workflow of methodology applied in this study. Step 1: the collection of methylated chip datasets of RA, pSS, and SLE and the
conduction of quality control and normalization. Step 2: the generation of Cytokine-Chips. Step 3: the investigation of cytokine-cytokine
interactome hotspots. Step 4: the integrative analysis for identifying differences and similarities on DNA methylation status across the 3
AIDs. Step 5: the GO and KEGG enrichment analysis of cytokine genes with aberrant methylation. QC, quality control; DMPs, differential
methylated positions; DMRs, differential methylation regions; 450K Chip: Illumina Infinium HumanMethylation450 BeadChip.
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similarities of DNA methylation among three disorders. The
Δβ was calculated by the following formula:

Δβ = βcase – βcontrol, 1

where βcase is the mean of beta value in the case group, and
βcontrol is the mean of beta value in the control group. The
methylation status was also defined by Δβ. When Δβ of a site
was negative, the site presented a status with hypomethyla-
tion, and we labeled it “HypoM”; when Δβ was positive, the
site shown a higher methylation level, and we labeled it
“HyperM”; when Δβ equaled to zero, it did not have a flag
due to the same methylation level between the cases and
controls. So we were able to identify the differences and
similarities of DNA methylation by the flags. The label of
one of the three diseases was identical, indicating that the
three diseases had similar methylation patterns, namely,
similarity, and other situations represented difference.

In this identification, null hypothesis was that there was
no significant difference in methylation status across the
three disorders. So we used ANOVAmodel to do the hypoth-
esis test, and the prior probability (P value) was corrected by
Benjamini-Hochberg method for the control of the false
discovery rate (FDR).

2.7. Analysis of Cytokine-Cytokine Interactome (CCI) and
Hotspots. To investigate whether different AIDs had different
CCI under DNA differential methylation status and identify
the autoimmune inflammatory hotspots, the FEM package
of R, of which the core algorithm was functional epigenetic
modules (FEM), was performed based on the differential
methylation status of key regions (e.g., TSS or 1st exon) and
PPI [19]. In our analysis, the default parameters were used:
the number of seeds was 100, the number of Monte Carlo
runs was 1000, and the minimum number of molecules was
10. Finally, we set the threshold for significance to be less
than 0.05.

2.8. Enrichment Analysis of Abnormal Methylated Gene Sets.
Differential methylated sites or regions, which were located
in the CpG islands and the neighbors, were annotated to
coding genes, and then they were submitted to Gene
Ontology (GO) enrichment analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis separately
using R package “clusterProfiler” [20].

2.9. Statistical Software. The statistical analysis was per-
formed by using R 3.4.1 (2017/06/30-Single Candle) and
Bioconductor 3.5 on windows system x64.

3. Results

3.1. Differential Methylation Variabilities of Inflammatory
Cytokines in SLE, RA, and pSS. The differential methylation
variabilities (DMVs) are DNA methylation sites or regions
with significant intragroup differences; DMVs includes
differential methylated positions (DMPs) and differential
methylation regions (DMRs). DMVs were the basic and
most studied in DNA methylation studies. We conducted
“dmpFinder” [13] and “DMRcate” [14] on the cytokine-

relevant HumanMethylation beadchip (the abbreviation
“Cytokine-Chip” will be used below) of the three AIDs
to found DMVs, respectively.

In the Cytokine-Chip of SLE, we found 1219 significant
DMPs that included 352 islands (28.88%), 323 shores
(26.50%), and 82 shelves (6.73%). Of these DMPs, 671
(55.05%) showed higher methylation status, 492 (44.95%)
were hypomethylated, and they corresponded to 492 genes
(additional pkg). Moreover, 75 DMRs were found including
82 genes which are mainly located on chromosomes 6, 12,
and 17, in which 33 DMRs were hypermethylated (44.0%)
and 42 DMRs were hypomethylated (56.0%).

There were 6707 DMPs in patients with RA, covering
3662 islands and island-surrounding regions (54.60%),
mapping to 689 genes and 2019 promoter-associated regions
(30.10%). Compared with healthy controls, 4211 (62.79%)
sites were significantly hypermethylated, and 495 (30.21%)
were significantly hypomethylated. We found 64 DMRs
including DMRs that were hypermethylated (48.4%) and
33 that were hypomethylated (51.6%).

In patients with pSS, 4716 DMPs were found in Cyto-
kine-Chip, covering 2946 islands and island-surrounding
regions (62.47%) and 1259 promoter-associated regions
(26.70%), mapping to 670 genes. 1489 (31.57%) hyper-
methylated sites and 3227 (68.43%) hypomethylated sites
were found in patients with pSS in comparison with health
controls. In addition, 172 DMRs were revealed in patients
with pSS including 217 genes with 24.4% (42/172) hyper-
methylated DMRs and 75.6% (130/175) hypomethylated
DMRs, and the top 3 most frequently located chromo-
somes of DMRs were chromosomes 6, 11, and 19. In all,
there are thousands of DMVs found in each of the three
diseases, and the specific information of these DMVs is
shown in Additional File 3 and the additional pkg. These
results also indicated that abnormal methylation of
inflammatory cytokine gene plays an important role in
SLE, RA, and pSS.

3.2. Differences of DMVs in CpG Islands of Inflammatory
Cytokines across SLE, RA, and pSS. Mammal CpG islands
are basic sequences that are rich in CG two-nucleotide
sequences and CpG dinucleotides, and the percentage of
CG must be greater than 50% in this sequence. Canonical
CpG islands have 300–3000 base pairs and have been
found in approximately 70% of promoters located near
the transcription start site (TSS) of a human gene such
as housekeeping gene, tissue-specific gene, and regulator
gene [21]. The methylation in CpG islands, as well as in
CpG island-surrounding regions which contain shores
and shelves, had strong correlation with the transcription
initiation and chromosome configuration [22] and affected
human health [23, 24]. Here, we defined the methylated
differences across SLE, RA, and pSS with two principles:
(i) there are statistical significances in the analyses of
DMVs; (ii) in all three disorders, at least one disorder has
a differential methylation status that is completely opposite
to the other two, namely, if there is a significant hypermethy-
lated site in SLE, then this site must be significantly decreased
in the other two diseases. The delta-beta value (Δβ) was
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applied to assess the methylated differences in CpG islands
across SLE, RA, and pSS, and the results were shown in
Additional File 4.

On the basis of DMV analysis, we predicted the promoter
region by using FANTOM project on the regions of CpG
islands and the neighbors (namely, shores and shelves). The
finding showed that the methylation status of DMPs in three
AIDs was significantly different: the methylation status of
promoter regions in the SLE was the lowest among the three
AIDs, and the methylation status of nonpromoters in pSS
was the lowest among the three AIDs (Figure 2(a)). It
indicated that the methylated differences of the inflammatory
cytokine genes did exist across SLE, RA, and pSS; thus, we
further compared the CpG islands and the neighbors com-
mon to all DMVs across the three diseases (Figures 2(b)
and 2(c)). Figures 2(b) and 2(c), respectively, depicted that
the three AIDs shared 43 DMPs in CpG islands and
72 DMPs in the CpG island-surrounding regions. There
were significant differences across SLE, RA, and pSS,
such as IL6R (P = 5 65E − 79), KLF10 (P = 2 69E − 75),
NR1H3 (P = 6 05E − 73), CMTM4 (P = 1 69E − 68), CD164
(P = 3 37E − 59), TNFRSF21 (P = 3 63E − 51), and STAT3

(P = 2 26E − 49). These 7 genes were all hypomethylated
in SLE but opposite in pSS (Additional File 4). Not
only that there are 10 methylated differences in the
shared DMRs, including hypermethylated CCR6, CMTM5,
IL10RA, IL21R, and IL32 in SLE and pSS but also hypo-
methylated in RA. These outcomes indicated that methyl-
ation differences may be one of the reasons leading to
different clinical manifestations and inflammatory damages
of AIDs.

3.3. Similarities of DMVs of Inflammatory Cytokines across
SLE, RA, and pSS. Abnormal methylations of cytokines gene
in several key regions, such as TSS, CpG islands, and the
neighbors, were likely to directly affect the transcription
and gene function and contributed to the downstream signal
network. We defined similarity and used it to describe
DMVs with similar methylation status in three AIDs to
find out the similarities of autoimmune inflammation
across SLE, RA, and pSS. Here, we found 99 similarities
of DMPs common to all three AIDs, and these DMPs
corresponded to 86 inflammatory cytokine genes, of which
the promoter of 32 genes had the same methylation status
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Figure 2: Identifying the differential methylation status of three AIDs in CpG islands and neighbor sites. (a) Distribution of methylation
status in promoters and nonpromoters across SLE, RA, and pSS, and the proportion of that was calculated using Pearson’s chi-squared
test; (b-c) Venn diagrams of DMPs in the sites of CpGs and the neighbors (shores and shelves) common to the three AIDs separately; (d)
heat map of 43 overlapping DMPs located in CpG islands; (e) heat map of 72 overlapping DMPs located in neighbors, and the detailed
results of the two heat maps were in Additional File 4. RA: rheumatoid arthritis; SLE: systemic lupus erythematosus; pSS: primary
Sjögren’s syndrome.
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(Figure S3). These cytokine genes may be involved in
important autoimmune processes in SLE, RA, and pSS,
for example, PIBF1 (3.48E−17) was involved in the formation
of immune tolerance, but its promoter was hypermethylated
in these three AIDs (Additional File 5).

Compared to DMPs, the DMRs had more important
biological significance due to the similar methylation status
in multiple consecutive CpG islands. In our study, we found

3 similarities of DMRs, which wereAZU1, LTBR, and RTEL1.
Importantly, the methylated segments of AZU1 and LTBR,
which are located in both TSS and the first exon zone, were
all significantly hypomethylated (Figures 3(a) and 3(b)) and
so did RTEL1 (Figure S4). These similarities indicated that
methylation loss of inflammatory cytokine genes might play
important roles in the development of chronic inflammation
or AIDs.
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Figure 3: DMR curves that had similar methylation status among AIDs within the first exon and TSS200. Methylation for individual cases
and controls is in orange and green, respectively. The solid lines in pink and gray separately stand for mean value of beta value of cases and
controls. x-axis on bottom is not the actual MAPINFO, but the feature and CGI information of each DMP is plotted with various colors. (a) A
DMR that starts at 827429 and 828170 to end located in AZU1 within chromosome 19. (b) Curves of DMRs for LTBR. RA: rheumatoid
arthritis; SLE: systemic lupus erythematosus; pSS: primary Sjögren’s syndrome; HC: healthy controls; 1stExon: the first exon zone; TSS:
the transcription start site; TSS1500: 1500 bp upstream of the TSS; TSS200: 200 bp upstream of the TSS.
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3.4. Cytokine-Cytokine Interactome (CCI) across SLE, RA,
and pSS. Autoimmune inflammation was an interactome of
various mediators. Coincidentally, the cytokine-cytokine
interactome (CCI) was an important part of it and a part of
protein-protein interaction (PPI) network used in FEM
algorithm [19]. We hypothesized that abnormal methylation
of cytokine genes was likely to involve in the imbalance or
change of CCI. Therefore, we can use the FEM algorithm to
investigate the differences of CCI in the three AIDs and
identify inflammatory hotspots based on the methylated
difference in diseases and PPI.

In CCI analysis of RA, we identified two networks: one
was 17 differential methylated genes centered around seed
gene VCAM1 (P = 0 016, Figure 4(a)), and the other one
was 17 differential methylated genes, same to the former
and contained VCAM1, centered around seed gene ELANE
(P = 0 021). So the same interactome network was consid-
ered as and it suggested that the methylation loss of VCAM1,

ELANE, and other 16 abnormal methylated genes was likely
to play an epigenetic regulatory role in RA. There were 64
and 71 genes methylated abnormally within TSS200 or first
exon centered around two seed genes (MYD88 and TRAF6)
in differential methylated interaction network of pSS,
respectively. More than 80% of interacting members in the
two diseases were also the same. And DNA methylation in
hotspots (e.g., MYD88, TRAF6, TICAM1, and MAVS) was
plotted in Figure 4(b). The detailed results were depicted in
Supplementary Table S2 in Additional File 1. The CCI
analysis of SLE also was performed in the meantime.
IL13 (P = 0 011), CCR5 (P = 0 016), and IFNG (P = 0 011)
were identified to act as hotspots, and most of interactive
members in those CCI networks were hypermethylated
(Figure 4(c)).

We summarize that the methylation loss of VCAM1
and ELANE and hypermethylation of MYD88 and TRAF6
were vital in inflammation and immunity for RA and pSS,
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Figure 4: The hotspots of RA, pSS, and SLE. The yellow dot indicates genes annotated to hypomethylation, and the blue signaled
hypermethylated genes to rich. (a) The hotspots centered around seed gene VCAM1 and ELANE from RA dataset. (b) The hotspots
MYD88 calculated from dataset pSS. (c) Three CCI networks of SLE: hotspot IL13, CCR5, and IFNG, respectively. DNAm, changes of
DNA methylation. Hotspots, the groups or modules calculated from FEM algorithm based on abnormal DNA methylation and protein
interaction network.
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respectively. But compared with cytokine-cytokine interac-
tome networks of RA and pSS, the network of SLE was more
diverse and likely to indicate heterogeneity of SLE.

3.5. Similar Gene and Enrichment Analyses. In order to better
understand how these abnormal cytokine genes affect biolog-
ical effects, we first classified the cytokine gene according to
the different methylation status and then conducted the Gene
Ontology (GO) enrichment analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis and,
finally, made a comparison on GO terms and KEGG path-
ways among SLE, RA, and pSS. After analyses, we found that
there were 267 cytokine genes with abnormal methylated
levels in their promoter regions in pSS compared to controls,
285 cytokine genes in RA, and 186 cytokine genes in SLE.
However, more than half of these genes were mapped to
CpG islands and the neighbors, and they had plenty of
overlaps across the three AIDs (Figure 5(a)). Furthermore,
we inputted these cytokine genes into R script clusterProfiler

[20] for GO and KEGG pathway enrichment analyses. The
significant biological processes (BP) and pathways were
listed in Additional File 6. For visualization, the signal path
enriched and the top 20 (ranked by adj. P value) terms were
shown with dot plot (Figures 5(b) and 5(c)). We found that
signal pathways “cytokine-cytokine receptor interaction,”
“NF-kappa B signaling pathway,” “FoxO signaling pathway,”
and “chemokine signaling pathway” were shared by RA, pSS,
and SLE, and the top 10 GO terms in Figure 5(c) were
related to “cytokine-cytokine interaction” and “NF-kappa B
signaling pathway.” Interestingly, “glucocorticoid receptor
binding” and “hormone receptor binding”were also enriched
from hypomethylated cytokines in SLE, but they were
enriched from hypermethylated genes in RA. Additionally,
“glycosaminoglycan binding” was unique to hypomethylated
genes of RA. The details of the pathway description had been
shown in File 2 Table S3. The enrichment analyses suggested
that the most inflammatory cytokine genes involved in AIDs
were identical, but these same genes were likely to conduct a
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Figure 5: Comparison of GO and KEGG enrichment between hypo- and hypermethylated genes of different AIDs. The dot with red indicates
high enrichment and the blue indicates low enrichment. The size of the dot represents the weight of this dot in each row, namely, the larger the
point is, the more important the group is in the row. (a) Most of the abnormal methylated genes was overlapped. (b) The dot plot of KEGG
pathway analysis. (c) The dot plot of the top 20 (most significant) GO terms of abnormal methylated cytokines. hyperM, hypermethylation;
hypoM, hypomethylation.
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differential inflammatory process or signal pathway, and
briefly, these abnormal methylated genes were essential for
SLE, RA, or pSS to conduct inflammation or deteriorate
disease and were good for targeted therapies.

4. Discussion

As high-throughput technology continues to evolve and the
genome-wide DNA methylation profiling expands, we have
been ushered into a new era, where massive biological data
could be used for evidence-based research. In our study,
we integrated multiple Cytokine-Chip from genome-wide
DNA methylation datasets of SLE, RA, and pSS in order
to find out the differences and similarities among these
diseases. Taking the heterogeneity from different platform
and demographic differences such as ethnicity of diverse
datasets into account, the Illumina HumanMethylation450
BeadChip (450K Chip) and the Δβ of each probe between
cases and controls were chosen for analysis. Particularly,
the data from granulocytes, T, or B lymphocytes also
combined for total inflammatory effects of peripheral blood
leukocytes which consist of lymphocytes, monocytes, neutro-
phils, eosinophils, and so on.

Through a series of analyses depicted in Figure 1, we
identified 6707 DMPs and 64 DMRs in RA, 4716 DMPs
and 172 DMRs in pSS, and 1219 DMPs and 75 DMRs in
SLE. Moreover, the methylation status of promoter regions
in the SLE was the lowest among the three AIDs and the
methylation status of nonpromoters in pSS was the lowest
(Figure 2(a)). Importantly, the methylation statuses of 43
overlapping DMPs in CpG islands and 72 DMPs in the
CpG island-surrounding regions were significantly different
across the three AIDs and many vital proinflammatory
genes were included [25–28] such as IL6R, IFNGR1,
STAT3, PSMB9, PSMB8, TNFRSF12, TNFRSF1A, TNFSF12-
TNFSF13, CD164, and TRAF5 (Figures 2(d) and 2(e)). Not
only that there are 10 methylated differences in the shared
DMRs, such as CCR6, CMTM5, IL10RA, IL21R, and IL32,
were all hypermethylated in SLE and pSS but also hypo-
methylated in RA (Additional File 4). It indicated that
aberrant DNAmethylation did occur in various autoimmune
diseases [4, 29], and many of them were particular to each
disorder except for some shared ones, namely, methylation
differences of cytokines across various AIDs may be one of
reasons leading to different clinical manifestations and
inflammatory damages.

Meantime, we did find out several commonness of
autoimmune inflammation across SLE, RA, and pSS: the
three AIDs had 99 DMPs (Figure S3) and 3 DMRs with
similar methylation status (Additional File 5). Since these
DMVs are located in the CpG islands and the neighbors,
the cytokines of these DMVs were likely to represent similar
inflammatory signals or functions in all three AIDs. For
instance, PIBF1 (cg12930920), a progesterone immunomod-
ulatory binding factor whose promoter was hypermethylated
in all three AIDs, is probably involved in the formation of
immune tolerance andmaintenance of pregnancy. Therefore,
the three more important DMRs (AZU1, LTBR, and RTEL1)
attracted our attention. AZU1, LTBR, and RTEL1 were

characterized by DNA hypomethylation in TSS or first exon
regions among SLE, pSS, and RA. AZU1 encodes azurocidin,
proteinase 3, and neutrophil elastase in a cluster located at
the short arm of human chromosome 19 (19p13.3). All
3 proteins contribute to innate immune response by
destroying microorganism. Azurocidin was also involved
in monocyte recruitment in inflammatory. Lee et al. also
highlighted that azurocidin can upregulate the expression
of VCAM1, ICAM1, and selectin to enhance adhesion of
inflammatory cells [30]. In addition, it is well known that
the autoantibodies against proteinase 3 (PR3) acted as an
obligate feature in developing systemic autoimmune
vasculitis such as Wegener’s granulomatosis [31]. Interest-
ingly, compared to subjects without steroid use, a methyl-
ation loss of AZU1 was showed in the ones with steroid
usage [32].

Lymphotoxin beta receptor (LTβR), a member of the
tumor necrosis factor receptor superfamily, was reported to
be associated with chronic inflammation diseases such as
viral encephalitis [33], hepatitis B [34], IgA nephropathy
[35], lymphoblastic leukemia [36], and type 1 diabetes [37]
and plays a critical role in immune response and initiation
of inflammation. Moreover, LTβR signaling is likely to
involve in the activation of NFκB [38], the regulation of type
I interferon axis in dendritic cells and CD8+ T cell [39], and
the induction of TLR cross-tolerance [40]. Fava et al.
proposed that the ligation of LTβR could reduce the loss of
salivary secretion rates and improved ocular surface integrity
score in NOD mouse model of Sjögren’s syndrome [41].
Recently, disturbance of lymphotoxin/LIGHT signaling
axis in Sjögren’s syndrome also be announced [42]. There-
fore, LTBR hypomethylation not only plays a pivotal role
in the ignition of autoimmunity but also is a potential
therapeutic target.

In addition, RTEL1, encoding for the regulator of
telomere elongation helicase 1, is involved into telomere-
length regulation, DNA repair, and genomic stabilization.
More studies brought up that the mutation of RTEL1 had
been linked to dyskeratosis congenital [43], Hoyeraal-
Hreidarsson syndrome [44], pulmonary fibrosis [45], myelo-
dysplastic syndrome [46], and lung cancer [47] and even
rheumatoid arthritis-associated interstitial lung disease [48].
Although mechanism of how the mutation of RTEL1 partic-
ipated in fibrosis and dysfunction of immune system is
unclear, the untested hypomethylation in this gene should
be given enough attention.

As we have illustrated, 3 hypomethylated genes involved
in RA, pSS, and SLE could serve as initiators in the
autoimmunity and inflammatory process. However, the
autoimmunity and inflammation require a lot of inflam-
matory mediators such as interleukin, lymphokine, or
chemokine to form a network in which mediator orchestrates
proinflammatory cascades [49]; hence, we performed CCI
analysis [19] based mainly on changes of DNA methylation
in TSS200, first exon or TSS1500, protein-protein network
[19, 50], and the interesting phenotype to identify this
inflammatory network due to differential methylation of
cytokine gene (also named as “hotspots”). Five hotspots were
identified as biologically plausible pathways in inducing or
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perpetuating of inflammation which are epigenetically
deregulated in AIDs.

In these hotspots, not only the landscape of Toll-like
receptor- (TLR-) induced pathways, interferon (IFN)
signature, and chemokine/adhesion molecule signaling were
presented but also the imbalance of activated T cell and
regulatory T cell was revealed. Myeloid differentiation factor
88 (MyD88) is the key members of TLR pathway, and it
transfers the antigen signature to trigger a series of signaling
cascades that culminate in transcription of numerous down-
stream genes such as inflammatory cytokines, chemokines,
interferons, lymphokine, and complement factors [51, 52].
The overactivation of TLR resulting in perpetuation of
inflammation in autoimmunity has been confirmed by
numerous studies. In addition, hydroxychloroquine has been
recommended to effectively treat pSS and SLE due to its sup-
pression to TLR7 to attenuate inflammation [53]. Thereby,
the methylation change of MyD88, TRAF6, and other
surrounding molecules may play a role in the pathogenesis
of pSS in parallel with other supporting proinflammatory
network (Figure 4(b)). The type I IFN system also activates
in many autoimmune disorders particularly SLE [52, 54],
and the epigenetic susceptibility of interferon-regulated
genes in SLE has been reported by several genome-wide
DNA methylation studies [9, 10, 55].

These inflammatory signaling pathways do not simply
stand alone or act independently; a robust evidence is that
TLR, retinoic acid-inducible gene I-like receptors (RLR),
nucleotide oligomerization domain-like receptors (NLR),
and INF act together to promote inflammation, but it is
clearly a relationship of checks and balances among them
[51, 53]. This relationship can also be observed between cells
and cells as exemplified by the imbalance of Th17/Treg in
SLE patients [52, 56, 57], and this imbalance is also indirectly
observed in our hotspots: the CCR5 encoding a membrane
molecule in Foxp3+ Treg was hypermethylated, but the
demethylated CCL2 was able to enhance a systemic immune
response in proinflammatory cells [58] (Figure 4(c)). It is
remarkable that AZU1 and VCAM1 (Figure 4) hypomethy-
lated in their genes presumably combine their partners
(e.g., chemokines and adhesion receptors) to trigger vasculi-
tis that can be observed in most of autoimmune conditions
including RA and SLE [30, 59, 60].

Our enrichment analysis had classified these aberrant
methylated genes as “cytokine-cytokine receptor interac-
tion,” “NF-kappa B signaling pathway,” “FoxO signaling
pathway,” and other signaling pathways, but only the
aberrant genes of RA and pSS appeared in the proteasome
signaling system (Figure 5(b)). More importantly, the cluster
of hypomethylated cytokines of pSS assembled in “antifolate
resistance” to promote inflammation, and it is consistent
with the clinical observation: most RA patients with arthritis
prescribed methotrexate is effective, but the pSS patients
has no effect. In our future studies, the results will be
further validated.

DNA methylation of some candidate genes has been
developed as epigenetic biomarkers for diagnoses in
cancer such as bladder cancer [61], breast cancer [62],
and cholangiocarcinoma [63]. Moreover, antineoplastic

agents 5-azacytidine, 5-deoxycytidine and zebularine were
DNA methyltransferase (DNMT) inhibitors. They can
block DNMT during DNA synthesis resulting in DNA
demethylation in promoter regions of the tumor suppres-
sor genes. Based on our results, the treatment of AIDs should
promote DNAmethylation of inflammatory cytokines rather
than promoting demethylation like antitumor therapies. In
particular, the degree of demethylation in promoter
regions in SLE was the most severe (Figure 2(e)) and
we could perhaps utilize the antisense oligonucleotide
inhibitors and S-adenosylmethionine to treat SLE by
recovering the hypomethylation of inflammatory cytokines
in future studies.

There are subclinical immunological processes before the
presence of AIDs. As elaborated by recent studies, if we
illustrated the course of AIDs as a river, the subclinical
immunological and undifferentiated status of AIDs acts as
the upstream of the river in AID development; as the disease
progresses, small streams can branch out (different clinical
symptoms) and meet formal classification criteria for SLE,
RA, and pSS, respectively [64]. In our study, we showed the
specific similarities (perhaps the upstream of the river) of
the three classic representatives of AIDs, and it indicated that
targeting the similarities perhaps could improve the treat-
ment or early diagnosis of AIDs.

5. Conclusion

In summary, we systematically profiled the DNA-methylated
patterns for cytokine genes in SLE, RA, and pSS using human
methylation microarray. Many similarities and differences of
DMVs of inflammatory cytokines across three AIDs were
identified. The epigenetic susceptible candidates including
AZU1, LTBR, RTEL1, and VCAM1 were identified as triggers
of autoimmune signaling cascades and contributed to
derailed pro-/anti-inflammatory cells. The disturbance of
TLR signaling in pSS and the overactivation of type I IFN
system in SLE owed to aberrant DNA methylation were
confirmed, and AZU1 and VCAM1 were presumably
involved in the pathogenesis of vasculitis. The epigenetic
candidate genes may be the potential biomarkers or
therapeutic targets of AIDs. Systemic multicenter genetic
studies including epigenome, transcriptomics, whole geno-
mic sequencing, and prospective studies are needed to reveal
underlying causes of epigenetic changes and preclinical
discoveries. Additionally, the robust bioinformatic analysis
cross genomics research and the evidence-based algorithm
are suggested to be developed.
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