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Background: Antimicrobial resistance is a great concern in the medical community, as well as food in-
dustry. Soy peptides were tested against bacterial biofilms for their antimicrobial activity. A high
throughput drug screening assay was developed using microfluidic technology, RAMAN spectroscopy,
and optical microscopy for rapid screening of antimicrobials and rapid identification of pathogens.
Methods: Synthesized PGTAVFK and IKAFKEATKVDKVVVLWTA soy peptides were tested against Pseu-
domonas aeruginosa and Listeria monocytogenes using a microdilution assay. Microfluidic technology in
combination with Surface Enhanced RAMAN Spectroscopy (SERS) and optical microscopy was used for
rapid screening of soy peptides, pathogen identification, and to visualize the impact of selected peptides.
Results: The PGTAVFK peptide did not significantly affect P. aeruginosa, although it had an inhibitory
effect on L. monocytogenes above a concentration of 625 mM. IKAFKEATKVDKVVVLWTA was effective
against both P. aeruginosa and L. monocytogenes above a concentration of 37.2 mM. High throughput drug
screening assays were able to reduce the screening and bacterial detection time to 4 h. SERS spectra was
used to distinguish the two bacterial species.
Conclusions: PGTAVFK and IKAFKEATKVDKVVVLWTA soy peptides showed antimicrobial activity against
P. aeruginosa and L. monocytogenes. Development of high throughput assays could streamline the drug
screening and bacterial detection process.
General significance: The results of this study show that the antimicrobial properties, biocompatibility,
and biodegradability of soy peptides could possibly make them an alternative to the ineffective anti-
microbials and antibiotics currently used in the food and medical fields. High throughput drug screening
assays could help hasten pre-clinical trials in the medical field.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Antibiotic resistance is a significant challenge throughout the
world today [43]. Extensive or ineffective use of antibiotics and
antimicrobials in both the medical and food industry has led to
increases in antibiotic resistance [43,47]. In nature, microorgan-
isms do not always live in their planktonic forms, rather, they are
found in dynamic complex structures called biofilms [18,46]. The
adaptability of pathogenic bacterial biofilms to different physio-
logical conditions and treatments enables them to emerge as re-
sistant strains [13]. Therefore, there is a need to develop new an-
timicrobial agents and antibiotics that could effectively destroy
pathogenic biofilms. Bioactive antimicrobial peptides (AMPs) are a
new class of bio-pharmaceuticals released from proteins that ex-
hibit unique antimicrobial, antioxidant, and antihypertensive
B.V. This is an open access article u
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properties [10,19,29,36]. These are specific protein fragments en-
crypted in the amino acid sequences, which have a positive impact
on health and bodily functions [19,20,25]. By binding to specific
receptors on target cells, they can regulate functional properties.
For example, lactoferricin possesses antiviral, antimicrobial, anti-
fungal, anti-inflammatory, and immuno-regulatory properties,
while caseniate possesses antioxidant, antihypertensive, and anti-
microbial properties [4,11,40]. AMPs have some common features,
including short chain sequences (generally 12–50 amino acid se-
quences), strong cationic characters (net charge ranging from þ2
to þ9), heat stability, and amphipathic natures, while they can be
derived from plants, animals, insects, and engineered micro-
organisms, or could be synthesized [24,35]. Although peptides are
diverse in the amino acid sequences that make up their structure,
they can be classified into four main categories: (a) α-helices, (b)
β-sheets, (c) extended helices, and (d) loop-forming structures
[35]. Currently, numerous efforts are focussed towards under-
standing the antimicrobial efficacy and mode of action of AMPs on
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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bacterial cells.
AMPs interact with bacterial cell membranes and penetrate

cells changing the pH gradient, membrane potential, and osmotic
regulation, thereby affecting respiration [24]. Influencing intra-
cellular mechanisms, such as immuno-modulatory relationships,
disrupting the cell membrane and forming pores are other possi-
ble modes of action of AMPs [27]. Pore formation is an important
mechanism by which peptides cause cell death. Four models have
been used to explain this phenomenon: (i) the toroidal model
where the peptides that attach to cell membranes aggregate, and
the lipid monolayers bend continuously acquiring positive curva-
ture. Through this pore, the peptides enter and destroy the cell's
contents. In (ii) the carpet model, AMPs cover the surface of the cell
like a carpet until a threshold is reached to form membrane pat-
ches in which the lipids aggregate. This weakens the bilayer and
forms pores. Therefore, membrane disruption occurs leading to
lysis. In (iii) the barrel-stave model, bundles of peptides oligomerize
and form membrane pores on the microbe, thus enabling them to
interact with the hydrophobic core. Therefore microbes die either
by membrane disruption, cell leakage, or loss of polarization. In
the final (iv) aggregate channel model, peptides penetrate bacterial
cells and form clusters and aggregates. The water molecules then
facilitate the leakage of ions from the cell [24]. AMPs are also
implicated in the inhibition of DNA, protein, and RNA synthesis,
interference with cytokinesis, alteration of cytoplasmic membrane
formation, and the inhibition of enzymatic activities [24].

Peptides usually occur as α-helix or β-sheets or as a combi-
nation of both. There are two common characteristics shared by
most AMPs, a net positive charge and amphipathic structure.
These two factors help peptides bind the cell membrane, in-
creasing permeability [26]. It is generally accepted that long chain
peptides insert themselves into bacterial cells forming pores that
lead to cell death. When the net positive charge of a peptide is
high, it has the ability to interact effectively with the negatively
charged bacterial outer membrane [24]. The length and composi-
tion of amino acid sequences affect the formation of aggregates
and dissociation during the interaction [26]. Therefore, peptides
may hold promise as antimicrobial agents, although screening
methodologies for testing new antimicrobials are lacking.

Conventional assays are widely used in testing and screening
the effects of antimicrobial agents and antibiotics. These protocols
are of use in the fields of food safety, pharmacology, environ-
mental, and water quality monitoring, although there are some
disadvantages, such as time consumption, intensive labor, the re-
quirement of large amounts of sample or reagents, and the ex-
posure to contamination [22,41]. In addition, conventional assays
cannot be used for intermediate testing, such as examining the
kinetics of microbes, exploring topography, or characterizing the
biochemical spectra. The other major issue with conventional as-
says is that the actual environment of microbial growth cannot be
mimicked in flasks, test tubes, or microtitre wells [22]. Micro-
fluidics technology is a fast-growing field that overcomes the
disadvantages of these conventional assays by being able to pro-
vide high throughput screening, real-time examination of samples,
usage of very low amounts of reagents, rapid screening, parallel
testing of multiple drugs, all while saving space
[9,21,33,42,44,45,48]. High throughput screening (HTS) platforms
have improved drug delivery processes and are playing a vital role
in the discovery of anti-cancer drugs and the characterization of
drug metabolism and cytotoxicity [1,23,37,49].

In this study, the antimicrobial efficacy of soy based anti-
microbial peptides (PGTAVFK and IKAFKEATKVDKVVVLWTA)
against Listeria monocytogenes and Pseudomonas aeruginosa was
examined initially using conventional microbiological assays. A
microfluidic high throughput drug screening assay was then de-
veloped to detect and screen the effect of the antimicrobial
peptide IKAFKEATKVDKVVVLWTA in conjunction with RAMAN
spectroscopy and optical microscopy to identify the pathogens and
view the possible mode of action on bacterial cells.
2. Materials and methods

2.1. Bacterial strains

P. aeruginosa strain PA-76, isolated from canine ear skin infec-
tions was obtained as a gift from the Ontario Veterinary College
(OVC), Guelph, Canada. L. monocytogenes strain C379, an isolate
from chicken wieners was obtained as a gift from the Canadian
Research Institute for Food Safety (CRIFS), University of Guelph,
Canada.

2.2. Culture conditions

P. aeruginosa and L. monocytogenes were obtained as frozen
stocks (�80 °C). From this, the bacterial strains were streaked
onto 5% sheep blood agar plates (SBP) and incubated at 37 °C for
24 h. For subsequent experiments, colonies from these plates were
used for culturing bacteria in Mueller Hinton-II broth (MHB) for P.
aeruginosa, and brain heart infusion broth (BHI) for L.
monocytogenes.

2.3. Peptide synthesis

Synthesized soy peptides PGTAVFK and IKAF-
KEATKVDKVVVLWTA were purchased from Genemed Synthesis
Inc., (Texas, USA). The molecular weight of the first short chain
peptide PGTAVFK was 718.4 g/mol, and the other long chain pep-
tide IKAFKEATKVDKVVVLWTA was 2146.4 g/mol. They were syn-
thesized by 9-fluorenylmethoxicarbonyl (fmoc) solid-phase
synthesis and purified to 98.62% and 97.59%, respectively using a
C-18 high performance liquid chromatography (HPLC) reverse
column [14]. Upon receiving the peptides, they were stored at 4 °C.
A 7 mg amount of PGTAVFK peptide was dissolved in 1 ml of
sterile phosphate buffered saline (PBS; pH¼7.0) and stored at
�25 °C until further use. A 10 mg of IKAFKEATKVDKVVVLWTA
peptide was dissolved in 1 ml of sterile PBS and stored at �25 °C
until further use. The stock concentrations were therefore 5 mM
for PGTAVFK and 4.66 mM for of IKAFKEATKVDKVVVLWTA.

2.4. Antimicrobial assay

The microdilution assay was adapted from Motyl et al. [30]. P.
aeruginosa was grown in 6 ml cation adjusted Mueller Hinton
broth (Sigma Aldrich, Canada), and L. monocytogenes was grown in
6 ml Brain Heart Infusion Broth (Thermo Scientific, Canada).
Mueller Hinton broth is the commonly used media for performing
susceptibility tests for fast growing clinically isolated bacteria.
While performing preliminary experiments, it was found that L.
monocytogenes did not grow in Mueller Hinton broth. BHI is rich in
nutrients and is suitable for fastidious organisms like L. mono-
cytogenes. Both bacteria were grown at 37 °C in the respective
broth until the cell density was above the 0.5 McFarland barium
sulfate standard, while the cells are in the logarithmic growth
phase. This inoculum was then diluted 1:140 times in the re-
spective media. 100 ml of media was added to each well tested in a
96-wells microtitre plate. Then, 200 ml of 5 mM PGTAVFK and
2.3 mM IKAFKEATKVDKVVVLWTA soy peptide solutions were ad-
ded to the first well (column 1), and each row was serially diluted
two-fold to column 11 of the 96-well microtitre plate. Column 12
was reserved for the control and did not contain any peptide so-
lution. Tests were separately carried out with the two peptides.
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Lactoferricin was used as positive control, as it is a better-char-
acterized peptide that has been shown to have antimicrobial ac-
tivity against L. monocytogenes and P. aeruginosa [32,34]. Con-
centrations of lactoferricin ranging from 8 mg/ml to 0.1 mg/ml have
been shown to be effective against these organisms; our results
were consistent with these observations (data not shown). Using a
pipette, 100 ml of the diluted inoculum was added to all wells in
the plate. A final inoculum of 4–8�105 CFU/ml was achieved for
each bacterial species. The final soy peptide concentrations ranged
from 2.5 mM in column 1–2.44 mM in column 11. Plates were then
covered and incubated at 37 °C at 24 h, the plates were taken out,
and the optical density was read using a Biotrak II plate reader
(Amersham Biosciences, Canada). All assays were performed in
triplicate.
Fig. 1. Design of the 3D microfluidic high-throughput drug screening platform: (i) th
channels in the concentration gradient generator (CGG) and bacterial dispenser with in
view of the complete CGG with gradient generated by the soy peptide and buffer solut
2.5. Microfluidic platform

The microfluidic device was designed using AutoCAD 2015
(Autodesk Inc, USA). The vision behind designing this device was
to fabricate a 3D high throughput drug screening device consisting
of a glass bottom layer, a polydimethylsiloxane (PDMS) second
layer with a bacterial dispenser, loading channels, and 24 in-
cubation chambers, and a final top PDMS layer with 4 concentra-
tion generating gradients and connective channels. The glass base
was 70 mm�70 mm; the central reservoir for dispensing bacteria
was designed to have a diameter of 2.5 mm. The 24 incubating
chambers were 2 mm in diameter, and the loading channels were
12.75 mm long and 60 mm wide. The 4 concentration gradient
generators (width¼100 mm) consisted of 8 inlets (each was
0.75 mm in diameter) to flow different concentrations of soy
peptide with PBS buffer. The gradient generators were uniformly
designed to ensure that they use laminar flow and diffusive mixing
ree layers of the microfluidic device and a magnified view of the serpentine-like
cubation chambers. (ii) The top view of the microfluidic platform and a magnified
ion at the end of the generator.
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to form a steady mixture of PBS and peptide solution. The inlets
were only present on the top layer to allow for proper mixing and
the flow of peptide solution. The connecting channels were about
10–15 mm in length, while the width was varied from 100 to
30 mm to avoid the backflow of bacteria into these channels. Once
the device was designed, the mask was custom made from Fine
Line Imaging (Colorado, USA). From the mask, master moulds were
fabricated using photo-lithographic technique. The design of this
3D high throughput microfluidic platform is shown in Fig. 1.

A total of 35 g of PDMS elastomer base was mixed with 3.5 g of
curing agent (Dow Corning Sylgard 184, USA). It was then poured
out on the silicon wafer individually. The wafers were then de-
siccated and baked at 60 °C for the PDMS mould to harden. The
device was then removed from the wafer, cut, and holes were
punched (Harris Uni-Core, Sigma Chemical Co., USA). The inlet
holes on the top layer were 0.75 mm in diameter, the bacterial
dispensing chamber was 0.75 mm in diameter, and the 24 in-
cubating chambers were 2 mm in diameter. Both the layers along
with the glass base were plasma cleaned (Harrick Plasma, Ithaca,
USA) to remove debris and to enhance the bonding between var-
ious layers. Then, the layers were assembled and baked at 60 °C for
30 min to strengthen the bond.

2.6. Characterization of the microfluidic device

The fabricated 3D microfluidic device was characterized using
fluorescein dye (Sigma Aldrich, Canada). This test was performed
to ensure that the CGG generated steadily or linearly increasing
concentrations at the connective channels. A 5 mM stock solution
of fluorescein was prepared in water. A 5 mM solution was pre-
pared from this stock and injected in one of the inlets of a CGG
along with water at the other inlet of CGG. Syringe pumps were
used for controlled injection (20 ml/h) of water and fluorescein dye
into the CGG (Chemyx Fusion Touch, USA) through a 1 mm syringe
and 0.3 mm needle tips (Becton, Dickinson and Company, USA).
Images were taken using an inverted Nikon Eclipse Ti microscope
with a green filter. Images were processed using ImageJ software
(NIH, USA).

2.7. Cell seeding into the microfluidic device

P. aeruginosa and L. monocytogenes treated with IKAF-
KEATKVDKVVVLWTA (long chain) peptide were used for all mi-
crofluidic experiments. The cell suspensions were prepared from
overnight cultures grown at 37 °C in their respective broth solu-
tions. One ml of this culture was centrifuged (SciLogex D3024,
USA) at 3000 rpm for 3 min. The supernatant was removed, and
the pellet was suspended in sterile PBS. This was then diluted to a
0.5 McFarland Standard and used for further experimentation to
ensure that cells would be poised to grow once inoculated. The
cells were injected into the bacterial dispensing chamber at the
center of the device. Once the loading channels and 24 chambers
started to fill with bacteria, soy peptide at a concentration of
4.6 mM, 37.2 mM, 74.4 mM, and 298 mM was injected into the inlets
of 4 CGGs, along with PBS buffer, using 1 mm syringes with
0.3 mm needle tips (Becton, Dickinson and Company, USA). The
flow rate (20 ml/h) was controlled using syringe pumps (Chemyx
Fusion Touch 200 and 400, USA; Harvard Apparatus Pump 11 Elite,
USA). The temperature of the device was maintained at 37 °C using
a temperature controller stage. Once the concentration gradients
start to fill and the 24 wells were filled with the peptide and
bacterial mixture, the syringe pumps were turned off and the
bacteria were incubated in the device.
2.8. RAMAN spectroscopy analysis

RAMAN Spectroscopy was used in identifying P. aeruginosa and
L. monocytogenes before and after various treatments with long
chain peptides. This was done to emphasize that the spectral
signature of the bacteria and peptide mixture at different dosage
levels could be used to validate the high throughput drug
screening microfluidic device and show the efficacy of peptides
against bacteria. P. aeruginosa and L. monocytogenes were in-
cubated at a 1:1 (v/v) ratio of long chain peptide (IKAF-
KEATKVDKVVVLWTA) for 4 h at 37 °С to obtain final peptide
concentrations of 4.6 mM, 37.2 mM, 74.4 mM, 100 mM, and 298 mM.
RAMAN spectra was obtained using a 785 nm RAMAN spectro-
meter (Snowy Range Instruments, WY, USA) for control and all
treatments on a surface enhanced (SERS) gold substrate
(5 mm�5 mm; Nanova Inc, USA). Spectra obtained on glass sub-
strates (without SERS substrate) did not show any visually sig-
nificant peaks or differences compared to the peptide treated
bacterial samples (data not shown). Ampicillin was used as a
control in this experiment.

2.9. Time lapsed microscopy analysis

A 0.5 McFarland standard of L. monocytogenes (in logarithmic
growth phase) was mixed with the long chain soy peptide to ob-
tain final concentrations of 37.2 mM and 200 mM of soy peptide in
microfuge tubes. A 10 ml of this mixture was added to the well in a
microfluidic device and immediately placed under a Nikon Eclipse
Ti inverted microscope (Nikon Instruments Inc., Melville, NY). A
total 10 ml of the solution ensured that the individual bacterial cells
were exposed to sufficient volumes of media. Images were cap-
tured focusing on the same region of interest over a 3 h time
period with a 40� objective lens in the phase contrast 1 mode,
equipped with the NCB and D filters. This experiment was per-
formed to visualize the antimicrobial effect of the long chain soy
peptide on bacterial cells. All experiments were performed in tri-
plicate and analyzed using IBM SPSS Statistics 22.
3. Results and discussion

3.1. Choice of peptides for this study

After a detailed literature review, we determined that the
therapeutic potential and antimicrobial properties of soy based
peptides have not been widely studied. Therefore, two peptides of
soy origin (PGTAVFK and IKAFKEATKVDKVVVLWTA) were chosen
for this study based on three published papers that investigated:
1) the antimicrobial activity of PGTAVFK against Escherichia coli
and Staphylococcus aureus, 2) the activity of fragment (213–231) of
the enzyme D-myo-inositol-3-phosphate synthase from soybean
(GenBank accession number: ABM17058.1) against Asian rust
spores, and 3) the activity of myoinositol as a termicide [3,28,39].

Bacterial protein phosphorylation has been recently identified
as a promising target for the development of new antibacterial
compounds [5]. D-myo-inositol 3-phosphate synthase is an en-
zyme that has the ability to catalyze the production of phospho-
lipids during salvage. Inositol is a metabolic sensor for numerous
signal transduction pathways that specifically has the ability to
disrupt cellular processes during the unfolded protein response
[17]. The sequence of fragment (213–231) from D-myo-inositol-3-
phosphate synthase is IKAFKEATKVDKVVVLWTA [3]. Therefore
PGTAVFK and IKAFKEATKVDKVVVLWTA were chosen as anti-
microbial peptide candidates for this study.



Fig. 2. Antimicrobial activity of the soy peptide PGTAVFK against P. aeruginosa PA76
and L. monocytogenes C379. The soy peptide did not inhibit the bacterial growth of
P. aeruginosa significantly but had an inhibitory effect on L. monocytogenes at
concentrations above 625 mM.

Fig. 3. Antimicrobial activity of the soy peptide IKAFKEATKVDKVVVLWTA against
P. aeruginosa and L. monocytogenes. The soy peptide inhibited both strains of bac-
teria at a concentration as low as 37.2 mM.

Fig. 4. Characterization of the 3D microfluidic high throughput drug screening
device with 5 mM of fluorescein and buffer at the inlets of device at a flow rate of
20 ml h�1. The relationship between the normalized fluorescent intensity and the
channel number shows that intensity increases with increasing channel number
implying that the concentration gradient generator of the device (CGG) produces
linear concentrations of fluorescein in the device.
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3.2. Antimicrobial testing using microdilution assay

Microdilution assays were performed to examine the anti-
microbial efficacy of both short chain (PGTAVFK) and long chain
(IKAFKEATKVDKVVVLWTA) soy peptides against P. aeruginosa and
L. monocytogenes. Fig. 2 (PGTAVFK) and Fig. 3 (IKAF-
KEATKVDKVVVLWTA) show the effects of these two soy peptides
on the optical density of bacterial cultures, which reflects their
antimicrobial capacities (ability to stop/slow growth). PGTAVFK
did not significantly affect P. aeruginosa culture density, but it had
an inhibitory effect on L. monocytogenes at a concentration above
625 mM. IKAFKEATKVDKVVVLWTA, on the other hand, was effec-
tive against both P. aeruginosa and L. monocytogenes at con-
centrations above 37.2 mM. It is apparent from our results that both
antimicrobial peptides can affect the optical density of the or-
ganisms, which represents the concentration of the suspended
organisms and the sum total of growth and cell death. Therefore,
we cannot speculate whether the major modes of actions for these
peptides are bactericidal versus bacteriostatic; future studies will
explore the precise mechanisms of action.
The difference in antimicrobial efficacy between the short and
long chain peptides could be attributed to the structure and length
of the sequences (7 amino acid sequence: PGTAVFK; 19 amino acid
sequence: IKAFKEATKVDKVVVLWTA). As discussed previously,
long chain peptides are generally associated with high anti-
bacterial activity. The difference in the net positive charges of the
two peptides could also have contributed to differences in their
antibacterial activity. The activity of AMPs could be affected by the
concentrations of cations and anions present in their environment
[12]. Therefore, the combination of amino acids in the sequences
of peptides could have affected their antibacterial efficacy.

It has been demonstrated that some cations neutralize re-
pulsive forces of adjacent lipopolysaccharide (LPS) in the outer
membrane of Gram-negative bacteria, leading to a tight and cross-
linked outer membrane that protects itself from hydrophobic
surfaces and AMPs [26]. LPS moieties differ in composition and
length among bacterial species, which could possibly be a reason
why the long chain peptide was able to act effectively on P. aeru-
ginosa,while the short chain peptide was largely inactive [26]. This
could also be the reason why PGTAVFK was not able to sig-
nificantly inhibit P. aeruginosa but was able to inhibit L. mono-
cytogenes, a Gram-positive bacterium. Once AMPs pass through
the LPS in outer membrane, there is an inner membrane com-
prised of phospholipids on both sides of the bilayer. Therefore, a
peptide that could enter the outer membrane need not necessarily
interact efficiently with the inner membrane. It has been reported
that peptides form aggregates in solution, which makes it difficult
for them to enter the outer membrane and reach the target, which
is the cytoplasmic membrane [26]. However, no aggregates were
visually observed in either prepared peptide solution used in our
experiments. LPS forms aggregates in solution that are biologically
active and toxic. Therefore, dissociation of these aggregates is re-
quired to neutralize and inactivate LPS. These could be some
plausible reasons for the observed differential sensitivity.

3.3. Characterization of our high throughput 3D microfluidic
platform

Characterization of the 3D microfluidic device was performed
to show that this device could be used for multiplexing, parallel



Fig. 5. Surface Enhanced RAMAN Spectra (SERS) obtained for (i) P. aeruginosa and (ii) L. monocytogenes with and without 4.6, 37.2, 74.4, 100, and 298 mM long chain peptide
treatments. Shifts in the control spectra are circled and their comparisons with different treatments are boxed.
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concentration gradient generation, and drug screening applying
various concentrations simultaneously. Moreover, the use of PDMS
helps in creating an inexpensive, biocompatible, and transparent
environment that allows the use of this device in further quanti-
fication through optical and RAMAN imaging.

Under continuous flow conditions, the 3D high throughput
device was characterized using 5 mM fluorescein dye. Fig. 4 shows
the concentration gradient formed in the six channels in terms of
fluorescence intensity. Diffusion of fluorescein into the PDMS layer
forms concentration gradients. Images of fluorescence in all six
channels were obtained using Nikon Ti inverted microscope, and
the intensity of fluorescence was then measured from 6 channels
and normalized. We found that the fluorescence intensity in-
creases with increasing channel number. Formation of air bubbles
in the serpentine-like pathways of the microfluidic platform may
block fluid flow causing non-linearity, which can be avoided by
prober bonding of the PDMS with the glass slide and an accurate
device design chip. It is quite important that the thickness of
PDMS layers is uniform for a proper concentration gradient gen-
eration. Our group and others have successfully demonstrated that
it is possible to generate a linear concentration of drug molecules
using a microfluidic device of similar design; results from this
study are consistent with these previous studies [7,16].



Table 1
Speculative assignment of peaks from the SERS spectra of P. aeruginosa and L.
monocytogenes using a 785 nm excitation wavelength based on the characterization
reported by De Gelder et al. [6].

P. aeruginosa L. monocytogenes Assignment of RAMAN shift

716 cm�1 D-fructose 6 phosphate-saccharide
823 cm�1 821 cm�1 15-methylpalmatic acid (17iso)-phospho-

lipid derived fatty acid
1022 cm�1 α, β-D-glucose-saccharide

1270 cm�1 14-methylpentadeconoic acid (16iso)-fatty
acid

1362 cm�1 Cytosine-DNA and RNA base
1423–1454 cm�1 L-tryptophan; L-proline-amino acids

1490 cm�1 Thymine-DNA base
1510 cm�1 12-methyltetradeconoic acid (15Aiso)-fat-

ty acid
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3.4. RAMAN spectra analysis

RAMAN spectroscopy is a preferred tool for identifying and
detecting pathogens for point-of-care diagnostics applications
[2,31]. Here, it was used in conjunction with the 3D microfluidic
platform to validate that by reducing the sample volume to few
microliters in a microfluidic device, the incubation time for de-
tection could be reduced drastically to identify bacterial species.
Owing to the microliter volume size of the peptide solutions in
each well of the microfluidic incubation chamber and the en-
hanced surface to volume ratio, there is a rapid kinetic reaction
between the peptide and the individual bacterial cells, leading to a
decreased incubation time in comparison with the milliliter vo-
lumes of the conventional assays. We recorded the SERS spectra at
an excitation wavelength of 785 nm under various dosage levels of
long chain peptide (IKAFKEATKVDKVVVLWTA), treating both P.
aeruginosa and L. monocytogenes for 4 h at 37 °С (Fig. 5). We found
that for the P. aeruginosa control, the RAMAN peaks were visible at
about 823, 1270, 1362, 1490, and 1510 cm�1 (highlighted and cir-
cled in Fig. 5(i)). For the L. monocytogenes control, peaks were
visible at about 716, 821, 1022, 1423, and 1454 cm�1 (boxed and
circled in Fig. 5 (ii)). In both cases, these significant peaks could
37.4 µM

200 µM

0 hr 1 hr

Fig. 6. Time lapsed images of L. monocytogenes treated with 37.2 mM and 200 mM of long
lens of a Nikon Eclipse Ti inverted microscope.
not be observed in spectral curves of the treated samples, which
suggest that the peptides possess antimicrobial activity.

In an attempt to identify spectra of biomolecules found in mi-
croorganisms using an excitation wavelength of 785 nm, DNA and
RNA bases were observed to dominate the region between 600
and 800 cm�1; proteins in the form of amide I and III ranged from
1300 to 1655 cm�1, fatty acids fell in the range of
1300–1440 cm�1, and saccharides were between 1000 and
1200 cm�1 and 1300 and 1500 cm�1 [6]. The speculated mole-
cular characterization of spectral peaks observed in this study,
with reference to the work of De Gelder et al. [6], is shown in
Table 1. The spectral peaks observed for P. aeruginosa could be
attributed to the presence of various forms of fatty acids and DNA
and RNA bases, while in L. monocytogenes, the peaks could be at-
tributed to the presence of fatty acids, saccharides, and amino
acids.

Conventional techniques employed to identify bacteria are
usually slow, cannot be used at field sites, and require a technical
personnel to operate. Therefore, SERS is preferred due to the
possibility of obtaining high vibrational fingerprint information at
an increased sensitivity (to even single molecule) and the possi-
bility of using it in aqueous conditions with little or no inter-
ference [8]. The SERS substrate enhances the RAMAN intensity of
samples due to the surface roughness caused by the presence of
metal nanoparticles (gold). Molecules in the samples are adsorbed
onto these surfaces, which increases the strength of detection.

When RAMAN spectra was obtained from the samples on a
glass substrate, the spectra of both bacteria, including treatments,
looked similar without any distinguishable shifts (data not
shown), which could be attributed to low sensitivity of the
method. By using a SERS substrate, the spectral intensity im-
proved, but the RAMAN shifts were still weak. It was speculated
that the incubation time and bacterial cell density have a direct
correlation. If the bacterial cell density is less, the incubation time
could also be reduced and so forth. In these experiments, a
0.5 McFarland standard cell density was used (OD at 600 nm was
between 0.08 and 0.1). Therefore the amount of incubation time
required to elicit visible strong changes in biochemical signatures
2 hr 3 hr

chain soy peptide in the microfluidic device at 0, 1, 2, and 3 h taken with the 40�
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at this cell density could be longer than 4 h.
Sockalingum et al. [38] used different ways of mixing metal

colloids with bacteria and observed SERS spectra using 632 nm
excitation. It was found that the spectra of E. coli differed from that
of P. aeruginosa by observing peaks of constituents, such as fatty
acids, amino acids, proteins, and nucleic acids. Using a 784 nm
excitation, Guzelian et al. [15] claimed that there were different
spectra for P. aeruginosa, L. monocytogenes, Bacillus subtilis, and
Bacillus cereus when placing bacteria on electrochemically rough-
ened gold SERS strips. At 514, 633, and 780 nm, Efrima and Zeiri
[8] have also used the SERS technique to identify molecular in-
formation for bacteria. Therefore, reproducibility and selectivity
remain a drawback. However, when controlling experimental
conditions, Efrima and Zeiri [8] demonstrated that these draw-
backs can be overcome.

The low sensitivity of the tabletop RAMAN instrument itself
could be another reason for the weak signatures obtained in our
study. In order to further discriminate the differences in the
spectral data, discriminant analysis was performed to show that
the function was able to classify 100% of P. aeruginosa cells and
85.9% of L. monocytogenes cells correctly.

3.5. Time lapsed image analysis

The 3D high throughput microfluidic platform was used in
conjunction with optical microscopy to image the morphology of
L. monocytogenes treated with 37.2 and 200 mM concentrations of
IKAFKEATKVDKVVVLWTA peptide at 0, 1, 2, and 3 h. This experi-
ment was performed to visualize the effect of peptide on L.
monocytogenes cells. Fig. 6 shows the time lapsed images of L.
monocytogenes treated with 37.2 and 200 mM peptide taken at 40X
magnification over a period of 3 h. Aggregation in the peptide-
treated sample is significantly lower than in the case of untreated
cells The motility of the cells was restricted when comparing 2 and
3 h treatments with 200 mM of peptide used on L. monocytogenes.
The effect of antimicrobial soy peptide was observed to inhibit
flocculation and reduce the motility of bacterial cells.
4. Conclusions

Antimicrobial peptides are a novel class of bio-pharmaceuticals
that possess significant therapeutic potential. The results of this
study indicate that soy peptides PGTAVFK and IKAF-
KEATKVDKVVVLWTA could possibly be used in the development
of plant based, biocompatible, and biodegradable alternative an-
timicrobial agents or antibiotics for use in the food industry and
medical field.

There is a dire need to develop and exploit high throughput
techniques for drug analysis andantimicrobial/antibiotic screening
in the pharmaceutical industry. A high throughput, sensitive, and
selective tool would drastically reduce the timelines for anti-
microbial candidate discovery and development within the phar-
maceutical industry. Because of the ability to integrate 3D micro-
fluidic high-throughput drug screening platform with microscopy
and spectroscopy, rapid evaluation of antibiofilm candidates
would help to prevent false positive responses and will ultimately
streamline preclinical trials.
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