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Flavor is the most important aspect of food. Based on the complex matrix of the food

system and the flavor structure themselves, one important factor that plays a key role in

the quality attribute of food is flavor stability. Not surprisingly, there is a large volume of

published research investigating the stability of different food flavor compounds, since

understanding flavor stability is crucial to creating greater awareness of dietary flavor

application. This review presents a variety of factors that are thought to be involved in the

stability of several selected important flavor compounds and the approach to improve the

stability of different flavors. Some mechanisms of chemical degradation of flavor com-

pounds were also provided.

Copyright © 2015, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan

LLC.  
Open access under CC BY-NC-ND license.
1. Introduction

The most important parameter that maximizes food quality

and global competitiveness is flavor, and increasing attention

is being given to the stability of flavor. The list of known

flavoring agents, used as food additives, includes thousands of

molecular compounds, both synthetic and natural, and fla-

vorists can mix these together to produce many of the com-

mon flavors. The quality attribute of food aroma is influenced
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by three factors: (1) chemical reactivity of food flavor; (2)

environment of food such as availability of light and atmo-

spheric oxygen; and (3) food matrix system and its constitu-

ents such as protein, fat, carbohydrate, transition metal,

radical, and other polymers in food such as brown melanoi-

dins formed during thermal processing of food. Among the

many factors related to flavor quality, flavor stability is the

most important one. The chemical structure of individual

flavor compounds is associated with the chemical reaction

that is responsible for its stability. The presence of active
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functional groups, such as carbonyl, hydroxyl, and thiol

functional groups, affects the chemical reactivity of these

compounds. Both high- and low-volatility flavor compounds,

regardless of whether they are neutral, acidic, or nitrogen-

and sulfur-containing compounds, can be susceptible to

chemical changes occurring in various kinds of interactions,

including oxidation, hydrolysis, thermal degradation, photo-

oxidation, polymerization of unsaturated compounds, and

interaction with protein in food systems. For instance, alde-

hyde can be readily oxidized to acid, amine can form a com-

plex with metal ions, and terpenes are capable of undergoing

rearrangement and isomerization under acidic condition.

These vulnerable consequences have impacts on the overall

flavor quality of food [1].

Because the perception of flavor involves integration of

several flavor compounds and not a single compound and a

variety of factors affect the stability of flavor compounds, it is

not easy to study the chemical stability of individual flavor

compounds. In the literature, flavor stability studies have

generally focused on the whole food, and not on a single

molecular flavor compound. As demonstrated by several

studies available in the literature, several mechanisms have

been recognized to contribute to flavor reactivity, and later to

stability [1]. An understanding of the structure and reactivity

of a particular flavor compound is important for understand-

ing its stability, and this will assist in creating greater

awareness of dietary flavor application.

To-date, there is no article summarizing the stability of

flavor compounds, which would be important information

and an important quality criterion for flavor application in

food. Hence, our interest in this review was to focus on the

chemical reactivity of 10 common food flavor compounds

including citral, allyl isothiocyanate (AITC), methional, fur-

aneol, homofuraneol, norfuraneol, 2-methyl-3-furanthiol

(MFT), furfurylthiol, 2-acetyl-1-pyrroline (2-AP), and vanillin

(see Fig. 1 for structures). Some mechanisms proposed in

various studies have also been discussed.
2. Stability of selected flavor compounds

2.1. Citral

Citral, 3,7-dimethyl-2,6-octadienal, is the most important

flavor compounds in citrus oils, and the structure is shown in

Fig. 1. This monoterpene, naturally found in oils such as

lemongrass (Cymbopogon citratus) and Litsea cubeba Pers, con-

sists of two geometrical isomers, neral (E-isomer) and geranial

(Z-isomer), in a ratio of about 1:2 or 3:2, in which the E-isomer

ismore stable than the Z-isomer [2e7]. Because citral is an a,b-

unsaturated aldehyde, it is highly susceptible to acid-

catalyzed cyclization and oxidative degradation, particularly

in the presence of light and heat, leading to off-flavor forma-

tion, particularly in lime and citrus juice products [2,3,5,8]. The

degradation process of citral under acidic conditions is

accelerated by high temperature, light, and availability of

oxygen [2,9]. Based on the degradative chemical reaction,

Hideki [5] divided the degradation products of citral into three

groups: acid-catalyzed cyclization products, photochemical

cyclization products, and oxidation products. After citral
cyclization, diol dehydration reaction takes place and the

major intermediate compounds are monoterpene alcohols,

particularly р-mentha-1,5-dien-8-ol and p-mentha-1,2-dien-8-

ol [4,6,10]. Both unstable monoterpene alcohols can be dete-

riorated with disproportionation and redox reactions under

acidic condition, and more stable aromatic compounds (p-

cymene, p-cymene-8-ols, and a-p-dimethylstyrene) can be

obtained later in the presence or absence of oxygen [2,4,6].

However, p-cymene-8-ols can undergo a dehydration reaction

and transform to aroma compounds, a,р-dimethylstyrene,

р-cymene, р-methylacetophenone, and р-cresol, in which the

last two compounds are the most potent off-flavor com-

pounds [2,4,6,8,11]. In the presence of oxygen, a,p-dimethyl-

styrene can be further oxidized to p-methylacetophenone [11].

Ueno et al [11] found that 4-(2-hydroxy-2-propyl)benzal-

dehyde is one of the oxidation products of citral, leading to off-

flavor, in addition to a,p-dimethylstyrene, p-cymene, p-

methylacetophenone, and p-cresol. They also pointed out that

p-methylacetophenone and 4-(2-hydroxy-2-propyl)benzalde-

hyde can be formed from not only the OeO homolysis of 8-

hydroperoxy-p-cymene by tert-alkoxy radical [p-

CH3C6H4C(CH3)2O
�] but also the Fe2þ-induced decomposition

of 8-hydroperoxy-p-cymene through the same radical inter-

mediate. Using aroma extraction dilution assay, Schieberle

et al [12] found that p-methylacetophenone as well as p-cresol

were more potent off-flavor compounds in citral degradation

than a-p-dimethylstyrene [13]. The proposed mechanisms of

citral degradation through acid-catalyzed cyclization and

oxidation described in previous studies are summarized in

Fig. 2 [4,6,9,10,12].

A considerable number of studies have shown that various

antioxidants inhibit and slow the unstable chemical reactivity

of citral. Kimura et al [4] showed that the antioxidants BHT,

BHA, n-propyl gallate, a-tocopherol, nordihydroguaiaretic

acid, and n-tritriacontane, had no effect on the formation of

undesirable flavor compounds from citral degradation, which

were p-cymene-8-ols, a-p-dimethylstyrene, p-cymene, p-

methylacetophenone, and p-cresol. By contrast, isoascorbic

acid in a carbonated system was found to inhibit the forma-

tion of citral oxidation products p-cymene-8-ols and a,p-

dimethylstyrene [9]. Using plant extracts including grape

seed, pomegranate seed, green tea, and black tea, Liang et al

[2] revealed their inhibitory effects on citral off-odor forma-

tion. The study found that all four types of plant extracts

dramatically decreased p-methylacetophenone, p-cresol, and

8-hydroxy-p-cymene formation, leading to the conclusion

that the oxygen-scavenging effect of phenolic compounds in

plant extracts, regardless of their water-soluble attributes,

blocked the pathway from p-cymene-8-ol to p-methyl-

acetophenone, the key undesirable off-flavor compounds in

citral degradation [2]. Ueno et al [11] investigated the effect of

the antioxidant activity of pure compounds including cate-

chin, quercitrin (quercitrin 3-O-rhamnoside), and ascorbic

acid on the formation pathways of citral oxidation products.

The results indicated that catechin exhibited a stronger

inhibitory effect on the formation of p-methylacetophenone

and 4-(2-hydroxy-2-propyl)benzaldehyde than quercitrin and

ascorbic acid. This finding came to the conclusion that the

competition reaction between H donation at C-ring and phe-

noxyeperoxy coupling reactions at B-rings of catechin to

http://dx.doi.org/10.1016/j.jfda.2015.02.001
http://dx.doi.org/10.1016/j.jfda.2015.02.001
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Fig. 1 e Structure of selected reactive flavor compounds: (A) citral, (B) allyl isothiocyanate, (C) methional, (D) norfuraneol, (E)

furaneol, (F) 2-methyl-3-furanthiol, (G) 2-furfurylthiol, (H) homofuraneol/ethyl furanol, (I) vanillin, (J) 2-acetyl-1-pyrroline, (K)

6-acetyl-1,2,3,4-tetrahydropyridine, (L) 2-acetyl-2-thiazoline, (M) 5-acetyl-2, 3-dihydro-4H-1, 4-thiazine, (N) glyoxal, and (O)

methylglyoxal.
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peroxy radical promoted the formation of 8-hydroxy-p-cym-

ene and p-cymene-8-ol, respectively, and led to inhibit the

formation of 4-(2-hydroxy-2-propyl)benzaldehyde and p-

methylacetophenone. Recently, Yang et al [14] systematically

investigated the effects of six different natural antioxidants

on the stability of citral in oil-in-water nanoemulsions, and

found that b-carotene, tanshinone, and black tea extract could

greatly enhance citral's chemical stability during storage as

well as inhibit some of the potent off-flavor compounds.

However, application of the abovementioned antioxidants

in the food industry is limited due to their own unique taste

profiles, intense colors, and cost ineffectiveness since they are

not commercially available. Therefore, the research on avail-

able or commercial antioxidants that can effectively inhibit

citral degradation and off-flavor formation is one of the topics

that researchers pay attention to. Ubiquinone (2,3-dimethoxy-

5-methyl-6-multiprenyl-1,4-benzoquinone or Q10), widely

known as coenzyme Q, is getting attention recently, as it is an

important antioxidant especially in biological system and is
now a commercialized nutraceutical used in many dietary

supplements available in themarket. Zhao et al [15] elucidated

the effect of ubiquinol (Q10H2), the fully reduced form, as an

antioxidant in the oil-in-water nanoemulsion system to pro-

tect citral from chemical degradation and off-flavor genera-

tion, and found that the optimum concentration of Q10H2 in

the formulation was around 0.10 wt% in the system (Q10H2/

citral ratio 1:1), which can effectively protect citral from

chemical degradation and oxidation. Lower and higher Q10H2

concentrations gave contrast results. They also concluded

that ubiquinone-10, the fully oxidized form, had a negligible

effect on citral's chemical stability and off-flavor generation

[15].

Since citral is widely used as an additive in food, beverage,

perfumery, and pharmaceutical industries in the form of an

oil-in-water emulsion, several studies have focused on the

development of strategies to prevent or retard chemical

degradation of citral. Major methods were investigated,

including spray-dry encapsulation [16], oil-in-water emulsion/

http://dx.doi.org/10.1016/j.jfda.2015.02.001
http://dx.doi.org/10.1016/j.jfda.2015.02.001
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nanoemulsion systems [17], engineering of the interface of

emulsion droplets with different emulsifiers [8], multilayer

coatings [13,18], surface charges [19], use of solid lipids as the

oil phase [20], and use of micelles and reverse micelles to

entrap citral in the oil phase [19]. Encapsulation of citral in the

form of an emulsion or micelles is a technique used to in-

crease its stability, since it can isolate citral from reactive

molecules in an aqueous phase, such as protons, metals, and

free radicals. Djordjevic et al [8] compared the effect of two

emulsifiers, whey protein isolate and gum arabic to stabilize

oil-in-water emulsion, on the oxidation of citral and

concluded that whey protein isolate was more effective than

gum arabic. In the oil-in-water emulsion system, they also

found that slowing of the formation of citral degradation

product, p-cymene, was much more effective in sodium

dodecyl sulfateechitosan-stabilized emulsion than in gum
arabic-stabilized emulsion. This inhibition of citral oxidative

degradation can be attributed to the formation of a cationic

and thick emulsion droplet interface [13]. Citral molecules in

oil droplets show greater stability against chemical degrada-

tion than those in the aqueous phase, since they are protected

by the emulsifier surrounding them [21].

In an acidic aqueous solution where citral degradation is

favored, increasing citral partition in the oil phase decreases

the rate of citral degradation. In a nonionic surfactant emul-

sion, triacetin (glycerol triacetate) or medium-chain triglyc-

eride in the aqueous phase (the flavor solvent used in food

industries) increases the stability of citral. Medium-chain tri-

glyceride presents as an oil droplet incorporating citral within

the hydrophobic internal region (medium-chain triglyceride

oil droplet) and is therefore protected from the aqueous acidic

environment, while triacetin presents as a microemulsion

http://dx.doi.org/10.1016/j.jfda.2015.02.001
http://dx.doi.org/10.1016/j.jfda.2015.02.001
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that causes citral to be incorporated within the nonpolar re-

gions of the triacetin/nonionic surfactant structure, leading to

stabilization of citral against acid-catalyzed degradation [17].

The result here suggests that either triacetin or nonionic

surfactant retards citral degradation by interfering directly

with the chemical reaction, and interfacial properties, espe-

cially surface charge of surfactant, play an important role in

citral stability in an emulsion system. Based on the pH con-

dition, the rate of citral degradation was faster in anionic

surfactant-stabilized emulsions than in cationic or nonionic

surfactant-stabilized emulsions at pH 3.5 [19].

The above results indicate that a cationic emulsion system

is favored to protect citral from degradation. The explanation

is that the positive charge of the interfacial layer can repel

reactive species such as protons, metal ions, and free radicals

away from emulsion droplets, inducing citral degradation.

Recently, multilayer emulsion systems have been proposed to

improve citral stability [18]. Multilayer emulsions are prepared

by the layer-by-layer deposition technique based on the

electrostatic interaction between negatively charged emul-

sion droplets, the primary emulsions, and positively charged

biopolymers such as proteins and polysaccharides, secondary

emulsions. The stability of citral could be improved based on

the secondary emulsifier used. Yang et al [18] reported that

chitosan, as a secondary biopolymer coating in cationic

lecithin-CS multilayer emulsion, was more effective in

improving citral stability than ε-polylysine in a lecithineε-

polylysine multilayer emulsion, where phase separation of

the emulsion took place following creaming and coalescence.

2.2. Allyl isothiocyanate

AITC, 3-isothiocyanato-1-propene, is themajor pungent flavor

compound naturally found in plants of the Brassicaceae

family such as horseradish, mustard, wasabi, and cruciferous

vegetables including cabbage and cauliflower. It can be

generated from the chemical conversion of a glucosinolate,

sinigrin, by enzymatic hydrolysis of myrosinase released

when the plant tissue is disrupted [22e25]. AITC is an unstable

compound and has been reported to gradually decompose to

compoundswith a garlic-like odor inwater at 37�C and even at

room temperature [26], and the chemical reactivity can be

generated through various chemical reactions such as hy-

drolysis, oxidation, thermal degradation, and reaction with

proteins.

Because the carbon atom in isothiocyanic functional

group, N]C]S, is extremely electrophilic, it can easily un-

dergo nucleophilic additions with amino, hydroxyl, and thiol

groups; b-dicarbonyl; and carboxylic acids to give thio-

carbamoyl derivatives and several kinds of degradation

products [24,27e31]. The rearrangement of isothiocyanate,

RdN]C^S, to thiocyanate, RdSdC^N, isomerization of

AITC, is more favorable in neutral conditions than in acidic

and basic solutions, and its isomerization is stable in neutral

and acidic environments. However, the decomposition

through hydrolysis and oxidation of AITC readily occurs under

an alkaline condition and at higher temperatures [25,32]. This

can be easily explained by the fact that there was no stronger

nucleophilic agent in neutral and acidic conditions [22,23].

Hydrolysis of AITC under an alkaline condition at 27�C
generated thiourea (SC(NH2)2). The reaction mechanism is

that the hydroxyl ion reacts directly with AITC to form an

unstable intermediate, which then immediately captures a

proton from water and becomes the monothiocarbamate

shown in Fig. 3 [22,23].

The degradation rate of AITC alone is controlled by pseudo-

first-order reaction kinetics [33]. Pech�acek et al [22] studied

AITC hydrolysis in an alkaline solution at a high temperature,

80�C, and concluded that, in addition to allylamine, dia-

llylthiourea, and carbon disulfides, the newly identified major

products were allyl dithiocarbamate and diallyl sulfides. Dia-

llyl thiocarbamate is unstable and can be further hydrolyzed

under an acidic or alkaline condition, leading to allylamine

and carbon disulfide (Fig. 4A) [22]. Chen andHo [25] found that,

regardless of pH, themain products from thermal degradation

at 100�C were aliphatic and cyclic sulfides, and not thio-

carbamate, and indicated that allyl dithiocarbamate was heat

labile, which later decomposed to the unstable compound

allyl mercaptan, known as an important intermediate for

generating volatile sulfide compounds through thermal

degradation. The mechanism for thermal degradation is

shown in Fig. 4.

The interaction of AITC with amino acids such as cysteine

and proteins including insulin, bovine serum albumin (BSA),

ovalbumin, and lysozyme had been studied [31,29]. Reactions

of either proteins or amino acids and AITC not only decrease

the availability of AITC itself, but also change the nutritional

values, such as digestibility, of proteins. Many studies reveal

that the centered carbon atom in the isothiocyanate of AITC

reacts with proteins by cleaving the disulfide bond in cysteine

followed by polymer formation, and also attacks the free

amino group in lysine and arginine residues in protein to

produce a thiourea derivative. Cejpek et al [24] studied the

reaction of AITC with alanine, glycine, and several di- and

tripeptides at various pH values at room temperature. The

reaction of AITC with a-NH2 groups of amino acids and pep-

tides involves the addition of AITC and cleavage of 2-

thiohydantoin, for which the reaction rate rises in propor-

tion to pH within a pH range of 6e10. The reaction rates

depend on the amount of unprotonated forms of amino

compounds that vary with pH. Due to a lower pKa value, the

alanine and/or glycine containing di- and tripeptides reacts

more rapidly with AITC than free amino acid at a higher pH.

The final products from the reaction are ATC-amino acids,

ATC-peptides, 2-thiohydantoins, allylamine, and allylth-

iourea [24].

http://dx.doi.org/10.1016/j.jfda.2015.02.001
http://dx.doi.org/10.1016/j.jfda.2015.02.001
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Many studies proposed the decomposition mechanism of

AITC through hydrolysis under an alkaline condition

following nucleophilic addition with the amine group,

resulting in dialkyl thiourea formation [22e24,26]. Besides the

reaction with a-NH2 groups of amino acids and proteins, AITC

reacts with thiol and disulfide [22,29]. The centered carbon

atom in isothiocyanic functional reacts with the thiol anion of

amino acid side chain, producing thiocarbamate, which is a

labile compound, easily oxidized by air generating dialkyl

thiuram disulfides, or decomposed under mild acidic, neutral,

and weakly alkaline solution yielding allylamine and carbon

disulfide [22].

2.3. Compounds 2,5-dimethyl-4-hydroxy-3(2H)-
furanone and 4-hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-
3(2H)-furanone

Among 4-hydroxy-3(2H)-furanone derivatives such as 2,5-

dimethyl-4-hydroxy-3(2H)-furanone (furaneol of DMHF), 4-

hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone, (homo-

furaneol), and 4-hydroxy-5-methyl-3(2H)-furanone, (norfur-

aneol), furaneol has the most considerable impact on food

aroma due to its very low flavor threshold in water, which is

0.04 mg/kg, compared to those of norfuraneol and homofur-

aneol, which are 23,000 mg/kg and 20 mg/kg, and three of them

give a caramel-like sweet flavor [34e38]. In addition, Buttery

et al [39] found that odor thresholds of furaneol and their
related odor compounds varied depending on pH of solution:

the more acidic the condition, the lower the odor threshold.

Although homofuraneol was first identified as a character

impact factor of Japanese style soy sauce, it has since been

reported, on the basis of sensory experiment, to be of major

importance for the overall flavor of soy sauce [40e44]. Fur-

aneol or 2,5-dimethyl-4-hydroxy-3(2H)-furanone was identi-

fied for the first time as a natural aroma component in

pineapple, and it has since been detected in many fruits

including raspberry, strawberry, mango, kiwi, grape, and to-

mato [39,45,46]. Furaneol is the most important compound in

strawberry and pineapple, also known as strawberry furanone

and pineapple furanone, respectively [45,47]. In nature, fur-

aneol can be rapidly converted into methoxyfuraneol by

enzyme O-methyltransferase during fruit maturation [45].

Besides being biologically found in certain fruits, furaneol is

also the key flavor component generated in heat-processed

food such as wheat bread crust and popcorn because it can

be formed by thermal degradation of fructose, pyrolysis of D-

glucose or 1-deoxy-1-piperidino-D-fructose, and heating of

amino acids with rhamnose [48e50].

So far, homofuraneol studies have focused on its genera-

tion, and not on its stability compared to furaneol. The keto-

eenol tautomerization of furaneol is pH dependent [35].

Furaneol is unstable both in the presence of air and in aqueous

solutions [51e54]. The result of a stability study of furaneol in

an aqueous buffer solution revealed that furaneol degradation

http://dx.doi.org/10.1016/j.jfda.2015.02.001
http://dx.doi.org/10.1016/j.jfda.2015.02.001
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was pH dependent, with optimum stability being at pH 4, and

the rate of decomposition follows first-order kinetics [53].

From a study on the stability of naturally occurring furaneol

derivatives at pH range 2.0e8.0 at 23�C [54], the greatest sta-

bility of furaneol in aqueous solutions was found to be at pH

3.5 and addition of saccharose and ethyl alcohol over a con-

centration range (0 ± 20%) has no effect on the stability of

furaneol [53]. Furaneol is heat labile, which can go through

thermal degradation to produce a variety of carbonyl and

hydroxyl carbonyl compounds such as 2-hydroxy-3-butanone

and 2-hydroxy-3-pentanone, aliphatic aldehydes, or alcohols

[49]. High temperatures (130�C and 160�C) cause thermal

degradation of furaneol. Amino acids and hydrogen sulfide are

also the most important reactants that have an impact on the

stability of furaneol, particularly at higher temperatures. Shu

et al [50] studied the thermal degradation of furaneol in a

closed system at 160�C at various pH (2.2, 5.1, and 7.1), and

found that most of the degradation products were cyclic car-

bonyls as well as furanones, and the degradation was

preferred at a lower pH. The initial stage of the degradation

mechanism involved ring structure opening. The resulting

open ring intermediate underwent a retroaldolization reac-

tion to generate a group of primary products, including acet-

aldehyde, hydroxyacetone, 1-hydroxy-2-butanone, 3-

hydroxy-2-butanone, and 2,3-butanedione, which reacted in

intermolecular ways to generate secondary products. In this

study, the important secondary products, 3-hydroxy-2-

pentanedione and 2-hydroxy-3-pentanone, were formed by

aldol condensation of the primary products acetaldehyde and

hydroxyl acetone [50].

Photo-oxidative stability study of furaneol by Chen et al

[52] showed that the initial state for DMHF photo-oxidation

began with the ring structure opening as in thermal degra-

dation mechanism, and the primary products of photo-

sensitized oxidation of furaneol were generated, which then

reacted with alcohols or acids, leading to acyclic ester for-

mation and secondary products. The possible mechanism for

photo-oxidation of furaneol is summarized in Fig. 5. It starts

with exposure of furaneol to light in the presence of a

photosensitizer, chlorophyll, and the singlet oxygen (1O2) is

generated, which then attacks the double bond at the C-5

position, producing hydroperoxide. Later, this open-ring hy-

droperoxide forms 5-hydroxy-2,3,4-hexanetrione intermedi-

ate, which is hydrolyzed at either position a or position b to

form the primary products or intermediate products including

lactic acid, pyruvic aldehyde, pyruvic acid, lactic aldehyde,

acetic acid, and acetoin aldehyde. The lactic acid then goes

through a series of esterification processes with acetic acid or

alcohol to form the secondary products including 2-

acetoxypropionate, ethyl lactate, and ethyl 2-

acetoxypropionate. The pyruvate aldehyde is oxidized to un-

stable pyruvic acid, which then easily undergoes an esterifi-

cation reaction with ethanol to form ethyl pyruvate and

proceeds through a degradation reaction to generate acetic

acid as a photo-oxidation product. The acetoin aldehyde un-

dergoes a ketoeenol tautomerization process to form keto

alcohols, which are able to react with acids to form esters

including 2-oxopropyl 2-acetoxypropionate and acetox-

yacetone. The intermediates from b part, such as lactic alde-

hyde, go through the same mechanism as acetoin aldehyde,
leading to acetoxy-2,3-butanedione, and 1,2-ethanediol [52].

The results from this study in terms of intermediate, primary,

and secondary products can be used to explain the pro-

oxidant effect of both homofuraneol and furaneol [49].

The DMHF thermal degradation mechanism in the pres-

ence of sulfur-containing compounds is different from DMHF

thermal degradation itself. The reaction of furaneol with

hydrogen sulfide or amino acid, such as cysteine, produces a

thiophene derivative [50,55,56]. The ring oxygen in furaneol is

readily exchangeable with a sulfur atom, so it is reactive to

sodium sulfide, hydrogen sulfide, and sulfur-containing

amino acids such as cysteine and glutathione [49,55,56]. It is

well accepted that hydrogen sulfide (H2S) is a product of

thermal degradation of sulfur-containing compounds such as

cysteine, cystine, and glutathione. The chemical reaction in-

volves thermal degradation of both furaneol and amino acid,

and the interactions among degradation products include

Maillard reaction and Strecker degradation. Van den Ouwe-

land and Peer [55] obtainedmercaptothiopene derivative from

heating of furaneol with hydrogen sulfide in an aqueous so-

lution at 100�C. Shu and Ho [56] studied reactivity between

DMHF and cysteine at various pH at 160�C, and indicated that

the products formed significantly depended on the pH of the

solution. More thiopene derivatives were generated at a lower

pH (2.2) than at a higher pH (5.1). Pyrazines were only formed

in pH solution higher than pI of cysteine, 7.1 [56]. Zheng et al

[49] investigated the possible reactionmechanismviaMaillard

reaction and Strecker degradation using the reactions of fur-

aneol with cysteine, glutathione, sodium sulfide, and alanine

at 130�C. The results indicated that the availability of

hydrogen sulfide might be the limiting factor in types and

amount of sulfur-containing compounds formed in the reac-

tion [49]. Kunert-Kirchhoff and Baltes [57] reported that, even

in the presence of sulfur-containing amino acid, furaneol

reacted with phenylalanine in an autoclave, generating

alkylpyrazine and alkyldihydrofuropyrazine.

2.4. Vanillin

Vanillin, 4-hydroxy-3-methoxybenzaldehyde, commercially

called p-vanillin, is amajor constituent of vanilla flavor, and is

a well-known flavoring agent used in various food industries

such as bakery, confectionary, ice cream, fragrance, cos-

metics, and drug manufacture [58e63]. Since vanillin has

three reactive functional groups, aldehydic group, phenolic

hydroxyl, and aromatic nucleus, it can easily undergo

different types of reactions. The aldehyde functional group

can cause certain condensation reactions, leading to various

substitutions. If its hydroxyl group is protected, vanillin can be

oxidized to generate vanillic acid. Phenol is converted to esters

and ethers, while the nucleus is readily substituted by halogen

and nitro groups [59,64,65]. Oxidation of vanillin can occur

both under alkaline condition and by enzymes including milk

enzymes such as xanthine oxidase and peroxidase. Fargues

et al [66] found that heating birch syrup at 100�C decreased the

aroma intensity of vanillin. Vanillin is highly oxidized when

reacted with oxygen in an alkaline solution through various

pathways, and the reaction is favored at higher temperatures,

< 100�C, as well as under elevated alkaline conditions. The

rate of vanillin oxidation, which depends on the

http://dx.doi.org/10.1016/j.jfda.2015.02.001
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concentration of vanillin, follows first order at pH > 12 and

second order at pH < 12. Oxygen concentration has an impact

on the rate of vanillin oxidation at a higher pH (>12), but not at
a lower pH (<12) [67,68]. The major product of air oxidation at
Fig. 6 e Enzymatic oxidation of vanillin and structure of

Schiff base vanillin.
high levels of alkalinity is vanillic acid, and the degradative

pathway includes a Dakin-type reaction through methoxy

hydroquinone and a demethoxylation reaction through p-

hydroxybenzaldehyde [58,68]. A Dakin-type reaction is the

reaction of o- and p-hydroxybenzaldehyde with hydrogen

peroxide under acidic and basic conditions, with various

substitutions on benzaldehyde. Anklam et al [60] and Baum-

gartner and Neukom [68] indicated that vanillin could also be

oxidized by thermolabile enzymes, peroxidase/H2O2, and

xanthine oxidase, yielding dimeric divanillin and vanillic acid

in milk products, but xanthine oxidase was not the driving

force of vanillin oxidation to vanillic acid, as shown in Fig. 6

[68,69]. Oxidation of vanillin in milk products to vanillic acid

is pH dependent, which is shown to be favored at a higher

pH, > 4 [60].

It is accepted that under a liquid or high-moisture food

environment, flavor compounds having an aldehydic function

can bind covalently to the amino groups of proteins via Schiff

base formation [69,70]. Dikusar [69] found that the reaction of

vanillin with biphenyl-4-amine in methanol gave a Schiff

base-containing compound. Vanillin also reacts with amino

http://dx.doi.org/10.1016/j.jfda.2015.02.001
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acid and proteins via Schiff base formation, hydrogen

bonding, hydrophobic interaction, and electrostatic interac-

tion [71e75].

Interactions of vanillin with proteins influence the flavor

perception, decrease the intensity of vanillin flavor, and are

likely to influence the release of flavor compounds during

consumption. Different types of proteins, protein conforma-

tion, pH, temperatures, and concentration of proteins have

impacts on vanillin protein binding or the types of chemical

interactions [71e77]. Mikheeva et al [70] reported that vanillin

interacted with proteins including b-lactoglobulin, bovine

serum albumin, and ovalbumin mainly through electrostatic

interactions, since certain physical factors such as tempera-

ture, pH, and ionic strength had effects on the binding. Be-

sides the electrostatic interaction, hydrophobic interaction is

a major force for vanillin bovine serum albumin, while

hydrogen bonding plays a key role for vanillinecasein inter-

action, as indicated by Chobpattana et al [78]. Li et al [72]

studied the interaction of vanillin with different proteins,

soy, whey, and casein proteins, and showed that whey pro-

tein could bind more vanillin or had a higher affinity, than

soy and casein proteins. The binding of vanillin to protein

were also increased by decreasing the temperature from 12�C
to 4�C, which may be explained by the conformational

change in tertiary and quaternary structures of protein at

lower temperatures [79,80]. Owing to the interaction between

carbonyl and hydroxyl groups, binding of vanillin with dairy

proteins, casein, and whey proteins are governed by

enthalpy. By contrast, the conformational change of soy

protein has an impact on the binding of vanillin causing the

interaction to be highly driven by entropy [74]. Heat treat-

ments of sodium caseinate at 85�C/10 min, 68�C/30 min, and

75�C/15 min had no effect on vanillin flavor intensity [73,76].

On the contrary, McNeill and Schmidt [75] showed that

vanillin flavor intensity in a heated whey protein isolate (85�C
for 10 minutes) was higher than that in an unheated whey

protein isolate. This can be explained by the unfolding of

whey protein resulting in enhanced binding to vanillin

because it is accepted that casein is more heat resistant to

denaturation than whey protein [73,74]. There is little infor-

mation about the reaction of vanillin with amino acids or

proteins via Schiff base formation due to aldehydic group of

vanillin and free NH2 groups of proteins. Schiff base forma-

tion through aldehydeeamine condensation was inhibited by

the model system in presence of water [81]. Chobpattana et al

[74] investigated the reaction kinetics of vanillin with

different types of amino acids, lysine, cysteine, and phenyl-

alanine, or peptides, pentalysine, glutathione, and aspar-

tame, in the model system at elevated reaction temperatures

of 55�C, 65�C, and 75�C. The result suggested that the inter-

action of vanillin and amino acid followed first-order ki-

netics, and the reaction rate depended on time and

temperature, being higher at elevated temperatures. Schiff

base formation is not a major reaction between vanillin and

amino acid or protein [74]. Although many studies have

shown that vanillin interacts with protein and amino acid,

only a few studies have paid attention to the result of the

reaction, including the off-flavors produced from the reaction

and the perception of vanillin after reaction. Reiners et al [73]

showed that the interaction between 1% milk protein, b-
lactoglobulin, and vanillin at 8e200 mg/L for sensory evalu-

ation test had no effect on the odor perception of vanillin [73].

2.5. MFT and furfurylthiol

While MFT was first identified in 1988 in heated canned tuna

fish, 2-furfurylthiol (FFT), also called 2-furfuryl mercaptan,

was known for the first time as a food component in roasted

coffee [82]. Besides, they are known to possess an intense

roasted coffee-like odor, the key aromas in heated processed

foods and beverages such as cooked beef and wheat bread.

FFT is also an important odorant in freshly popped corn and

roasted white sesame [82e85]. The MFT odor threshold values

are as low as 0.007 mg/kg in water and 0.0025 ng/L in air,

whereas FFT has an odor threshold of 0.01 mg/kg in water of

0.01 ng/kg in air [82,85,86]. Many studies showed that both key

coffee odors can be generated from the Maillard reaction of

amino acid, cysteine, pentose, ribose/rhamnose or hexose,

and glucose [82,84,85,87]. Besides the Maillard reaction, the

minor pathways for MFT generation are thermal degradation

of thiamine (vitamin B1), widely found in processed animal

and plant food products, and reaction of norfuraneol [4-

hydroxy-5-methyl-3(2H)-furanone], pentose degradation

product, and cysteine or hydrogen sulfide in themodel system

[82,85]. FFT can be formed by heating glucose with hydrogen

sulfide and ammonia [82]. Although, MFT represents the

pleasant characteristic odor of certain foods, in some products

such as orange juice, it is an off-flavor compound generated

during storage [85,88]. The hydrogen atom of thiol group of

MFT and FFT can be readily abstracted, reflecting their anti-

oxidative capability [84]. It is well known that thiols are readily

oxidized to disulfides, so MFT and FFT are unstable com-

pounds and can be oxidized to disulfide derivatives [83e85,87].

Many qualitative and quantitative studies were conducted to

support the instability of sulfur aroma through several re-

actions such as thermal degradation, reaction with food pro-

teins, radical reaction, and ionic reaction in both food systems

and model studies.

Oxidation of MFT and FFT in diethyl ether occurs even

within 1 day at 6�C and the oxidative products generated are

the corresponding disulfides or mixed disulfides. The oxida-

tion rate of MFT was higher than that of FFT, which can be

attributed to the high antioxidant activity of the former

because of the easy abstraction of a hydrogen atom from the

thiol group of MFT compared with that from FFT. Higher

temperatures attained during heat treatment increased the

MFT oxidation rate [84].

Flavors containing thiol groups, including FFT and MFT,

have the ability to bind with food proteins. Mottram et al [83]

found that heating a flavor compound containing thiol and

disulfide groups in an aqueous solution at 100�C with egg al-

bumin causes a decrease in the concentration of flavor. This

could be attributed to the interchange (redox reaction) of thiol

and disulfide groups of the flavor compound with those of

proteins. This reaction depends on the structure of protein

and the number and position of sulfhydryl groups.

FFT and MFT are key contributors to coffee aroma and are

very reactive to other chemical compounds that are normally

added to coffee brew; therefore, milk added to coffee also has

a role in decreasing the quality of the sulfur aroma in coffee.

http://dx.doi.org/10.1016/j.jfda.2015.02.001
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The study showed that all types of milk and milk products

such as UHT milk, condensed milk, skimmed milk, coffee

cream, and whipped cream, and vegetable fat reduced the

intensity of coffee-like attributes, such as roasty flavor,

because their lipid, protein, and carbohydrate components

influence the release of aroma substances in coffee brew [89].

Heat processing and duration of storage have a significant

impact on the stability of sulfur aroma compounds in coffee,

particularly FFT. It was reported that coffee flavor changed

during sterilization at 121�C for 15 minutes or at 134�C for

3 minutes. There were support studies showing that heating

caused substantial degradation of FFT and MFT through

oxidation and hydrolysis [90,91]. Kumazawa and Masuda [91]

investigated the influence of heating processes on the

change in the flavors of coffee drinks. The sensory study

showed that sterilization of a coffee drink at 121�C for 10 mi-

nutes in a can significantly decreased the potent roasty flavor

of the fresh coffee drink [91]. The study also focused on the

effects of pH, in the range of 3e7, on FFT concentration change

during heat processing. Higher pH, particularly in the range of

5.0e7.0, and higher temperatures significantly reduced the

FFT concentration. The major volatile product obtained from

thermal degradation of FFT in an aqueous solution was

difurfuryl disulfide, followed by furfural and furfuryl alcohol.

Nonvolatile degradation products were presumably produced

through a Fenton-type reaction [86,91]. The results indicated

that various reactions, including thiol binding to coffee mel-

anoidins, Fenton reaction, and pH-dependent degradation,

caused the change in coffee flavor [91].

The stability of MFT and FFT in an aqueous process

flavoring was investigated through cysteine and ribose model

system under 50�C accelerated storage condition. Both in air

and without air, MFT and FFT content did decrease with time,

and MFT was found to be less stable than FFT [86,87]. This

study concluded that the instability of MFT is not because of

the oxidative pathway of MFT to form disulfide, but seem to be

the result of the greater ability of MFT to undergo oligomeri-

zation/polymerization. MFT electrophilic species, formed

from the protonation at 2-position, react with nucleophiles,

which are the thiol group and furan ring of MFT. The result
Fig. 7 e Proposed degradation mechanism for

polymerization of 2-methyl-3-furanthiol.
supported that the reactivity of 5-position of MFT is respon-

sible for its rapid degradation. Besides reacting with itself,

MFT can react with other thiols such as cysteine [87]. The

proposed mechanism for polymerization of MFT is shown in

Fig. 7.

Oxidation and radical reaction also affects the stability of

thiol flavor compounds, which appear to be a crucial problem

of altering the coffee aroma. Reactive oxygen species, such as

singlet oxygen (1O2), superoxide (O2
��), hydroperoxyl radical

(�OOH), hydroxyl radical (�OH), and hydrogen peroxide (H2O2),

were generated from oxygen (3O2) at ground state in the

presence of water, light, energy, or catalytic activity. Among

them, the most reactive form of oxygen is hydroxyl radical

(�OH) [86,92,93]. In the presence of a transition metal in low

oxidation states, oxidative processes can be initiated by H2O2

to generate hydroxyl radicals (�OH) via a Fenton reaction.

Blank et al [86] investigated the stability of key coffee aroma

compound FFT in the model Fenton-type reaction system and

found 90% degradation of FFT within 1 hour at 37�C. The FFT

degradation products were both volatile and nonvolatile

substances with molecular weights in the range of

124e262 Da. The major FFT degradation product was difur-

furyl disulfide, followed by bifurfuryl, and difurfuryl mono-

sulfide, which all gave a burnt, rubbery, and sulfuryl roasty

smell-like flavor. The degradation is temperature dependent,

which caused 20% loss of FFT at room temperature compared

to 90% loss at 37�C after 1 hour. The result clearly indicated

that Fe (II) catalyzed the reductive cleavage of the OeO bond in

H2O2 to generate �OH radical, so iron (Fe) and hydrogen

peroxide (H2O2) play a key role in FFT degradation. The type of

transition metal has an impact on the FFT oxidation in which

Fe/Fe(II) is more effective than Mn or Cu due to easier redox

cycling between the two oxidation states of Fe and Fe(II). Be-

sides the generation of �OH by a Fenton-type reaction, the C-

centered radical derived from the reaction of �OHwith various

organic molecules and the S-radical were also found, and

these radicals are generated as intermediates during FFT

degradation by the Fenton-type reaction, as shown in Fig. 8

[86].

Apart from food proteins, FFT is capable of binding to other

polymers such as brown macromolecules that are formed

during thermal processing of food. Of particular concern is the

covalent binding of FFT to melanoidins which are generated

when carbohydrates react with amino compounds at higher

temperatures during roasting of coffee bean. This type of

binding may also have an impact on flavors containing thiols

and brown colors in many food items including meat, bread

crust, or roast sesame seeds, besides coffee.

Hofmann and Schieberle [94] and Hofmann et al [95] found

that in the model study, the sulfuryl-roasty aroma quality of

coffee was reduced by adding coffee melanoidins, and the

quantity of FFT was rapidly reduced (50% after 20 minutes and

almost 100% after 30 minutes). However, it was still not clear

whether melanoidins degraded the FFT only by covalent bind-

ing or through other degradation pathways such as oxidation.

Hofmann and Schieberle [94] elucidated the chemical mecha-

nism involved in coffee aroma change in the presence of coffee

melanoidins by keeping coffee beverage warm. The outcome

undoubtedly showed that in the presence of coffee melanoi-

dins, the concentration of coffee thiols, including FFT andMFT,

http://dx.doi.org/10.1016/j.jfda.2015.02.001
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furfurylthiol under Fenton-type reaction.
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decreased drastically and FFT was most affected among other

coffee thiols.Using [2H]-nuclearmagnetic resonanceandLiquid

chromatography/mass spectrometry, they demonstrated that

obviously both FFT and MFT were covalently bound to coffee

melanoidins throughMaillard-derivedpyraziniumcompounds

formed as oxidation products of 1,4-bis-(5-amino-5-carboxy-1-

pentyl)pyrazinium radical cations, called CROSSPY radicals.

These radical cations, produced during melanoidin formation

and found to be involved in a redox cycle of reaction in-

termediates, were oxidized, leading to diquaternary pyr-

azinium ions. These ions reacted with nucleophilic thiols such

as FFT, generating the thioether 2-(2-furyl)methylthiol-1,4-

dihydropyrazine, and in the absence of thiols, reacted with

water to generate 2-hydroxy-1,4-dihydropyrazine [94]. The

proposed chemical mechanism for binding of thiols to

CROSSPY-related reaction intermediates is demonstrated in

Fig. 9. Without oxygen, degradation of FFT was very slow, and

the result suggested that either thiols reacted with oxidation

products formed in the coffeematrix in the presence of oxygen

or oxygen needed to create radical species caused thiol degra-

dation.All these researchworks support that oxidation reduces

the stability of FFT. This is well in line with the findings of

Hofmann and Schieberle [94].

2.6. Methional

Methional, 3-(methylthio)propanal, having a cooked potato-

like flavor, is formed by the Strecker degradation reaction

between a-dicarbonyl compounds, the key intermediate

products of the Maillard reaction, and methionine (Met)

[96,97]. It is also found in wine, sardine, ham, and soy sauce

[40,98,99]. In orange juice, it causes the off-flavor problem [88].

Potato processing causes the loss of a large amount of
methional because it is heat labile and readily decomposes to

methanethiol, which oxidizes to dimethyl disulfide [96]. Be-

sides the thermal instability, methional is also unstable to

light and can be converted to many sulfur compounds,

particularly in light-exposed milk. Methional is decomposed

to methanethiol and dimethyl sulfide by exposure to light. A

report showed that the broth and potato flavors of methional

changed to methanethiol-like flavors on additional light

exposure [97]. Methional is reactive to oxygen-centered radi-

cals such as hydroxyl radicals (�OH), superoxide anions (O�
2),

generating ethylene [100e102]. Using a pulse radiolysis study,

the mechanism of oxidation by �OH was found to be more

complicated than a simple fragmentation reaction [102].

Beauchamp and Fridovich [101] pointed out that methional

reacts with hydroxyl radical rather than with superoxide an-

ions to generate ethylene. Data on the mechanism of

methional degradation are still lacking.

2.7. Compounds 2-AP, 6-acetyl-1,2,3,4-
tetrahydropyridine, 2-acetyl-2-thiazoline, and 5-acetyl-2, 3-
dihydro-4H-thiazine

The compound 2-AP (5-acetyl-3,4-dihydro-2H-pyrrole) has

extremely low odor thresholds, 0.1 mg/L in water and 0.02 ng/L

in air. It was first identified as the key flavor compound of

cooked rice [103]. This compound is generated by thermal

cooking and processing, through nonenzymatic Maillard re-

action, of various foods, especially rice. Besides in cooked rice,

2-AP has also been identified, mostly in a low concentration,

as a volatile flavor in various cooked cereals and cereal prod-

ucts including bread crust, toasted bread, corn tortillas,

popcorn, and cooked sweet corn products; extrusion cooked

maize flour; rice cakes; and puff pastries. In addition, it is

shown to be the potent odorant of boiled potatoes, roasted

wildmango seeds, roasted sesame seeds, pan-fired green teas,

and taro [103e105]. It has been shown to be formed by acyla-

tion of 1-pyrroline by the respective 2-oxoaldehyde, with the

elimination of formaldehyde.

The compound 6-acetyl-1,2,3,4-tetrahydropyridine (6-

ATHP) is responsible for a typical roasty aroma similar to 2-

AP, and it is a potent keynote flavor of crackers and popcorn.

It also contributes to the aroma of several baked products

such as potato chips, bread crust, corn tortilla, and toast rice

cakes. Compared with 2-AP, the odor threshold of 6-ATHP is

higher, which is about 1.0 mg/kg in water and 0.06 ng/L in air.

Although both 2-AP and 6-ATHP are formed from the same

precursors, 1-pyrroline and carbohydrate fragment, and

significantly contribute to flavor of bread crust, 2-AP has the

highest odor unit in wheat bread crust, while 6-ATHP domi-

nates in rye bread crust [103].

Although not many studies have focused on the stability of

these two compounds, a few of them focused on the loss of 2-

AP in rice as a keynote flavor. These two flavor compounds are

sensitive to light, oxygen, and heat, and the important factors

that cause loss of rice flavor are the temperature of drying,

storage moisture condition, and storage duration and condi-

tion during postharvest treatments [103,105e107].

Wongpornchai et al [106] investigated the impact of drying

methods and storage time on the stability of 2-AP in Thai rice

KhaoDawkMali 105, the most popular aromatic rice variety of

http://dx.doi.org/10.1016/j.jfda.2015.02.001
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Thailand, in the stage of fresh paddy. The condition of drying

was varied in six different drying methods: in modified air at

30�C and 40�C; in hot air at 40�C, 50�C, and 70�C; and by sun

drying, under 15% moisture content for 10 months. The re-

sults showed that 2-AP content in all cases decreased more

than four times after 10-month storage and off-flavor com-

pounds, n-hexanal and 2-pentylfuran, were increasingly

generated [106]. Schieberle [107] found that the flavor com-

pounds of fresh popcorn, both 2-AP and 6-ATHP, are not sta-

ble. The concentration of four roast flavor compounds in fresh

and stored hot air popped corn and in fresh pan-popped corn

showed that 2-AP and 6-ATPH decreased 75 and 69%, respec-

tively, after storage in a polyethylene bag for 1 week.

Both 2-acetyl-2-thiazoline (2-AT) and 5-acetyl-2,3-dihydro-

4H-1,4-thiazine (5-ADHT) are sulfur-containing analogs of 2-

AP and 6-ATHP, respectively, and are known as sulfur-

containing popcorn-like flavor compounds that possess

characteristic popcorn-like odor. The compound 5-ADHT was

first identified from a model riboseecysteine reaction system

and has not been identified in food systems, whereas 2-AT

was first identified in beef broth and is one of the character-

istic roasted beef odor compounds. The odor threshold of 2-AT

is 1 mg/L in water and of 5-ADHT 0.05 ng/L in air. It is clear that
2-AT is the product of a Maillard reaction in the presence of

cysteine [108,109]. The compound 2-AT can be generated by

the reaction of amino acid including cysteine with methyl-

glyoxal in a model system [110]. It is a potent odorant of

several processed meat products such as chicken broth,

cooked meat patties, cooked chicken, and stew beef juice and

found in several food items such as cooked mussels, cooked

clams, cheddar cheese, pan-fired green tea, roasted white

sesame seeds, sweet corn products, and heated yeast extracts

[103].

The compound 2-AT is unstable during heat treatment in

the presence of water. Fat-containing food systems can sta-

bilize 2-AT. Hofmann and Schieberle [109] refluxed 2-AT in tap

water (100�C) and found that the degradation was 96% after

60minutes. By contrast, heating 2-AT in sunflower oil at 100�C
caused only 2.5% 2-AT degradation compared to 99% under

phosphate buffer (pH 5) in an autoclave at 145�C.
3. Conclusion

Many chemical reactions and numerous factors, including

temperature, pH, storage period, enzymes, and oxygen,

http://dx.doi.org/10.1016/j.jfda.2015.02.001
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influenced the stability of flavor compounds. An under-

standing of flavor stability and the knowledge of an effective

approach or technique to retard flavor degradation and

improve the stability of flavor compounds are important to

obtain desirable flavor for maximizing food product qualities.
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