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ABSTRACT
According to the mathematical classification of topological band structures, there exist a number of
fascinating topological states in dimensions larger than three with exotic boundary phenomena and
interesting topological responses. While these topological states are not accessible in condensed matter
systems, recent works have shown that synthetic systems, such as photonic crystals or electric circuits, can
realize higher-dimensional band structures. Here, we argue that, because of its symmetry properties, the 4D
spinless topological insulator is particularly well suited for implementation in these synthetic systems. We
explicitly construct a 2D electric circuit lattice, whose resonance frequency spectrum simulates the 4D
spinless topological insulator. We perform detailed numerical calculations of the circuit lattice and show
that the resonance frequency spectrum exhibits pairs of 3DWeyl boundary states, a hallmark of the
nontrivial topology.These pairs of 3DWeyl states with the same chirality are protected by classical
time-reversal symmetry that squares to+1, which is inherent in the proposed circuit lattice. We also discuss
how the simulated 4D topological band structure can be observed in experiments.

Keywords: topological circuit, 4D topological states, 4D topological Hall effect, second Chern number,
Weyl states

INTRODUCTION
With the great success of topological band theory in
condensedmatter physics [1–6], recent research has
branched out to the study of topological bands in
synthetic lattices, such as, photonic crystals [7–10],
ultracold atomic gases [11–16] and electric circuit
networks [17–34].These synthetic lattices have sev-
eral advantages compared to their condensed mat-
ter counterparts. One is the ability to precisely con-
trol and manipulate the band structure, another is
thepossibility to create lattices indimensions greater
than three. The celebrated 10-fold classification of
topological materials [35–39] predicts a number
of interesting higher-dimensional topological states,
including four-dimensional (4D) topological insula-
tors [36,40], 4D topological superconductors and a
4D generalization of the integer quantumHall effect
[41].These 4D topological states exhibitmany inter-
esting phenomena, for example quantized nonlinear
responses [40–45], topological charge pumping and
in-gap boundary modes with protected level cross-
ings [46]. Unfortunately, these 4D states cannot be
realized in condensedmatter systems, which are lim-

ited to three spatial dimensions. However, recent
technological advances inphotonics andcold atomic
gases have facilitated synthetic engineeringof the4D
integer quantumHall effect, using, for example inter-
nal degrees of freedomas additional effective dimen-
sions [44–50].These experiments have revealed sig-
natures of charge pumping and topological transport
[44,50]. Apart from these works, there has been no
other experimental investigation of the 4D integer
quantumHall effect, and likewise no other 4D topo-
logical state has yet been realized experimentally.
Among the five 4D topological states of the 10-fold
classification [35–37], the spinless topological in-
sulator, belonging to symmetry class AI, is particu-
larly intriguing. Its energy bands are characterized
by a 4D topological invariant, namely the second
Chern number, which has the distinguishing prop-
erty of taking on only even integer values [37]. This
invariant leads to topological transport responses
in the 4D bulk [43] and to pairs of Weyl fermions
of the same chirality on the 3D boundary [38,39].
Hence, an experimental realization of the 4D spin-
less topological insulator could allow simulation of
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Figure 1. Topological properties of the 4D model Hamiltonian. (a) The second Chern
number C2 as a function of m (in unit of t). For −t/2 < m< t, C2 = −2. (b) The band
structures for a slab geometry confined in the r 1 direction, with m = 0. The k-line in
the (k2, k3, k4) space is chosen to cross the point w1 = 2π (5/12, 1/3, −1/3) along
the k2 direction. The bulk part of the band structure (gray) is obtained by projecting the
eigenvalues of the Hamiltonian (1) with k1 ∈ [0, 2π ]. The boundary states (red lines) are
the eigenstates of the boundary effective Hamiltonian (3) in the range of k2 ∈ 2π (1/3,
2/3), between the two vertical blue dashed lines. (c and d) The bulk band structures
and the boundaryWeyl states along the k3 and k4 directions, respectively. The boundary
states appear in the whole range of k3, 4 ∈ [0, 2π ]. The local band structure around the
point w2 is related to that around w1 by time-reversal symmetry.

chiral lattice gauge theory of high-energy physics
[51–53].

Besides these interesting properties, the 4D spin-
less topological insulator has the advantage that it
can be realized easily and in a robust manner in
bosonic synthetic or classical systems, such as pho-
tonic lattices or periodic electric circuits. This is be-
cause such systems naturally exhibit a time-reversal
symmetry that squares to+1,which is theprotecting
symmetry of the 4D spinless topological insulator in
class AI. Hence, there is no need to introduce artifi-
cial gauge fields or to engineer fine-tuned intra-unit-
cell degrees of freedom for the simulation of addi-
tional symmetries. The time-reversal symmetry also
guarantees that the first Chern numbers vanish, such
that the topological responses originate purely from
the second Chern number.

Motivated by these considerations, we propose
in this paper an experimental realization of the 4D
spinless topological insulator in a periodic electric
circuit composed of inductors (L), capacitors (C)
and operational amplifiers. By using mapping be-
tween circuit Laplacians and single-particle Hamil-
tonians, we explicitly construct a circuit lattice,
whose resonance frequency spectrum is identical
to a 4D spinless topological insulator in class AI.
We perform detailed numerical simulations of the

resonance frequency spectrum for various boundary
conditions. For open boundary conditions we ob-
servepairs of 3DWeyl cones that traverse a gap in the
resonance frequency spectrum.As the LC circuit lat-
tice is non-dissipative, it has a built-in time-reversal
symmetry of class AI, which leads to strong and
robust protection of the 3D Weyl boundary states.
Even though the proposed circuit lattice realizes a
4D state, it can readily be implemented on a 2D cir-
cuit board or integrated-circuit wafer by projecting
the 4Dhyperlattice onto the 2Dplane.The crossings
of the projected lattice links can be avoided by using
a bridge structure for the wiring.The predicted pairs
of Weyl modes can be experimentally observed
using frequency-dependent measurements.

4D SPINLESS TOPOLOGICAL INSULATOR
We start by discussing a minimal model for the 4D
topological insulator in class AI and its boundary
Weyl modes. A minimal model can be constructed
from a four-band Hamiltonian of the form,

H(k) =
5∑

a=0

fa(k)γa . (1)

Here fa(k) are real functions of the 4D quasi-
momentum k = (k1, k2, k3, k4), γ0 = 14×4,
and γ i (with i = 1, 2, . . . , 5) are five 4 × 4
gamma matrices, which satisfy the Clifford al-
gebra {γ i, γ j} = 2δij and act on the spinors
�† = (ψ†

a , ψ
†
b , ψ

†
c , ψ

†
d ). For concreteness we

choose the following representation for the gamma
matrices: γ 1, 2, 3 = τ 1, 2, 3⊗ρ1, γ 4 = τ 0⊗ρ2, and
γ 5 = τ 0⊗ρ3, with τα and ρα two sets of the Pauli
matrices. Time-reversal symmetry acts on H(k) as
H∗(k) = H(−k), which implies that f0, 1, 3, 5 (f2,4)
are even (odd) functions of k . With this condition,
one possible choice for fi that yields a finite second
Chern number is: f0(k) = ε − t cos(k2 + k3),
f1(k) = −t(1 + cos k1 + cos k2), f2(k) =
t(sin k1 + sin k2), f3(k) = −t(1 + cos k3 +
cos k4), f4(k) = t(sin k3 + sin k4), and
f5(k) = m − t cos(k2 + k3), similar to a pre-
vious model introduced in a general context [47].
As the term f0(k) only affects the global energy
at each k , rather than the topological property as
indicated by E (k) = f0(k) ± (

∑5
a=1 f 2a (k))

1/2,
we choose its form only for the convenience of the
realization of the 4D topological electric circuit.

The topology of the gapped 4D class AI system
can be characterized by the second Chern number.
For the Dirac model, the second Chern number can
be nicely simplified as the winding number of f̂ =
f /| f | from the 4D Brillouin zone (BZ) to the 4D
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Figure 2. The 4D circuit lattice realized on a 2D plane. (a) A 2D sub-circuit lattice containing 3 × 3 unit cells in a r 3-r 4 plane of the 4D circuit lattice,
and (b and c) two basic components used in the 2D sub-circuit. In panel (a), the small dark blue rectangle exemplifies a unit cell consisting of four
nodes, a, b, c, d, denoted by black dots. All nodes on the plane are labeled by αij, where α = a, b, c, d, and i (j) is the lattice index for the r 3 (r 4)
direction. Each node in the plane is connected to ground through the component illustrated in panel (b), which contains a capacitor and an inductor
connected in parallel. On the plane, within each unit cell, connections are made between a to b, b to c, c to d, and d to a. Node a (c) in each unit cell is
connected to node b (d) in a neighbor cell if the two cells are separated by the vector (0,0,1,0) or (0,0,0,1) [(0, 0, −1, 0) or (0, 0, 0, −1)]. The two types
of connections are indicated by solid and dashed red lines, respectively. As illustrated in panel (c), each solid (dashed) line indicates the component
containing a capacitor with capacitance C (−C). The Born-von Karman periodic boundary conditions are implemented by connecting the nodes on the
right (top) edge to the corresponding nodes on the left (bottom) edge. To facilitate the connections on the (r 1, r 2) plane, we connect all nodes to the
black squares on the edges with the same indices by wires, which are not explicitly shown to make the figure neat. Moreover, black squares with the
same label are equipotential. (d) The two-port sub-circuit as an effective capacitor with capacitance −C. A detailed derivation for this result is given
in the Supplementary data. (e) The circuit lattice with 2 × 3 blocks in the r 1-r 2 plane. Here, each block is a copy of the 2D sub-circuit in panel (a),
with the lattice indices on the r 1 and r 2 plane indicated at the center. Each a (b) node is connected to a d (c) node if they are separated by the vector
(1,0,0,0) or (0,1,0,0), and each a (c) node is connected to another a (c) node if they are separated by (0, ±1, ±1, 0). The blue lines indicate wires, and
the solid red lines are again specified in panel (c). In addition, wires are connected at a crossing point if it is marked as a blue square. Otherwise, they
just go across each other without connection.

unit sphere S4 [40]

C2 = 3
8π 3

∫
d 4kεμνλρσ f̂μ∂k1 f̂ν∂k2

× f̂λ∂k3 f̂ρ∂k4 f̂σ , (2)

where εμνλρσ is the rank-5 Levi-Civita symbol with
μ, ν, λ, ρ, σ = 1, 2, . . . , 5, and repeated indices are
summed over. Straightforward calculation gives that
C2 = −2 if −t/2 < m < t, and otherwise C2 = 0 as
shown in Fig. 1a, for which a detailed derivation can
be found in the Supplementary data.

According to the general theory of bulk-
boundary correspondence of topological insulators,
a nontrivial second Chern number leads to bound-
ary Weyl fermions. We consider a 3D boundary
perpendicular to the r 1-axis, putting the semi-
infinite system in the region with r1 > 0. For
simplicity we set m = 0 and the system is in the
topologically nontrivial phase with C2 = −2.
For the Dirac model (1) the boundary effective
Hamiltonian can be derived analytically as [54]

Hs (k̃) = f0(k̃)σ0 − f3(k̃)σ1

+ f4(k̃)σ2 + f5(k̃)σ3. (3)

Here σα acts in the sub-lattices c and d, f0,3,4,5
are functions defined in (1), depending only on
k̃ ≡ (k2, k3, k4), where k2 ∈ (2π/3, 4π/3) and k3, 4
∈ [0, 2π]. From the boundary spectrum E (k̃) =
f0 ± (

∑5
a=3 f 2a )

1/2, it is easy to obtain that there
are two Weyl points located at w1, 2 = ±2π(5/12,
1/3, −1/3) in the 3D boundary BZ as shown in
Fig. 1c and d. As the Weyl points are located at
generic momenta, they have anisotropic dispersion
relations because of the lack of rotational symme-
try. The γ 0 term in Eq. (1) leads to the unwanted
σ 0 term in Eq. (3), which tilts the boundary Weyl
points. But, we have to make a trade off between

the simplicity of the model and the magnitude of
the term. As the two Weyl points are related by
time-reversal symmetry, they have the same chiral-
ity, right-handedness as shown in the Supplemen-
tary data. Generically, the boundary states decay ex-
ponentially towards the bulk, which will be con-
firmed by our simulation results.

TIGHT-BINDING MODEL AND CIRCUIT
LATTICE
We now proceed to address the realization of
the above 4D topological states by construct-
ing a realistic electric-circuit in a practical way.
For this purpose, it is more convenient to write
the model Hamiltonian (1) in real space, that
reads H = ∑

α,β,i,s tαβ(Rs
αβ)c

+
α (i + Rs

αβ)cβ(i ),
where α, β label nodes in each unit cell and i
labels the unit cells. Rs

αβ are hopping vectors,
which can be obtained by the inverse Fourier
transform of (1), and are listed as: Rs

ad = Rs
bc =

(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0) and Rs
ab =

−Rs
cd = (0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) with

s = 1, 2, 3, respectively, and Rs
aa = Rs

c c =
(0, 1, 1, 0), (0,−1,−1, 0) with s = 1, 2, respec-
tively. Here, each number in the parentheses is in
the unit of the corresponding lattice constant for the
4D hypercube lattice. The hopping amplitudes are
assumed to be tab = tbc = tad = taa = tcc = −tcd =
−t, where t is a real constant so that time-reversal
symmetry is preserved. Exchanging the order of
the subscripts, the amplitudes tαβ are unchanged
while the vectors Rαβ are reversed. The above 4D
tight-binding model can be mapped to a 4D circuit
lattice as detailed in the Supplementary data. As
the property of a circuit lattice depends only on the
connection relations among its nodes, regardless
of the shape of circuit lattice, one can project the
4D circuit lattice onto a 2D plane to obtain an
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Figure 3. The band structures for the 4D circuit lattice with periodic boundary conditions (PBCs) and open boundary conditions (OBCs). For each figure,
the results obtained from simulation are plotted by gray dots, while in comparison, those from the model Hamiltonian are presented by red dashed lines.
(a and b) The bulk band structure along the k1 (k2) direction passing through the origin of the BZ for the PBCs. (c–h) The voltage intensities along various
k-lines crossing one of the Weyl points,w1, under the OBCs for the r 1-direction and PBCs for the other directions. In simulation, we assume nine layers
for the r 1-direction. (c) The voltage intensity of the bottom four layers, contributed from all the four types of nodes, along the k2-direction. From the
intensity distribution, we observe that the in-gap boundary Weyl states exist in the interval from k2 = 2π/3 to 4π/3, as marked by the two vertical
(blue) lines. The simulation result agrees with the analytic result from the model Hamiltonian, particularly well in the interval. (d) The voltage intensity
from the 5th layer to the top edge layer. The surface Weyl states disappear as the pulse source added on the bottom boundary cannot excite the surface
Weyl states on the top boundary, demonstrating the local nature of the surface states. (e and f) The voltage intensities on the bottom four layers from
the a, b and c, d nodes, respectively. The intensity appears to be dominated by the c and d components rather than the a and b components, consistent
with the analytic result from the model Hamiltonian. (g and h) The band structures along k3 and k4 directions, respectively. The linear dispersion relations
in the vicinity of the w1 point along all directions on the boundary demonstrate that the w1 point is a 3D Weyl point.

equivalent 2D circuit lattice as shown in Fig. 2,
preserving the property of the circuit. In more
detail, the circuit in Fig. 2 is constructed by the
following two steps. First, the sub-circuits in the
r 3-r 4 planes, with the Born-von Karman periodic
boundary conditions, are constructed as shown in
Fig. 2a. The nodes and lines in Fig. 2a are detailed
in Fig. 2b–d. Then, the sub-circuits on the r 1 and
r 2 plane are arranged, and the nodes are connected
between sub-circuits with capacitors to realize
the connections in the r 1-r 2 planes, as shown in
Fig. 2e. In these two steps, we have constructed a 2D
circuit that is genuinely equivalent to the 4D circuit,
as the connections of nodes in the two circuits have
a one-to-one correspondence. According to the
Kirchhoff current law, it is easy to check that the
current equations for the circuit in Fig. 2e lead to a
Hamiltonian with exactly the same form as Eq. (1).
Now the functions fa(k) have the parameters

concretely specified in terms of capacitance values as
t = C, m = (Ca0 − Cb0 + 2C)/2 and ε = (Ca0 +
Cb0)/2+ 7C, as detailed in the Supplementary data.
If the capacitance values satisfy Ca0 + 2C = Cb0,
namely m = 0, the circuit is in a topologically non-
trivial phase with the second Chern number C2 =
−2.

SIMULATION RESULTS
To extract the resonance frequency spectrum of the
circuit lattice, we performed time-domain transient
simulations to obtain the voltage v(t, R , α) on each
node as a function of time. Here, R is the unit cell la-
bel, α = a, b, c, d is the index for the nodes in each
unit cell, and t is the time. Taking periodical bound-
ary conditions in r 1,2,3,4 directions, respectively,
and performing the Fourier transform, the voltage
v(ω, k, α) can be obtained in the momentum k
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and frequency ω space. The band-structure-like dis-
persions are obtained by plotting |v(ω, k, α)|. As
introduced in the Supplementary data, the eigen-
value ε of the tight-binding model corresponds to
the resonance frequency ω of the circuit lattice,
with the relation ε = 1/(ω2L). Therefore, the ver-
tical axes in Fig. 3 are plotted as 1/(ω2L), to com-
pare with the eigenvalues of the Hamiltonian (1). In
Fig. 3a and b, it is easy to see that the simulation re-
sults (gray points) are in good agreement with the
bulk band dispersions (red dashed line) obtained
from the model Hamiltonian (1).

Next we study the surface states by assuming
open boundary conditions in the r 1 direction
and periodic boundary conditions in the r 2,3,4
directions. The technical details are provided in
the Supplementary data. The pulse voltage source
is connected to the (1,1,1,1) cell on the bottom
edge, and thereby the voltage v(t, R , α) is ob-
tained for a slab geometry with nine layers in the
r 1 direction. We then carried out Fourier trans-
forms for r 2,3,4 and t, which gives v(ω, R1, k̃, α),
where R1 is the lattice index in the r 1 direc-
tion and k̃ = (k2, k3, k4). The corresponding
boundary band structures for the voltage intensity
along a number of selected k lines crossing one
of two Weyl points, w1, are listed in Fig. 3c–h.
We now briefly introduce these figures, while more
information can be found in the figure caption. For
all of them, the data from simulation and analytic so-
lutions from the model Hamiltonian are plotted by
gray dots and dashed red lines, respectively, for com-
parison. In Fig. 3c, the data from simulation show
that the surface Weyl states appear in the gap of the
band structure, in good agreement with the results
obtained from themodelHamiltonian.To reveal the
local nature of the topological boundary states, the
intensity of voltage for the fifth layer to the top layers
is depicted in Fig. 3d, where the surface Weyl states
disappear, because the pulse source on the bottom
boundary cannot excite the Weyl surface states lo-
cated on the top boundary. Furthermore, according
to the model Hamiltonian, the boundary states are
contributed to only by the node-c and d compo-
nents, and have vanishing a and b components, as
confirmed by comparing the simulation result in
Fig. 3f with that in Fig. 3e. The intensity of voltage
for the bottom four layers is clearly visible only for
the component of the c and dnodes plotted inFig. 3f,
while the component of the a and b nodes plotted in
Fig. 3e is tooweak to be seen. Finally, the band struc-
tures of theWeyl states along the k3 and k4 directions
are depicted in Fig. 3g and h, respectively.The linear
dispersion relations in the vicinity of the point w1
w.r.t. all boundary momentum components k̃ show
that the pointw1 is indeed aWeyl point.

CONCLUSION
In summary, 4D topological states exhibit many
interesting phenomena that are markedly different
from lower-dimensional topological phases. Unfor-
tunately, they cannot be realized in condensed-
matter materials, which are limited to three spatial
dimensions. In this article we have shown that pe-
riodic electric circuits, composed of inductors, ca-
pacitors and operational amplifiers, provide a realis-
tic and ideal platform to create higher-dimensional
topological states in the laboratory. We have explic-
itly constructed an electric circuit lattice that real-
izes the 4Dspinless topological insulator. Byproject-
ing onto two dimensions, this 4D circuit lattice can
readily be implemented on a printed circuit board
or an integrated-circuit wafer. In this way, the higher
dimensionsof the4Dcircuit lattice are faithfully real-
ized through long-ranged lattice connectivity, rather
than by internal degrees of freedom. Furthermore,
the circuit implementation of higher-dimensional
topological states has the advantage of being highly
controllable and easily reconfigurable. This allows,
for example, investigation of topological phase tran-
sitions, non-Hermitian phenomena and the effects
of nonlinear couplings [27]. Using detailed numer-
ical simulations, we have shown that the resonance
frequency spectrum of our circuit lattice exhibits a
pair of 3D Weyl boundary states, which is the hall-
mark of nontrivial topology.

Our work opens up the possibility of realizing
topological phases in arbitrarily high dimensions,
for example the 5D topological Weyl state [55], or
the 6D chiral topological superconductors [35–37].
Even topological states onnon-orientable surfacesof
anydimension couldbe realized, such as, topological
phases on Möbius strips [17], Klein bottles, or real
projective planes.Other interesting directions for fu-
ture research concern the study of quantum effects
and interactions in higher-dimensional topological
states. The former could be simulated by use of pe-
riodic Josephson junction arrays [56,57].Moreover,
the nonlinearity effect could be achieved by bring-
ing the electronic device into a nonlinear region.We
hope that our work will stimulate further investiga-
tions along these lines.
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