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Abstract: Oxygen is the final electron acceptor in aerobic respiration, and a lack of oxygen can result
in bioenergetic failure and cell death. Thus, administration of supplemental concentrations of oxygen
to overcome barriers to tissue oxygen delivery (e.g., heart failure, lung disease, ischemia), can rescue
dying cells where cellular oxygen content is low. However, the balance of oxygen delivery and oxygen
consumption relies on tightly controlled oxygen gradients and compartmentalized redox potential.
While therapeutic oxygen delivery can be life-saving, it can disrupt growth and development, impair
bioenergetic function, and induce inflammation. Newborns, and premature newborns especially,
have features that confer particular susceptibility to hyperoxic injury due to oxidative stress. In this
review, we will describe the unique features of newborn redox physiology and antioxidant defenses,
the history of therapeutic oxygen use in this population and its role in disease, and clinical trends in
the use of therapeutic oxygen and mitigation of neonatal oxidative injury.
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1. Introduction
1.1. Hyperoxia Is Damaging to Developing Organ Systems

Mammals gestate at lower oxygen tension than their postnatal environment, and birth
(even in the absence of supplemental oxygen) constitutes an increase in oxygen exposure [1].
In addition, rapid post-natal growth and development requires significant oxygen delivery
and consumption per gram of tissue in newborns, and energy sources are more rapidly
depleted than in adults [2,3]. Alterations in mitochondrial oxygen concentration can
induce apoptotic cell signaling pathways through mitochondrial proton leak [4], while
non-mitochondrial derived reactive oxygen and nitrogen intermediates (ROI) play an
important role in intra- and inter-cellular growth factor signaling (see [5] for review). Lastly,
enzymatic and non-enzymatic antioxidant systems in newborns have decreased capacity
to sequester ROI [6]. Premature exposure to ambient air (fraction of inspired oxygen or
FiO2 = 21%) and oxygen exposure above ambient air (FiO2 > 21%) disrupts these processes.

The preterm and term newborn occupies a unique position as an organism with high
tissue oxygen demand, growing and developing organ systems, and susceptibility to ox-
idative injury. Excess oxygen is the substrate for free radical formation by several enzymes,
such as the xanthine oxidase and NADPH-oxidase families [7]. Free radicals induce mem-
brane disruption and activation of inflammatory pathways through lipid peroxidation,
affecting multiple organ systems. Elevated lipid peroxidation products have been found
in plasma samples of infants with bronchopulmonary dysplasia (BPD) compared to those
without [8]. In the lungs, hyperoxia exposure induces alveolar simplification and vascular
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remodeling, which is associated with disruption in the electron transport chain [9,10].
Hyperoxia exposure is also associated with injury and altered physiology in the developing
intestines and retinopathy of prematurity (ROP), a developmental eye disease involving
aberrant growth of the retinal vasculature that can result in blindness [11–13]. Lastly,
neonatal hyperoxia alters cerebral blood flow, and neuronal apoptosis and inflammation
have been shown after neonatal hyperoxia exposure [14–16].

1.2. Full Term and Preterm Newborns Have Decreased Antioxidant Capacity

Many important vitamin and mineral stores are delivered to the fetus during the third
trimester of pregnancy; as a result, preterm infants have decreased levels of these important
cofactors relative to term infants [17]. Plasma vitamin C levels are lower in preterm infants
relative to term infants [18]. In a prospective study of vitamin D supplementation in
100 preterm infants, two-thirds had biochemical vitamin D deficiency [19]. In addition,
pulmonary levels of glutathione peroxidase 1, cytosolic superoxide dismutase (SOD),
mitochondrial SOD, and extracellular SOD are significantly lower in newborn mice than
those at 3 and 7 weeks of age in mice. Along with decreased antioxidant expression,
newborn mice exhibit increased mitochondrial oxidative stress compared to adults during
hyperoxia exposure [6]. In a cohort of preterm infants with and without BPD, plasma
vitamin E levels were below term infant levels, and were lower in infants with BPD than
those without [20].

Given the decreased levels of antioxidant enzymes and vitamins in preterm infants,
several clinical trials have been conducted to evaluate whether supplementation with either
intact antioxidant enzyme or vitamin cofactors might decrease morbidity and mortality
in this population. Trials of administration of exogenous SOD in the clinical setting were
initially promising [21–23]; however, meta-analyses and long term follow-ups have shown
no benefit over placebo [24]. Similarly, supplementation with the antioxidant cofactor vita-
mins A, C, and E have been studied, along with the glutathione precursor N-acetylcysteine
(NAC). Vitamin A has been the subject of extensive research with mixed results, includ-
ing the largest randomized controlled trial to date entitled NeoVitaA, which has not yet
published its results [25–27]. A Cochrane meta-analysis in 2016 found marginal benefit of
intramuscular administration of vitamin A to prevent death or BPD (RR 0.93 [0.88, 0.99]);
however, intramuscular formulation is not readily available and repeat intramuscular
injections pose a practical challenge in very low birth weight (<1500 g) infants [28]. Vitamin
C, E, and NAC have also not shown clear benefit, and supplementation beyond nutritional
needs is not recommended [29–34].

1.3. ROI Are Essential Components of Cell Signaling Pathways in Development

Despite the association of neonatal disease with ROI byproducts (e.g., lipid peroxides),
the growth and development of organs and tissues relies on the production of ROI. Nu-
merous growth factor receptors are tyrosine kinases (RTKs), whose function depends on
local hydrogen peroxide derived from ROI. Peroxide oxidizes protein phosphatases (PTPs)
by altering the 3-D structure and allowing RTK autophosphorylation and signal trans-
duction [35,36]. Suppression of hydrogen peroxide with exogenous catalase will reduce
tyrosine kinase phosphorylation and decrease growth factor signaling, which has been
shown to reduce vascular endothelial cell migration [37,38]. In addition, increases in antiox-
idant capacity can impair growth and development. Inhibition of nuclear factor erythroid
2-related factor 2 (NRF2), an important transcription factor in the production of antioxidants
in response to oxidative stress, increased fetal growth in a mouse model of pregnancy-
associated hypertension, suggesting an important role for ROI in fetal growth [39]. A
clearer picture of the complex interplay between postnatal oxygen exposure, antioxidant
expression and function, and development and growth signaling is needed.
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2. Supplemental Oxygen in the Initial Resuscitation of Newborns
2.1. Historical Aspects

While the first documented use of oxygen in infants was in 1780, just few years after its
discovery, it was not until 1928 that a description of using oxygen in newborn resuscitation
was published [40]. Oxygen therapy was subsequently introduced into routine newborn
care in the 1930s and early 1940s. This was followed in relatively short order by the first
published description of retrolental fibroplasia (RLF), a mysterious eye disease found in
a small group of infants born prematurely, now known as ROP [41]. The progressive
nature of this disorder was confirmed in 1948 by a husband-and-wife opthalmologist team
working at Johns Hopkins University, who described development of RLF changes in a
cohort of premature infants [42]. It was not until the 1950s that oxygen was identified as
the culprit behind RLF, the leading cause of blindness in children of preschool age at that
time [43–45]. This discovery was followed by decades of avoidance of oxygen that likely
led to decreased survival of the most premature and sickest infants [46]. With the advent
of oxygen saturation monitoring in the 1980s, however, oxygen therapy could be better
targeted, resulting in improved survival and an associated increase in ROP once again [47].

2.2. Supplemental Oxygen in Term Infants

By the 1960s, the use of 100% oxygen in the delivery room was viewed as the stan-
dard of care and the most sensible approach to resuscitation of asphyxiated infants [48].
The International Liaison Committee on Resuscitation (ILCOR), first formed in 1992 to
provide a forum for major resuscitation organizations in the industrialized world, recom-
mended the use of 100% oxygen in its first set of newborn guidelines [49]. There were
published opinions against such an approach as early as 1980, based on emerging clinical
and animal data that implicated delivery room hyperoxia in subsequent oxidative stress
generation [7,50]. This included evidence of increased hypoxanthine concentrations in the
cerebral cortex of hypoxemic piglets randomized to resuscitation with 100% FiO2 compared
to 21% FiO2, suggesting the presence of more severe energy metabolism deficits in the
hyperoxia-exposed group. Animal models also increasingly supported the use of 21%
FiO2 during resuscitation and demonstrated that it is as effective as 100% FiO2 in the
resuscitation of hypoxemic piglets, with similar improvements in vital signs, base deficit,
and plasma hypoxanthine [51,52]. Furthermore, studies in human neonates demonstrated
that term newborns can be adequately resuscitated with 21% FiO2, with lower mortality
in infants exposed to 21% vs. 100% FiO2 [53], with follow-up studies showing similar
long-term neurodevelopmental outcomes [54]. Additional studies demonstrated that resus-
citation with 100% FiO2 can be harmful [55,56]. In term neonates with perinatal asphyxia,
resuscitation with 21% FiO2 resulted in more rapid improvements in Agpar scores and
faster onset of spontaneous respiration, while infants treated with high FiO2 demonstrated
evidence of increased oxidative stress at one month of age, with lower reduced-to-oxidized
glutathione ratios and higher erythrocyte antioxidant enzyme activity [55]. Finally, a meta-
analysis also contributed to the growing consensus; in term and late-preterm neonates in
need of resuscitation at birth, 21% FiO2 restores heart rate and spontaneous respiration as
effectively as 100% FiO2, while also being associated with significant reductions in neonatal
mortality [57]. This accumulating evidence resulted in revisions to neonatal resuscitation
guidelines that now recommend starting with 21% FiO2 and caution against 100% FiO2 in
near-term and in-term infants [58,59].

2.3. Supplemental Oxygen in Preterm Infants

Evidence for the optimal oxygen concentration in the resuscitation of preterm infants
is less conclusive. The available data suggest that many preterm infants need an FiO2
somewhere between 21% and 100% during resuscitation. A recently published meta-
analysis found conflicting data on the impact of initiating resuscitation with lower (<40%)
vs. higher (≥40%) FiO2 in preterm infants, with 9 out of 10 studies finding no differences
in mortality [60]. Other publications, however, found an association between initiation of
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resuscitation with lower FiO2 and increased risk of death in immature preterm infants in
an international cohort [61] and a Canadian cohort [62]. However, a follow-up study of the
Canadian cohort at 18 to 21 months corrected age (gestational age at birth plus absolute age)
found no differences in the composite outcome of death or neurodevelopmental impairment
and an increased risk of severe neurodevelopmental impairment in infants who received
100% FiO2 versus those receiving 21% FiO2 [63]. However, preterm infants not reaching
an oxygen saturation (SpO2) of 80% within the first 5 min of life have been shown to have
higher mortality and risk of severe IVH [64,65]. In addition, the combination of bradycardia
and hypoxemia in the first minutes of life wasn’t increases mortality. Although the optimal
initial FiO2 is not fully known in these infants, it is still recommended to target a SpO2 of
80–85% within the first 5 min of life, as well as to avoid bradycardia (heart rate < 100 bpm).

3. Supplemental Oxygen in the Neonatal ICU
3.1. Historical Perspective

Beyond the delivery room, exposure to hyperoxia and oxidative stress has been
associated with a multitude of adverse outcomes in infants, including ROP, BPD, and
brain injury (including intraventricular hemorrhage and periventricular leukomalacia).
These concerns have led to improvements in methods for measuring oxygenation in
neonates, enabling a more precise titration of oxygen delivery. However, the optimal
oxygen saturation target in extremely premature infants remains uncertain given the
varying results in both randomized and observational studies [66]. Trials conducted in
the 1950s demonstrated that administration of high FiO2 to preterm infants significantly
increased their risk of severe ROP and blindness and led to the practice of restricting FiO2
in the 1960s to no more than 50% [45,67–70]. This change was estimated to result in an
excess of 16 deaths per case of blindness prevented [46]. The introduction of transcutaneous
PO2 electrodes allowed for more precise and tighter control of oxygen delivery to preterm
infants, and a reduction in ROP was seen in all but the lowest gestational ages. In the
1980s and 1990s, pulse oximetry became the preferred method for monitoring oxygenation,
while in the early 2000s, the American Academy of Pediatrics (AAP) suggested a target
SpO2 range of 85–95%, which corresponds to PaO2 range of 29–67mm Hg (3.8–8.9 kPa), in
oxygen-dependent preterm babies in the first 2 weeks of life [71].

3.2. Targeted Use of Supplemental Oxygen

In 2003, the Neonatal Oxygenation Prospective Meta-Analysis (NeOProM) collab-
orative study was formed to address the question of ideal oxygen targets in extremely
preterm infants. The goal was to examine the effects of low versus high functional oxy-
gen saturation targets in the postnatal period in premature infants <28 weeks gestation.
Investigators in separate randomized clinical trials prospectively planned to undertake
individual trials using similar study designs, participants, interventions, comparators,
and outcomes. They agreed to provide individual participant data at trial completion for
inclusion in a meta-analysis [69]. Prior to this collaborative effort, there existed only a few
small randomized trials in the 1950s [44,72–74] and in the early 2000s [75] investigating
oxygen targets in preterm infants. NeOProM ultimately included five multicenter studies
under five study groups: Surfactant, Positive Pressure, and Pulse Oximetry Randomized
Trial (SUPPORT) in the United States [76]; Benefits of Oxygen Saturation Targeting (BOOST
II) trials conducted separately in the United Kingdom, Australia, and New Zealand [77–79];
and the Canadian Oxygen Trial (COT) [80]. In these 5 trials, a total of 4965 premature
infants (<28 weeks gestation) were randomized to either a low (85–89%) or high (91–95%)
SpO2 within the first 24 h after birth. Subsequent meta-analyses including follow-up data
from the NEOPROM studies have since been published [69,81–83].

The primary outcome for each of the trials was a composite of death or disability by
18–24 months corrected age. No differences in the primary outcome were found between
infants assigned to the low (85–89%) or high (91–95%) SpO2 range. Sub-group analysis also
showed no differences for the primary outcome (death or major disability) for gestational
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age, inborn vs. outborn status, antenatal corticosteroid use, sex, small for gestational age
(SGA) vs. appropriate for gestational age (AGA), singleton vs. multiple birth, type of
delivery, age at the start of the intervention, or oximeter software type [84].

Despite finding no difference in primary outcome, secondary outcomes from the
NeOProM trial raised concerns regarding the importance of oxygen exposure. A higher
rate of mortality before the corrected age of 36 weeks, before hospital discharge, and prior
to reaching a corrected age of 18 to 24 months was found in infants assigned to the low
SpO2 (85–89%) target range [69,85]. A higher incidence of necrotizing enterocolitis (NEC)
was also associated with the low SpO2 (85–89%) target range. In contrast, there was a
lower incidence of ROP requiring treatment associated with the low SpO2 (85–89%) target
range [69,81–84]. Of note, this finding showed substantial heterogeneity because SUPPORT
was the only trial within NeOProM to find significant reductions in the need for ROP
treatment [85]. Additionally, the increased incidence of ROP in the higher oxygen group
(91–95%) did not translate to increased severe visual impairment (defined as bilateral legal
blindness) at 18 to 24 months [83]. Additional secondary outcomes including physiologic
BPD, intraventricular hemorrhage (IVH), periventricular leukomalacia (PVL), and neu-
rodevelopmental outcomes as assessed by using the Gross Motor Function Classification
System or Bayley Scales of Infant Development (BSID) did not differ between the low- and
high-oxygen groups [81,82,86].

One main limitation of the NeoProM trial was that significant overlap was found
in the actual exposed oxygen saturation between the two groups, despite the design
of the trials specifying separation between the target ranges. Although the protocols
specified a distinct separation of the SpO2 target in the two groups there was significant
overlap in the SpO2 achieved, resulting in poor separation between the intervention and
comparison groups [82]. Poststudy analysis showed that subjects randomized to 91–95%
spent 13.9–22.4% of the time with SpO2 >95% and subjects randomized to 85–89% spent
20.2–27.4% of the time <85% while on supplemental oxygen [83]. An additional limitation
to the NeOProM trial was that two trials (BOOST II trials in the United Kingdom and
Australia) were stopped early, which may have resulted in some overestimation of the
effect on mortality in these trials [84].

Following the NeOProM publications, some experts in the field suggested that func-
tional SpO2 should be targeted at 90–95% in infants with gestational age <28 weeks until
36 weeks corrected age and alarm limits 89–95% [71,81]. In 2016, the AAP released new
guidelines stating that “the ideal physiologic target range for oxygen saturation for infants
of extremely low birth weight is likely patient-specific, dynamic, and dependent on various
factors, including gestational age, chronological age, underlying disease, and transfusion
status” [86]. Additionally, these guidelines conclude that a target oxygen saturation “range
of 90% to 95% may be safer than 85% to 89%, at least for some infants.” The 2019 European
guidelines recommend “in preterm babies receiving oxygen, the saturation target should
be between 90 and 94%” and that “alarm limits should be set to 89 and 95%” [87].

Both the SUPPORT and BOOST trials used fixed, binary SpO2 targets for the duration
of study enrollment (birth to 36 weeks corrected age). It is possible that optimal oxygen
saturation varies during the course of NICU hospitalization. The pathophysiology of ROP is
thought to involve initial hyperoxic arrest of vascular growth followed by hypoxia-induced
hyperproliferation of the retinal vasculature [13,88,89]. In the STOP-ROP trial, infants
were enrolled at the time of diagnosis of ROP (mean 10 weeks of absolute age or 35 weeks
corrected age) to receive oxygen to target SpO2 to 89–94% or 96–99%. While the higher
oxygen saturation target was associated with adverse pulmonary events and prolonged
hospital stay, it was not associated with progression of ROP [75]. In a retrospective study
comparing a static SpO2 goal to a biphasic goal that increased the target to >95% at 34 weeks
corrected, infants in the biphasic group had a lower incidence and severity of ROP without
an impact on mortality [90].
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3.3. Persistent Pulmonary Hypertension of the Newborn

One notable exception to the targeting of specific SpO2 in the newborn is for infants
with persistent pulmonary hypertension of the newborn (PPHN). Prenatally, most of the
fetal blood flow bypasses the lungs through elevated pulmonary blood pressure and right-
to-left shunts at the level of the atria through the foramen ovale and the great arteries
through the ductus arteriosus. During normal birth, crying and initiation of the first
breaths results in a rapid decrease in pulmonary blood pressure, allowing blood to circulate
through the lungs and participate in gas exchange to oxygenate the infant. When infants do
not undergo this physiologic decrease in pulmonary blood pressure, they develop PPHN.

The severity of PPHN can range from mild, requiring only brief oxygen supplementa-
tion, to severe, requiring intubation, mechanical ventilation, and even cardiopulmonary
bypass with extracorporeal membranous oxygenation (ECMO) [91]. Oxygen is a potent
pulmonary vasodilator within the context of hypoxia [92]; as such, up to 100% FiO2 is
commonly used in the treatment of PPHN, regardless of infant SpO2 [93]. However, there
is no clear benefit and potential harm in using such high FiO2 in the treatment of PPHN. In
a lamb model of meconium-aspiration-induced PPHN, pulmonary blood flow and brain
oxygen delivery were maximized when targeting a SpO2 of 95–99% during a 6 h exposure
when compared to a fixed FiO2 of 100% or targeting SpO2 of 85–89% or 90–94%. Notably,
the 95–99% target group showed a mean FiO2 of 50% and significantly higher pulmonary
blood flow than the 100% FiO2 group [94]. In addition, it is likely that the vasodilatory
effect of hyperoxia is short-lived. In fetal lambs exposed to 100% FiO2, hyperoxic pul-
monary vasodilation peaked at approximately 50 min and decreased therafter [95]. Lastly,
alveolar hyperoxia may increase pulmonary vascular contractility and impair responsive-
ness to pulmonary vasodilators, most notably inhaled nitric oxide, worsening outcomes
in PPHN [96,97]. The optimal SpO2 in infants with PPHN remains unclear and requires
further study.

4. Future Directions
4.1. Limits of Pulse Oximetry

All of the above studies rely on peripheral pulse oximetry measurements to guide
supplemental oxygen administration. Refinements to oximeters and their software have
improved portability and reliability; however, they continue to provide only a single data
point (arterial oxygen saturation) to drive clinical decision making. The above studies
were designed to optimize tissue oxygen delivery without exposing infants to excess
oxygen; however, optimal oxgyen delivery depends on other factors, including hemoglobin
concentration, tissue oxygen consumption, and hemodynamic status, among a multitude
of others [98,99].

In addition, preterm infants have predominantly fetal hemoglobin (HbF), which binds
more avidly to oxygen than the predominant adult form of hemoglobin (HbA) [100]. The
difference in relative oxygen affinity affects oxyhemoglobin dissociation and delivery to
the tissues; thus, an infant with 95% oxyhemoglobin and predominantly HbF may deliver
less oxygen to the tissues than an infant with 90% oxyhemoglobin and predominantly HbA.
While the ratio of HbF-to-HbA is highly associated with gestational age, interventions to
improve oxygen delivery, such as blood transfusions (which are by necessity adult blood),
can have a large impact on the amounts of each [101].

4.2. Near-Infrared Spetroscopy

One technology that provides data for other aspects of tissue oxygen delivery is
near-infrared spectroscopy (NIRS). As with pulse oximetry, NIRS calculates the ratio of
oxyhemoglobin to deoxyhemoglobin, but it does not identify the pulse waveform; therefore,
it includes non-arterial sources of transmitted light from the monitored region [102,103].
Because they are measurements of regional oxygen saturation, NIRS measurements are
affected by both oxygen consumption and oxygen delivery. The relative contributions
of arterial (oxygen delivery) and venous (oxygen consumption) oxygen saturations are
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30% and 70%, respectively [104,105]. Cerebral regional oxygen saturation (CrSO2) values
have been found to be closely correlated with central venous oxygen saturation, a measure
commonly used to calculate global oxygen consumption [106]. There are no established
standards for use in neonates; however, multiple prior and ongoing research projects have
investigated its use in monitoring regional oxygen saturation, most commonly in the brain
and kidneys, and have proposed possible uses for these data [106–110].

A pilot study of very preterm (<32 week) infants using the combination of peripheral
pulse oximetry and CrSO2 found significant differences in combined values between infants
who developed IVH between 12 and 72 h of life and those who did not [111]. Another
study looking specifically at the newborn transition period (first 15 min of life) in very
preterm infants found significantly lower CrSO2 in infants who went on to develop IVH
in the first 14 days of life [112]. A European unblinded, randomized, controlled trial
using CrSO2 to guide therapy, entitled Safeguarding the Brain of Our Smallest Children
(SafeBoosC), set a target range for CrSO2 of 55% to 85% and provided 8 treatment options
when CrSO2 went below 55%. Notably, only one option involved increasing FiO2 [113].
The trial found a decrease in cerebral hypoxia (CrSO2 < 55%) but no differences in rates of
brain injury or neurodevelopmental outcomes at 2 years of age [114]. A systematic review
of CrSO2-guided therapy trials found only one trial that met the quality parameters set
by reviewers and did not show a reduction in brain injury with the use of cerebral NIRS
monitoring [115].

Renal regional oxygen saturation (RrSO2) may also provide enhanced data to guide
therapy. It is possible that RrSO2 changes more rapidly than CrSO2 in response to dis-
crepant oxygen delivery and oxygen consumption, as cerebral autoregulation protects the
brain against rapid changes in perfusion in response to changes in hemodynamics [116].
Interestingly, higher RrSO2 in neonates with hypoxic ischemic encephalopathy was shown
to be associated with acute kidney injury [117]. In contrast, in infants undergoing heart
surgery, low RrSO2 was associated with the development of acute kidney injury [118].

Specific guidelines for the use and interpretation of NIRS may provide a framework
to apply this technology to specific clinical scenarios to optimize oxygen delivery in the
NICU [119]. The simplicity of pulse oximetry makes it an ideal monitor to guide clinical
therapy, and the refinement of oxygen therapy guidelines using pulse oximetry has clearly
shown benefit. The question remains whether the precision afforded by the addition of
NIRS monitoring has enough benefit to overcome the burden of additional monitors on
fragile infants in the NICU with limited body surface area.

4.3. Novel Therapies

In addition to limitations in monitoring, there are no available therapies to mitigate the
effects of oxidative injury in the NICU. In a review of antioxidant therapies with particular
focus on BPD, Ofman and Tipple outlined major barriers to effective therapies, including
lack of compartment and target specificity, limited bioavailability, timing of therapy, and ge-
netic variability [120]. Endogenous antioxidant enzymes are highly localized and perform
specific functions in redox biochemistry. Systemic or even organ-specific administration
of antioxidants may not reach the cells or organelles where hyperoxia induces injury. In
addition, individual organs have variable oxygen consumption rates and respond differ-
ently to hypoxia and hyperoxia. This is evident in the NeOProM trials, where lower SpO2
targets were associated with NEC and mortality, while higher SpO2 targets were associated
with ROP. Future therapies could target oxygen delivery specifically to the organs most
in need. For example, a bio-engineered heme-containing protein, OMX-CV, has a 10-fold
higher affinity for oxygen than hemoglobin does and has been shown to selectively deliver
oxygen to hypoxic tissues but not to tissues at physiologic oxygen tension rates in juvenile
lambs [121].

Investigations of the redox signaling pathways involved in oxidative stress have
revealed other potential future targets for clinical study. Thioredoxin is an antioxidant
enzyme that catalyzes the reduction of oxidized cysteine residues, playing an important
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role in reducing protein disulfide bonds. Alterations in thioredoxin and its partner en-
zyme, thioredoxin reductase, have been shown to affect susceptibility to hyperoxic lung
injury [122]. Interestingly, the drugs auranofin and aurothioglucose inhibit thioredoxin
reductase and have been shown to protect mice from hyperoxic lung injury through the in-
duction of nuclear factor erythroid 2-related factor (NRF2)-induced genes [123,124]. NRF2
is an oxidant-activated transcription factor that stimulates the transcription of a variety
of endogenous antioxidant systems [125]. Similarly, melatonin is a neurohormone that
induces a variety of endogenous antioxidant enzymes and has been shown to mitigate
hyperoxic lung injury in rats, as well as hypoxic ischemic encephalopathy in pigs [126–128].
In contrast to trials involving the direct application of antioxidant enzymes or cofactors,
these medications provide an alternative approach through the induction of endogenous
antioxidant systems.

Lastly, patient responses to hypoxia and hyperoxia may vary based on genetic dif-
ferences between antioxidant systems. In a population of very low birth weight infants,
sequencing of a variety of antioxidant genes revealed single-nucleotide polymorphisms in
the NQO1 gene (coding for NADPH quinone reductase) and the NFE2L2 gene (coding for
NRF2), which were associated significant differences in the risk of BPD [129]. As exome
and genome sequencing become cheaper and more ubiquitous in the NICU, identifica-
tion of genetic differences in endogenous antioxidant genes may allow for individualized
approaches to mitigating oxidative injury.

5. Conclusions

Preterm and term newborns are unique populations with decreased antioxidant
capacity and dependence on redox signaling for rapid growth and development. Despite
advances in neonatal care, supplemental oxygen remains the most commonly used drug in
the NICU. While oxygen can be life-saving, it is toxic in excess. Its application to neonatal
medicine has seen a dramatic pendulum swing, from ubiquitous use both in the delivery
room and beyond to intense restriction due to concern for retinal disease. The introduction
of the pulse oximeter to initial newborn resuscitation and the NICU allowed for targeted
oxygen therapy, while broad international collaboration has resulted in ample data to
support current guidelines. Nonetheless, pulse oximetry provides limited information
with which to make therapeutic decisions, and supplemental oxygen remains a blunt
and untargeted therapy. Future strategies to optimize oxygen delivery while mitigating
oxidative damage may involve NIRS monitoring or organ-, cell-, and patient-specific
therapies that harness endogenous antioxidant systems.
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