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Abstract: Since the time when detection of gene expression in single cells by microarrays to the Next
Generation Sequencing (NGS) enabled Single Cell Genomics (SCG), it has played a pivotal role to
understand and elucidate the functional role of cellular heterogeneity. Along this journey to becoming
a key player in the capture of the individuality of cells, SCG overcame many milestones, including
scale, speed, sensitivity and sample costs (4S). There have been many important experimental and
computational innovations in the efficient analysis and interpretation of SCG data. The increasing
role of AI in SCG data analysis has further enhanced its applicability in building models for clinical
intervention. Furthermore, SCG has been instrumental in the delineation of the role of cellular
heterogeneity in specific diseases, including cancer and infectious diseases. The understanding of
the role of differential immune responses in driving coronavirus disease-2019 (COVID-19) disease
severity and clinical outcomes has been greatly aided by SCG. With many variants of concern (VOC)
in sight, it would be of great importance to further understand the immune response specificity
vis-a-vis the immune cell repertoire, the identification of novel cell types, and antibody response.
Given the potential of SCG to play an integral part in the multi-omics approach to the study of
the host–pathogen interaction and its outcomes, our review attempts to highlight its strengths,
its implications for infectious disease biology, and its current limitations. We conclude that the
application of SCG would be a critical step towards future pandemic preparedness.

Keywords: Single Cell Genomics (SCG); NGS; cellular heterogeneity; infectious diseases; immune
response; host-pathogen interaction; AI

1. Introduction

The remarkable complexity of the biological processes involved in development,
physiological homeostasis, disease, and infection outcomes is governed by the hetero-
geneity of cell states, cell fates, and cell types. An unravelling of these dynamics was
brought about by the development of technological toolkits that allowed the detection and
quantification of differential gene expression. The traditional methods of gene-expression
profiling involve microarrays and bulk RNA Sequencing (RNA-Seq) using Next Generation
Sequencing (NGS) methods, which broadly measure average gene expression levels in
heterogeneous tissue [1]. The advent of single-cell RNA sequencing (scRNA-Seq) has led
to unprecedented insights into cell composition and patterns of gene expression. Single cell
transcriptomics has yielded new understanding of the dynamic cellular processes, such as
development and differentiation [2–4]. The ever-growing body of scientific evidence ob-
tained from scRNA-Seq studies has enabled the identification of newer cell types/subtypes
and rare subpopulations [5,6]. Single-cell technologies have also profoundly enhanced
our comprehension of cellular plasticity, transcriptional dynamics, and gene regulatory
relationships [7,8]. Figure 1 represents the role of scRNA-Seq in understanding cellular
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heterogeneity through unicellular transcription and translation dynamics. Since the publi-
cation of the first scRNA-Seq transcriptomes in 2009 by Tang et al., the field of single-cell
transcriptomics has grown tremendously in scope and magnitude, aided by the application
of high throughput technologies, such as automation and microfluidics [9].
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Figure 1. Graphical representation highlighting the importance of scRNA-Seq in bridging the gap
between transcriptome and translation. The gene expression pattern of same cell from a healthy and
a disease individual is different (highlighted as *), and the expression of antibodies/surface markers
are also different (highlighted as #). However, the gene expression does not always correspond to the
degree of the antibody/surface marker expression. Using complementary sequencing approaches,
it is possible to undertake whole transcriptome amplification (WTA) for expression profiling at the
single-cell level, as well as Antibody-seq (Ab-seq) for selected antibodies to capture the dynamics of
transcriptome-translation.

Studies of single cells have been traditionally performed in biological and medical
fields through the use of microscopy, flow cytometry, and in situ hybridisation experiments.
The advent of NGS has revolutionised single-cell studies by enabling the simultaneous pro-
filing of the whole transcriptome (RNA-seq) of up to tens of thousands cells at once [10,11].
For all the advantages associated with bulk RNA-seq experiments, however, there is one
limitation: they average out the gene expression levels across heterogeneous tissues [12].
They are thus unable to capture the expression pattern from individual cells. Single-cell
transcriptomics, on the other hand, captures the stochasticity of gene expression in a hetero-
geneous population of cells [13]. Table 1 compares and contrasts the peculiarities of bulk
and single-cell RNA sequencing. Heterogeneity among cell types and tissue composition
may significantly impact the discovery of differentially expressed genes or the expression
of quantitative trait loci (eQTLs) [14]. Consequently, the design of experiments is gradually
moving towards an unbiased, hypothesis-free approach, and towards the analysis of tissues
and organs in their entirety, rather than focusing on specific cell types. This has enabled
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pioneering discoveries with respect to profiling the changes in composition of different
tissues associated with diseases such as diabetes, cancer or pathogen infection/s [15–17].
Therefore, scRNA-Seq has found extensive application in both basic and translational
research.

Table 1. Comparison of bulk RNA-Seq and scRNA-Seq for gene expression studies.

Bulk RNA-Seq scRNA-Seq

Objective

Goal

1. Measure average gene
expression across a
population of cells.
2. Identify differences
between sample conditions.

1. Measure gene expression of individual
cells.
2. Identify differences between cell types.

Protocol

1. RNA extraction, reverse
transcription, fragmentation,
adaptor ligation,
amplification, and sequencing.

1. Single cell isolation,
RNA extraction along with cell specific
barcode labelling/UMI tagging, reverse
transcription, adaptor ligation,
amplification, and sequencing.

Experimental design QC and analyses

1. No of genes/transcripts per
sample.
2. Between sample
normalisation.
3. Differential gene/transcript
expression.

1. Number of genes/transcripts per cells.
2. Percentage of genes mapped to
mitochondria.
3. Batch effect normalisation.
4. Imputation.
5. Immune phenotyping.
6. Cell subpopulation identification.
7. Differential gene expression.

Technical considerations

Specialised
Instrumentation

1. Not required for making
the sequencing ready library.

1. Specialised instrument for single cell
separation required (e.g., BD Rhapsody,
10× Chromium Controller and Seqwell).

Sample Prep
1. RNA integrity and quality
needs to be ensured during
RNA extraction.

1. Careful and gentle handling of cells
required to ensure high viability and
minimal cellular aggregate formation.

Resource
Intensivity

Cost 1. Comparatively economical. 1. Higher per sample cost

Expertise 1. Normal NGS expertise
needed.

1. Cell handling, instrumentation and
analyses require special expertise.

Computational 1. Computationally less
intensive.

1. Extensive computational infrastructure
required.
2. Big data storage.

2. Different Platforms for scRNA-Seq: The Quest for the Optimal Platform

Over the past decade, scRNA-Seq technologies have enabled a precise and unbiased
view of the molecular mechanism at the single-cell resolution. Since the first scRNA-Seq
method was published in 2009 [9], many other advancements in scRNA-Seq technologies
have been developed. Early attempts at profiling single cells involved the sorting of individ-
ual cells into single wells of a plate followed by lysis, cDNA generation, barcoding, library
generation, pooling, and sequencing [18–20]. Conventional scRNA-Seq procedures entailed
the manual isolation of cells using techniques such as micromanipulation, Laser Capture
Microdissection (LCM) or Fluorescence Activated Cell Sorting (FACS) [21–23]. However,
the individual sorting of cells prior to downstream processing allows the assessment of cell
viability, although it is strenuous, resource-intensive, and time-consuming. Advancements
in cellular barcoding and microfluidics have allowed the upscaling and automation of
single-cell isolation, thereby reducing the number of operational steps and leading to
improvements in throughput [24–26]. Microfluidics-based scRNA-Seq platforms allow
relatively cost-effective and large-scale parallel sequencing of thousands of cells at one time,
while also reducing input reaction volumes from microlitres to nanolitres [27]. Integrated
Fluidic Circuits (IFC), Droplet encapsulation or nanowell entrapment are employed on
microfluidic platforms for capturing single cells.
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The IFC-based automated array solution in the form of the Fluidigm C1 system was
the first microfluidics system [28,29]. Single-cell suspensions are passed through fluidic
circuits, wherein individual cells are immobilised in hydrodynamic traps, lysed, and further
processed in nanoliter reaction chambers. However, IFC-based systems are limited by bias
in sampling complex sample sources due to the array format, which is restricted to specific
cell sizes. Further advancements in microfluidics led to the development of open nanowell-
based systems, which allow higher scalability in terms of the cell numbers that can be
sampled. Seq-well is a nanowell-based method that works on the principle of preloading
the reaction wells with barcoded beads before the cells enter the wells [30]. The Seq-well
system offers the advantages of portability, flexibility, and cost-effectiveness. However,
a major disadvantage of the Seq-well system is that it does not allow the integration of
imaging data due to the random distribution of barcoded beads in wells. In a similar
way to the Seq-well, the BD Rhapsody system uses a planar array of nanowells for the
capture of single cells, where nanowells are preloaded with barcoded beads before the
cells are dispensed into them. The array format of nanowells offers various benefits, such
as ease of operation, the direct imaging of cells to exclude doublets, the determination of
cell viability, and the ability to examine cell phenotypes. In a nanowell-based approach,
cell lysis occurs within the nanowells, allowing the indexing of mRNA transcripts on the
barcoded magnetic beads, which is then followed by the pooling of barcoded beads for
cDNA amplification and library preparation.

Despite their scalability to higher throughput and their easy operation, IFC- and
nanowell-based approaches exhibit drawbacks for a limited number of reaction sites.
However, on droplet-based microfluidic platforms, such as the single-cell Chromium
controller from 10X Genomics, individual cells are encapsulated in nanoliter droplets
containing reaction reagents, thereby overcoming this challenge [31,32]. The number of
sampled cells increases in linear progression with higher emulsion volume, facilitating
large-scale scRNA-Seq studies. Cell lysis then proceeds within the beads and is followed
by library preparation and sequencing. The advantages of droplet-based methods include
reduced requirements for input reagents and samples, a lower number of operational
steps, a higher throughput, increased scalability, and improved sensitivity and specificity.
However, since barcodes are randomly introduced into droplets in droplet-based systems,
they preclude the possibility of associating barcodes with images and the visual detection
of cell properties.

2.1. Specialisations in scRNA-Seq Methods

In 2011, Islam et al. enhanced barcode-labelling technology for the first time and
developed a highly multiplexed scRNA-Seq method called single-cell tagged reverse tran-
scription sequencing (STRT-Seq) [18]. The strengths of STRT-Seq include its ability to
pinpoint the exact location of the 5′ end of transcripts that could be used to analyze pro-
moter usage in single cells. Subsequently, Hashimshony et al. proposed an advanced
scRNA seq protocol, CEL-Seq (Cell Expression by Linear amplification and Sequencing),
in which mRNA samples are barcoded and pooled before linear amplification by in-vitro
transcription [33]. Thus, CEL-seq produced more reproducible, linear, and sensitive results
than a PCR-based amplification method. Later, Jaitin et al. introduced an automated,
massively parallel single-cell RNA sequencing (MARS-Seq) approach in which single cells
from the target population were FACS-sorted to explore cellular heterogeneity within the
immune system [34]. Subsequently, a new development in the field of scRNA occurred
when Macosko et al. introduced Drop-seq, a method for the analysis of mRNA expression
in thousands of individual cells by separating them into nanoliter-sized aqueous droplets
for parallel analysis [35]. Buenrostro et al. developed a single-cell assay for transposase-
accessible chromatin using sequencing (scATAC-seq), which utilises prokaryotic Tn5 trans-
posase and a programmable microfluidics platform for mapping the accessible genomes
of individual cells and to provide insights into cell-to-cell variation [36]. Furthermore,
scATAC-seq can be integrated with scRNA-seq in order to perform multi-omic studies [37].
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Datlinger et al. invented CROP-seq by combining CRISPR screening with single-
cell RNA sequencing, which aids in the high-throughput functional analysis of complex
regulatory mechanisms and heterogeneous cell populations [38]. In 2017, Vitak et al. pro-
posed a single-cell combinatorial marker sequencing technique (SCI-seq), which is capable
of simultaneously constructing thousands of single-cell libraries and detecting somatic
copy-number variants [39]. In the same year, Chen et al. developed Linear Amplification
via Transposon Insertion (LIANTI), a single-cell, whole-genome amplification method
that can detect CNV at kilobase resolution and more effectively detect mutations in more
diseases [40]. Guo et al. developed single-cell multiplex/multi-omics sequencing, or
scCOOL-seq (Chromatin Overall Omic-scale Landscape Sequencing), which allowed the
simultaneous analysis of single-cell chromatin accessibility, nucleosome positioning, copy
number variations, ploidy, and DNA methylation with high sensitivity and coverage [41].
Habib et al. developed a single-cell nuclear RNA sequencing method by combining
single-nucleus RNA-seq with microfluidic technology (DroNc-seq) for highly sensitive
and efficient cell sorting, in which a variety of cells can be analyzed accurately [42]. An-
other high-throughput method for scRNA-seq was developed by Lake et al., through the
integration of single-nucleus droplet-based sequencing (snDrop-seq) and single-cell trans-
posome hypersensitive site sequencing (scTHS-seq), which is capable of detecting nuclear
transcripts and epigenetic features to analyze gene expression and regulation in complex
tissues [43]. Casasent et al. developed Topographic Single-Cell Sequencing (TSCS), which
provides the accurate spatial location of individual tumor cells and assists in studying the
invasive tumor cell populations [44]. A high-throughput and low-cost scRNA-seq tech-
nology, Microwell-seq, developed by Han et al., allows the improved detection of cellular
heterogeneity and the characterization of cross-tissue cellular networks at the single-cell
level [45]. Rosenberg et al. [24] developed split-pool, ligation-based transcriptome sequenc-
ing (SPLiT-seq), a low-cost, scRNA-seq method that performs comprehensive single-cell
transcriptome sequencing through combinatorial barcoding, thus enabling flexible and
scalable cell and sample multiplexing. Damaree et al. [46] developed single-cell genomic
sequencing (SIC-seq), a high-throughput and low-bias method for scRNA-seq that utilises
droplet microfluidics to isolate, amplify, and barcode the genomes of single cells. A combi-
nation of CRISPRi and scRNA-seq methods was developed by Gasperini et al. [47] to study
and analyze the function of regulatory elements along with the interrelationship between
regulatory elements and genes.

The frequent updates and development of scRNA-Seq technologies help single-cell
genomics studies to discover the variability and dynamics of single-cell populations and
their role in disease severity and clinical outcomes.

2.2. Experimental Design for scRNA-Seq: Plausible Challenges

As depicted in Figure 2, the general workflow of any single-cell experiment includes
sample preparation, which involves the isolation of single cells, cell lysis, and mRNA
capture, followed by single-cell RNA sequencing, data analysis, and data processing. The
sequencing of single cells involves two main challenges not associated with bulk RNA-
seq procedures: (1) the isolation and capture of individual cells, and (2) the adequate
amplification of the miniscule amounts of mRNA obtained from single cells. The first
stage involves achieving a single-cell suspension free from dead cells, cellular aggregates,
and debris. This is the most critical and challenging step in a single-cell sequencing
experiment. It is at this stage that specific cell types can be enriched or eliminated. This
is followed by the capture of single cells within droplets or nanowells, and lysis within
individual wells or droplets. To create sequencing-ready libraries, poly(A) tailed mRNA
transcripts are captured using poly(T) oligonucleotides with Unique Molecular Identifier
(UMI) sequences and single-cell-specific barcodes, which are converted to cDNA through
a reverse transcription step. The oligonucleotides are designed to contain adaptors or T7
polymerase promoter sequences in order to allow the subsequent amplification of cDNA by
PCR or in-vitro transcription (IVT) [18,33,48]. The amplified cDNA is then fragmented via
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either enzymatic fragmentation or mechanical forces in order to obtain sequencing-ready
fragments. This is followed by a final amplification that attaches sequencing adaptors to the
amplicons. The scRNA-Seq protocols may employ either full-length transcript sequencing
or 3′-end/5′-end transcript sequencing technologies [18,35,49,50].
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Figure 2. Basic steps involved in scRNA-sequencing. These include the production of single-cell suspension from isolated
tissues/blood (PBMCs) while maintaining the individual cells identity, followed by multi-step single-cell sequencing-ready
library preparation (whole transcript/5′ end/3′ end transcript), and high-throughput sequencing and analysis to capture
the functional role of cellular heterogeneity.

One of the first questions to address while setting up a single-cell experiment is
the number of cells required to obtain data with the requisite strength for downstream
analysis. Further, for the efficient demultiplexing and segregation of the single-cell data,
it is crucial to ensure proper cell and sample barcoding throughout the workflow. In any
single-cell transcriptomics study it is important to minimise the impact of stress-induced
transcriptional changes during sample processing [51]. The obscurity of transcriptional
profiles due to manual sample handling will eventually be overcome as progress is made
towards automated and standardised tissue handling. Every single-cell experiment requires
the user to make informed choices about such questions as the sample selection, the optimal
cell number, the preparation platform, the choice of scRNA-Seq techniques, the selection of
sequencing parameters, and the computational analysis strategies to obtain useful insights
from scRNA-Seq data. Emerging computational tools allow the mitigation of batch effects
by resolving the impact of biological and technical variation [52,53]. Generalised designs do
not work optimally for single-cell transcriptomic studies and each one needs appropriate
customisation at different stages, in line with the research question addressed.

3. Analysis of scRNA-Seq Data

The number of tools for analysing scRNA-Seq data is increasing steadily, each of
them with its own advantages and disadvantages [54,55]. The low capture efficiency, high
dropout rate, higher technical noise and higher biological variability (such as stochastic
transcription) compared to conventional bulk RNASeq data impose substantial challenges
on the computational analysis of scRNA-Seq data [56]. Although a variety of analytical
tools is available for bulk RNA-Seq data analysis, most of them cannot be applied directly
to scRNA-Seq data analysis [54]. A certain disparity exists between the analyses of bulk and
scRNA-Seq data, such as differential gene expressions, gene regulatory networks, and cell
clustering. Unlike whole-transcript sequencing, analyses aimed towards the identification
of alternate splicing, allele-specific expression, and RNA editing events, are not suitable
for 3′ or 5′ transcript sequencing protocols. Figure 3 represents the basic scRNA-Seq data
analysis pipeline.
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the opportunities and challenges of the scRNA-Seq. It is important to mention that AI/ML has contributed to a better
understanding of the scRNA-Seq data and its potential applications.

3.1. Quality Control of scRNA-Seq Data

After sequencing, the data from low-quality cells are eliminated, primarily based on
the low number of reads. While FastQC, the commonly used quality control tool for bulk
RNASeq data, can serve the purpose, there are some scRNA-Seq-data-specific QC tools,
such as Scater [57], and SinQC [58], which offer better quality control. The mapping ratio
of the reads to the reference is an important quality indicator for RNASeq data. The most
commonly used mapping tools, such as HISAT [59], TopHat2 [60], and STAR [61], map
billions of reads (both scRNA-Seq and bulk RNASeq) to a reference with great accuracy
and speed. However, for the quantitation of gene expression, the conventionally used
techniques, i.e., de novo assembly and reference-based assembly, can be used for single-
cell whole-transcript sequencing, but not for 5′ or 3′ end-transcript sequencing. This
quantitation is possible either using scRNA-Seq specific tools, such as Smart-seq2 and
MATQ-seq, or tools for bulk RNASeq data analysis, such as Cufflinks [62], RSEM [63],
and Stringtie [64]. For 5′ or 3′ end-transcript sequencing, UMI-based analysis pipelines,
such as SAVER, offer an accurate estimation of the transcript count with very low technical
noise [65].

Disparities in capture efficiency, sequencing depth, dropout reads, and noise between
samples may result in data bias. The normalisation of scRNA-Seq data is therefore im-
portant for downstream analysis, such as the identification of cell subpopulations and
differential gene expressions. Within sample normalization, the adjustment of the GC
content and the transcript length allows better analysis of gene expression within one
sample. By contrast, the between-sample normalisation of the sequencing depth and
dropout enables comparison of gene expression across samples [66]. The normalization of
scRNA-Seq data using conventional RNASeq tools, such as DESeq2 [67] and TMM [68],
requires that specific precautions are taken, as higher technical noise and abundant zero
expression values may result in overcorrection.

The dropout event increases the chance of cell-to-cell variability, which may affect the
gene expression and gene–gene relationship analysis. To take this into account, imputation
replaces the missing data with substitute values. Commonly used imputation tools include
SAVER [65], ScImpute [69], MAGIC [70], AutoImpute [71], and DrImpute [72].

3.2. Analysis of Cellular Heterogeneity

As scRNA-Seq data are high-dimensional, it is important to reduce their dimension-
ality. Dimensionality reduction, along with feature selection, allows better visualisation
and delineation of cells into subpopulations. Tools/methods such as Principal Component
Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold
Approximation and Projection (UMAP), and scvis usually project the high-dimensional
data onto a lower dimensional space, while preserving the key properties of the origi-
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nal data [24,73–75]. The unveiling of cellular heterogeneity and the identification of cell
subpopulations is a major goal of single-cell RNA sequencing. The clustering of sub-
populations is either based on known markers or de novo identification (unsupervised
clustering methods, such as hierarchical clustering, k-means, graph-based clustering, and
density-based clustering) [76]. Some clustering tools, such as SC3 and Seurat, clusters
cell subpopulations based on statistical analysis of the expression of known markers and
differential gene expressions [77,78]. Concurrently, cell trajectory analysis from scRNA-Seq
data facilitates the identification of the cues for cell state transition.

3.3. Differential Gene Expression Analysis

Differential expression of genes (DEG) analysis is extremely important in order to
identify the significantly differentially expressed genes and to interpret biological differ-
ences across subpopulations/samples/conditions. The high noise, dimensionality, and
coexistence of multiple states of the same cell make the differential expression analysis a
challenging one. Thus, the tools used for DEG analysis from bulk RNASeq data are not
an optimal choice for scRNA-Seq data. Specific tools have been designed for this purpose;
some of the most widely used are SCDE [79], BCseq [80], MAST [81], and Census [82].

3.4. Artificial Intelligence in scRNA-Seq Data

Until now, a huge amount of RNASeq data is available publicly. The data generated
by single-cell RNA sequencing are huge and more complex than bulk RNA-Seq data. This
requires specific analytical pipelines for scRNA-Seq data. With the implementation of Arti-
ficial Intelligence (AI)-based models, such as Machine-Learning (ML) and deep-learning
methods (DL) in the analysis of genome sequencing data over the last 10 years, more
accurate analysis of big data is now possible, without the need to model the system of
interest. AI approaches are commonly used to solve regression, classification, dimension-
ality reduction, and clustering tasks. AI algorithms can be employed to capture more
detailed information on cell types, DEGs, biomarker expression patterns, lineage transition,
and disease subtypes, as well as to predict clinical outcomes [83]. AI-enabled analysis of
scRNA-Seq data, along with the visualisation of landmark genes, enables us to uncover
the “where” for every “what”, and offers a holistic understanding of gene expression at a
single-cell resolution within a tissue microenvironment.

4. Balance between Expected Experimental Outcome, Cost, and
Technology Preparedness

The fields of biological discovery and biomedicine have been greatly empowered by
the recent technological advancements brought about in single-cell technologies. However,
the relatively high costs and associated technical challenges have, so far, limited the
widespread application of single-cell sequencing technologies. A concerted effort in the
field has been aimed at ameliorating the cost-effectiveness of single-cell technologies
and simplifying the experimental challenges involved. The advent of new sequencing
technologies, the miniaturisation of reaction volumes, and the associated reagent usage
have considerably reduced the costs of single-cell sequencing [84]. These robust advances
and cost savings in tandem have enabled the growing footprint and application of single-
cell sequencing in disease biology and basic research.

Beside its cost, there are a number of other technical and experimental challenges that
must be overcome in order to facilitate the greater usage of scRNA-Seq in addition to that
of bulk RNA-seq. The enormous amplification of the minute amounts of starting material
from a single cell, when combined with scarce sampling, leads to consequential bias [85].
The distortion in gene expression profiles is also, in some cases, a result of the low RNA
capture efficiency and conversion rate [86]. The aggregate effect of all this is that gene
expression profiling by scRNA-Seq is inherently noisier than the bulk RNA-seq datasets.
Further, significant distortion in expression profiles also results from drop-out events due
to the occasional failure to detect the transcripts otherwise expressed at a high level in the
cell, leading to false inter-cellular variability [87]. The sub-optimal experimental design, in
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terms of processing samples at different times, may be another source of technical variation
due to batch effect, significantly affecting the results of scRNA-Seq. Besides, barcode
impurities or the external background often cause errors with demultiplexing during the
performance of data analysis. Taken together, these subtle, yet significant, technical details
limit the data calibration and interpretation of scRNA-Seq experiments. Apart from the
technical sources of variation, significant biological variation also poses challenge to data
reproducibility in single-cell experiments. The use of spike-in and the dilution of bulk RNA
to single-cell levels are some of the approaches currently used for the evaluation of the
nature and magnitude of technical variability; however, each has its own limitations [88].
We are sure that the future development of more targeted approaches to the delineation of
the technical and biological variability of single-cell gene expression profiling data would
take into account the above challenges.

5. Single-Cell Sequencing in Infectious Disease

Single-cell sequencing has brought about a revolution in our understanding of the com-
plex systems biology of the immune landscape. The human immune system is composed
of a large number of cell types and states, which together regulate the pathophysiology of
many diseases, such as cancer, autoinflammatory disorders, and infectious diseases. How-
ever, a majority of the population of the immune system requires further characterization.
The cells of the immune system, i.e., T lymphocytes, B lymphocytes, Natural Killer cells
(NK Cells), and macrophages respond to pathogen challenges and release a wide variety of
cytokines, antibodies, and complement proteins in order to clear infections. At the same
time, they express cell surface markers, such as a wide variety of clusters of differentiation
(CD), B cell receptors (BCR), T cell receptors (TCR), the Major Histocompatibility Complex
(MHC), and the Human Leukocyte Antigen-DR isotype (HLA-DR). Apart from these, the
number of specific cell types and subtypes also changes during the immune response. Thus,
understanding the complexities of the immune system and the spatio-temporal expression
of the genes, surface markers, and cell types of the immune system during an infection may
help to understand diseases better and significantly improve their management. Figure 4
depicts the use of scRNA-Seq in understanding infectious disease biology, wherein the
single-cell RNA sequencing of infected samples helps to understand the host response and
the host–pathogen interactome.

5.1. Studying the Immune Atlas
5.1.1. Immune Cell Repertoire Profiling

The immune repertoire refers to the B cell and T cell population with distinct antigen
specificity at any given time. The receptor on the B cell surface (BCR), which primarily
binds to the antigen, is composed of two heavy (H) and two light (L) chains. The heavy
chain is further composed of a variable region (V), a diversity region (D), a joining region
(J) and a constant region (C), while the light chain is composed of V, J and C regions
only. T cell surface receptors (TCR) are composed of α and β chains, and somatic V(D)J
recombination leads to tremendous diversity within an individual TCR repertoire. Any
two T cells bearing the same TCRαβ sequences are likely to arise from the same ancestor;
therefore, identifying the BCR and TCR sequences can reveal the ancestry of T cells, which
is especially important when the antigen is unknown [89]. Single-cell V(D)J sequencing
was enabled by scRNA-Seq, revealing the BCR and TCR sequences; this accelerated the
identification of neutralising antibodies against invading pathogens. This has been useful
to the understanding of the immune response during the current COVID-19 pandemic, as
has been highlighted by multiple studies. Using scRNA-Seq-mediated BCR sequencing,
Xi et al. identified 14 potent neutralising antibodies against SARS-CoV-2 [90]. Using
single-cell TCR sequencing, Liao et al. reported a substantial increase in CD8+ clonally
expanded cells in mild SARS-CoV-2 infections, but not in severe infections [91]. The
V(D)J combination of BCR is unique to a pathogen. For instance, the V(D)J combination
observed during SARS-CoV-2 infection is different from the V(D)J combination during
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other infections [92]. Using BCR and TCR sequencing, Schultheiß et al. reported the
lowering of T cells and an increase in B cell numbers in patients with active COVID-19
infections. They also reported a shift of CD4+:CD8+ T cell ratios towards CD4+ T cells [93].
Stephenson et al. reported the expansion of proliferating lymphocytes and monocytes,
platelets and hematopoietic stem and progenitor cells as disease severity increased [94].
They also reported a decrease in IgA+ cells in patients with symptomatic COVID-19
infection compared to asymptomatic patients, despite the expansion of the plasma cell
population. The depletion was mainly mediated by depleted IgA2 subtypes. However, in
contrast to Schultheiß et al., Stephenson et al. reported an expansion of CD8+ T cells. Such
variation may be taken as evidence for diversity in immune responses during COVID-19
infection. Thus, BCR and TCR sequencing using scRNA-Seq provide important insights
into the adaptive immune response and accelerate the identification of antibodies, which is
essential for the development of vaccines.
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Figure 4. Landscape of Single-cell Genomics from the perspective of infectious disease biology.
In response to pathogen infection in a host, samples can be taken from either tissue or blood.
Subsequently, through a multi-step process involving single-cell library preparation, sequencing, and
analysis, functional inferences are drawn. Interactomes at a single-cell resolution would help in the
formation of inferences about antibody diversity, differential gene expression, cellular heterogeneity
and pathogen diversity.

5.1.2. Identification of Novel Cell Subtypes

During pathogenic challenges, a compendium of heterogenous host immune cells
is involved in important biological processes, such as pathogen recognition, neutralising
antigen, and antigen presentation. Transcriptional changes and/or changes in the expres-
sion of surface markers may occur during infections, either as a result of infection, or
in order to clear the infection. The identification of novel immune cell subpopulations,
and an understanding of their characteristics, are important for understanding infection
dynamics. Waickman et al. reported a group of clonal expanded CD8+ T cells with unique
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transcriptional characteristics [95]. CD4+ T cells differentiated into two types during latent
HIV infection, with lower host and viral transcription levels in type 1 cells [96]. Using
Seq-Well, Geirahn et al. reported novel subtypes of macrophage cells during Mtb infec-
tions [30]. Martin-Gayo et al. reported three types of conventional dendritic cells (cDCs) in
HIV patients; one of the three subsets showed adistinct transcript expression profile and
a high antiviral response, which may have elicited a better immunological response [97].
While most cellular heterogeneity analysis depends on the similar transcript expression
profile of individual cells, at the same time, it is important to take necessary precautions
while clustering cell subpopulations in order to avoid false reports of novel subtypes.

5.1.3. Immune Signalling Pathways

The scRNA-Seq method provides differential gene expression information at a single-
cell resolution, which makes accurate mapping of the signalling pathway of a cell possible.
Horns et al. reported a fraction of peripheral memory B cell activation after administering
an influenza vaccine, while a fraction of memory B cells were not activated. They reported
172 differentially expressed genes across the two groups, revealing the signalling pathways
in the memory B cells [98]. Wen et al. reported a higher expression of genes related
to inflammation-associated signalling pathways in NK cells in COVID-19 patients [99].
Inflammatory factors perform various biological roles in the regulation of the immune
system. Using scRNA-Seq, Zhang et al. reported the spatio-temporal production of
inflammatory factors in IAV-infected lungs [100]. He et al. highlighted that the production
of IL-1β and TNF-α upon SARS-CoV-2 infection may lead to extra mucin secretion, which
may contribute to Acute Respiratory Distress Syndrome (ARDS) [101]. These findings
highlight that the use of scRNA-Seq enables us to understand the immune signalling
pathways at a single-cell resolution.

5.2. Understanding the Host–Pathogen Interaction
5.2.1. Host–Pathogen Diversity

Understanding the pathophysiology of an infectious disease requires a detailed un-
derstanding of the host cells, as well as the pathogen. A variety of evidence shows that a
change in host-cell diversity occurs in response to a pathogen challenge. How does the in-
fection affect the host cell’s diversity? How does the host cell’s diversity affect the infection
outcome? In the case of multiple cell types infected by the same pathogen, do the cells share
similar features that make them susceptible to the infection? Are all the single-pathogen
bodies infecting specific cell types the same? Answers to these fundamental questions are
critical in order to understand the pathophysiology of infection.

The analysis of pathogen-infected cells requires segregation between infected and
healthy cells. Xin et al. investigated the effect of host cell heterogeneity on infection and
found that host cell size was a regulator of infection [102]. A 10-100-fold increase in viral
titre was reported in cells in the G2/M phase [103]. The scRNA-Seq method provides an
unprecedented resolution for the analysis of host cellular heterogeneity during an infection.
Multiple studies have elucidated the transcriptional landscape of the immune system
during infection. This provides a clearer picture of the host’s response to the pathogen. A
scRNA-Seq of COVID-19 infected patients showed a marked increase in CD4+ and CD8+
T cells and plasma B cells in BALF and PBMCs. Megakaryocytes and CD14+ monocytes
were elevated during the early and severe infection stages of COVID-19, while NK cells, γδ
T cells, cDCs, plasmacytoid dendritic cells (pDC), and CD16+ monocytes were depleted.
The depletion of NK cells, pDCs, and CD16+ monocytes was correlated with COVID-19
associated with severe breathing distress [104,105]. Park et al. reported the transformation
of NK cells into innate lymphoid-cell-1-(ICL1)-like cells, capable of producing IFN-γ but
not TNF-α, upon Toxoplasma gondii infection [106].

Pathogen diversity may be inherent, or it may arise as a result of the host–pathogen
interaction. As most current scRNA-Seq technologies use oligo dT to capture transcripts,
positive strand RNA viruses, having poly A tail, are also captured and can be detected in
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deep sequencing. Negative strand RNA viruses can also be detected in scRNA-Seq analysis
by using specific probes to capture the viral transcript. Multiple studies reported a diverse
range of viral loads and intracellular viral RNA in cells infected with IAV, even though all
the parameters were kept the same throughout each study [103,107]. Russellet al. reported
that IAV is prone to mutation during infection [108]. Although there is substantial evidence
for virus diversity during infection, bacterial diversity during infection at the single cell
level is poorly understood.

5.2.2. Infection Dynamics

Understanding the dynamics of infection enables us to understand the proliferation
and promulgation of pathogens in vivo and their role in pathogenesis. Ramos et al. anal-
ysed the IAV-respiratory epithelial cell interaction dynamics during the early stage of
infection. They reported that a high multiplicity of infection (MOI) of IAV leads to a high
intracellular viral mRNA, which suppresses the host’s innate immune response in a similar
way to the suppression of IFN production [109]. Zanini et al. identified the flavivirus
infection-associated host factors involved in endoplasmic translocon, membrane trafficking,
and signal peptide processing, by studying the flavivirus–host-cell interaction dynamics
using scRNA-Seq [110]. A study showed that in-silico TCR reconstruction, combined with
the transcriptome sequencing of T cells, led to the mapping of T cell activation dynamics
during Salmonella infection [111]. Using a scRNA-Seq of nasal swabs from COVID-19
patients, Qi et al. reported that ACE2, TMPRSS2, NRP1, and NRP2 were more expressed
in the nasal epithelial region of symptomatic COVID-19 patients than in asymptomatic
patients. They also observed mild inflammation and enhanced epithelial barrier func-
tion, along with an increased CD8+ T cell response, in asymptomatic COVID-19 patients,
compared with symptomatic patients, which may explain the absence of symptoms in a
proportion of COVID-19 patients [112].

5.2.3. Antibody Response

The interrogation of the antigen specificity of B cells in order to identify a correct B cell
clone from thousands or millions of B cells is an important focus of research. Along with
the use of oligo-barcoded antibodies, scRNA-Seq has made it easier to identify the correct
B cell clone. El Debs et al. co-encapsulated single hybridoma cells, an enzyme ACE1, and
its fluorescent substrate within water in oil microdroplets to identify the ACE1-inhibiting
antibody [113]. The PBMCs of severe COVID-19 patients showed a higher amount of
plasma B cells (~15%) compared to healthy patients and those with a lower degree of
infection (~3%). Furthermore, these plasma B cells were enriched for genes encoding the
constant regions of IgA1, IgA2, IgG1, and IgG2, suggesting their role in the secretion of
antibodies against the infection [105]. Cao et al., using a high-throughput scRNA-Seq
and V(D)J sequencing, identified a total of 14 potent SARS-CoV-2 neutralising antibodies
from a pool of 8558 antigen-binding IgG1+ cells from antigen-enriched B cells. Out of
the 14 antibodies, one antibody, named BD-368-2, was found to be very potent against
SARS-CoV-2. The finding offers a promising therapeutic and prophylactic strategy [90].

5.2.4. Identification of Susceptible Cells Subtypes

The identification of cell types susceptible to pathogens enables us to understand
infection mechanisms with more clarity. Using scRNA-Seq and cell clustering analysis,
it has been reported that the influenza virus primarily infects and colonises in the lung’s
epithelial cells. A higher level of viral mRNA in the lung’s epithelial cell supported this
finding [114]. The scRNA-Seq method has also been used to identify potential target cells
for the SARS-CoV-2 infection. Using this technique, a high expression of ACE2, BSG, DPP4,
and ANPEP, as well as the S protein proteases, TMPRSS2 and CTSL, are found in the
placenta during the first trimester [115]. This indicates a higher risk of transmission to the
foetus during pregnancy. Another study provided evidence of the expression of ACE2
and TMPRSS2 in the proximal convoluted tubule, the proximal tubule, the distal tubule,
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and the glomerular parietal epithelium of the kidney, which may explain SARS-CoV-2-
induced kidney damage [116]. These results, based on scRNA-Seq analysis, identified key
information about the entry and transmission of viruses.

6. Future Directions

The past few years have seen rigorous growth in the field of single-cell genomics,
marked by the development of chemistries, methods, platforms, and techniques that
simplify and economise both experiments and the analysis of single-cell sequencing. Single-
cell sequencing offers enormous potential for the improvement of our understanding of
biological problems and the fundamentals of human disease. Inter-disciplinary applications
of scRNA-Seq have expanded the frontiers of various realms of biological research, such as
neurology, oncology, immunology, and developmental and regenerative biology (depicted
in Figure 5).
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The profiling of the human body at single-cell resolution is expected to accelerate
advancements in basic and clinical research, with translational benefits for future medicine
and diagnostics. While individual efforts at the single-cell profiling of major human or-
gans have long been underway, the recent emergence of international consortia aimed
at deciphering single-cell transcriptomes is of great importance for future research [117].
The integration of single-cell sequencing data from these consortia is expected to lead to
systematic data integration and harmonization, enabling the obtainment of the universal
human cell reference dataset. The Human Cell Atlas is one such international collaborative
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initiative, aiming to bring together expertise in biology, genomics, medicine, and compu-
tation in order to create a concerted database of all the cells in the human body [118,119].
Various tissue- and disease-specific consortia, such as the BRAIN initiative, the LungMAP,
and others have enabled focused elucidation of the intricacies of individual organs and
their associated diseases [120,121]. Single-cell genomics technology is of overarching
significance in bringing these ideas together.

As single-cell sequencing technology becomes more pervasive and ubiquitous, it is of
paramount importance to simultaneously address the need for platforms that enable data
handling of such enormous magnitudes. At the same time, the increasing repertoire of
computational biology methods, in tandem with the utilisation of artificial intelligence, is
expected to further empower scRNA-Seq to play an ever-growing role in disease diagnosis,
treatment, and human welfare. Progress at multiple levels would contribute towards future
pandemic preparedness.
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