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ABSTRACT: In spite of increasing importance of cyclic hydrocarbons in various chemical
systems, studies on the fundamental properties of these compounds, such as enthalpy of formation,
are still scarce. One of the reasons for this is the fact that the estimation of the thermodynamic
properties of cyclic hydrocarbon species via cost-effective computational approaches, such as group
additivity (GA), has several limitations and challenges. In this study, a machine learning (ML)
approach is proposed using a support vector regression (SVR) algorithm to predict the standard
enthalpy of formation of cyclic hydrocarbon species. The model is developed based on a
thoroughly selected dataset of accurate experimental values of 192 species collected from the
literature. The molecular descriptors used as input to the SVR are calculated via alvaDesc software, which computes in total 5255
features classified into 30 categories. The developed SVR model has an average error of approximately 10 kJ/mol. In comparison, the
SVR model outperforms the GA approach for complex molecules and can be therefore proposed as a novel data-driven approach to
estimate enthalpy values for complex cyclic species. A sensitivity analysis is also conducted to examine the relevant features that play
a role in affecting the standard enthalpy of formation of cyclic species. Our species dataset is expected to be updated and expanded as
new data are available to develop a more accurate SVR model with broader applicability.

1. INTRODUCTION

With the development of alternative fuels coming from
different sources, as well as new additives from petroleum,
cyclic hydrocarbons have become important components of
current and future fuels.1,2 Furthermore, cyclic hydrocarbons,
such as polycyclic aromatic hydrocarbons (PAH), are common
intermediates in flames that lead to soot formation. Cyclic
hydrocarbons are important not only in combustion chemistry
but also in other fields; cyclic unsaturated hydrocarbons can
lead to the formation of Criegee intermediates3 and highly
oxidized organic compounds,4 with implications in pollutant
formation and climate. Therefore, knowledge of their
molecular properties can help build models for atmospheric
and combustion modeling. Despite their importance, lesser is
known about the oxidation process of cyclic hydrocarbons
compared to their aliphatic counterparts, as more theoretical
and experimental studies have been concerned with the latter.5

Nevertheless, additional data for complex cyclic hydrocarbons,
saturated and unsaturated, have been derived in the recent
years.6,7

Chemical kinetics and molecular thermochemistry studies
are of vital importance for the development of kinetic models,
which are useful to gain knowledge of the oxidation properties
of fuels. Accurate thermochemical properties are critical for
combustion modeling, as has been recently proved by vom
Lehn et al.,8 who observed that ignition delay of diethyl ether
mixtures is more sensitive to the enthalpy of formation of
certain species than to kinetic parameters. Different tools can

be used to estimate thermochemical properties. Quantum
chemistry calculations can yield accurate predictions but
become impractical for large molecules with many heavy
atoms. A more computationally feasible alternative, although
less accurate, is the group additivity method,9 which calculates
the enthalpy of formation from so-called group contribution
values. However, this approach assumes that each group is
independent, and the contributions of those groups are
additive; this may result in a poor description of the
thermochemistry of cyclic species, as ring strain is influenced
by more than just immediate neighboring atoms considered
when defining group values. To cope with this limitation, ring
corrections are often added; however, this alternative group
additivity method only yields accurate predictions for cyclic
species closely related to ones that are included in the training
database, thereby limiting its applicability. Some other
difficulties in the implementation of ring corrections have
been reported elsewhere.9,10

Alternative techniques to estimate thermochemical proper-
ties are therefore necessary to promote further studies on the
oxidation properties of cyclic hydrocarbons. Machine learning
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(ML) has become a popular tool to predict molecular
properties in recent years. ML models for estimating several
chemical properties, viz., octane number,11 flash point,12,13

cetane number,12,13 melting point,14 solubility, and toxicity,15

have been developed using different input representations.
Saldana et al.14 used ML compounded with geometry
optimization for estimation of heat of combustion using the
data taken from the DIPPR database16 and the Yaws’
handbook of thermodynamic and physical properties of
chemical compounds.17 Although their dataset included a
diverse set of compounds, most of them were aliphatic and
thus showed highest errors for cyclic species, with an overall
error of 52 kJ/mol. Li et al.18 used “active learning” to develop
a self-training and continuously evolving model for enthalpy of
polycyclic species calculated from the low-level density
functional theory (DFT) B3LYP/6-31G(2df,p). Since the
training dataset was from low-level theory calculations, error in
their work could be attributed to both error from the ML
model and error from the DFT calculations, compared with
experimental values or calculations at a higher level of theory.
However, their large initial dataset and self-evolving algorithm
provide a platform for predicting enthalpy for a wide spectrum
of molecules.
In the present study, we focus on estimating the standard

enthalpy of formation at 298 K and 1 atm (hereafter referred to
as enthalpy) of cyclic species using ML techniques based on a
dataset consisting exclusively of accurate experimental data.
Our goal is to develop an ML model that yields accurate
enthalpies of cyclic species, which are scarce, to facilitate
further studies on the oxidation of cyclic hydrocarbons. Section
2 provides details on the dataset used in this study along with
details of the input features used for the ML model.

2. DATA CURATION

The database used in this work consists of experimental
measurements reported by Ghahremanpour et al.,19 CRC,20

and Minenkov et al.21 The dataset consists of 192 cyclic
hydrocarbon species including both saturated and unsaturated
species with up to 14 carbon atoms. Among those 192 species,
both constitutional isomers and R and S enantiomers (species
with chiral centers) are included, making our ML model able
to discern between different kinds of isomers.
Due to the lack of data reported for cyclic hydrocarbons

beyond C14 species, we restricted our dataset to species with
up to 14 carbon atoms. Larger species with several rings can
assume different structures and conformers that alter their
thermochemistry, so training an ML model for such species
requires a large and comprehensive dataset. This is the case for
C15−C18 hydrocarbons, for which accurate enthalpies are only
available for 10 species. In addition, three-membered ring
species were also excluded due to their lower importance in
combustion and their skewed values of enthalpy due to high
cyclic strain energies. Thus, the final dataset consists of cyclic
hydrocarbon species with a minimum of four-membered ring
and a maximum of 14 carbon atoms. Figure 1 shows the
distribution of species present in our dataset with respect to
their number of carbon atoms. It should be noted that the
present approach allows us to update the training dataset as
new data become available to improve the ML model for a
wider range of cyclic hydrocarbons. The dataset with the
species considered for our ML model, along with the excluded
ones, is provided in the Supporting Material.

Several input representation methods have been used in the
past for predicting molecular properties, such as Coloumb
matrices,22 various sets of molecular descriptors,12,14 and
convolutions.15 Coloumb matrices and convolution methods
require a molecular fingerprint; training such methods requires
a relatively large dataset to find relationships between plain
molecular structure and a macroscopic property. On the
contrary, molecular descriptors are formulations derived from
the molecular structure and can be used for small to large
datasets with a varying number of descriptors. Todeschini and
Consonni23 compiled a comprehensive set of molecular
descriptors that can be calculated from simplified molecular
input line entry system (SMILES) in alvaDesc.24 Out of this
comprehensive set of 5255 molecular descriptors sorted in 30
categories, a relevant subset of 5072 descriptors from 29
categories are used in this study. Duplicate descriptors with
identical values, such as alcohol functional group counts, which
are zero for all of the species in our dataset, are removed to
reduce the number of descriptors to 2478. A process to further
downselect among these descriptors is explained in Section 3
along with the ML workflow. The complete dataset used for
the ML model containing all of the molecular descriptors is
provided in the Supporting Material.

3. MACHINE LEARNING FRAMEWORK
The ML model development consists of a workflow and model
training. The ML workflow comprises division of the dataset
for error estimation and final model development. The training
consists of using the ML algorithm to train on the dataset
following the workflow and then fine-tuning the hyper-
parameters associated with the algorithm. Sections 3.1 and
3.2 discuss each part in detail. All of the scripts for this study
are written in Python using scikit-learn library25 with
TensorFlow26 backend. All scripts are available in the GitHub
repository (github.com/kiranyalamanchi/enthalpy-cyclic-spe-
cies).

3.1. Workflow. Two commonly used workflows in ML are
as follows: (i) divide the dataset into training/validation/test
sets used for training the model, then fine-tune the
hyperparameters, and estimate the model performance, and
(ii) divide the dataset into k sets and use a k-fold cross-
validation (k-fold CV) method to estimate the accuracy of the
ML algorithm on the dataset, and then train the final model on
the entire dataset. The k-fold CV method is computationally
demanding but gives a better representation of model accuracy.
This method is adopted herein because of the small dataset
size. In the accuracy estimation part, the workflow consists of
two loops, an outer loop and an inner loop. First, the entire
dataset is divided into k-sets, i = 1 to k, as shown in Figure 2.

Figure 1. Distribution of species with respect to their number of
carbon atoms.
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The outer loop constitutes of i = 1 to k-folds iterated over until
each fold has been used as the test set. For each of ith set in the
outer loop, the remaining data points expect those in ith set are
mixed and again divided into j = 1 to k sets for the inner loop,
as shown in Figure 2. The inner loop is used to determine the
best hyperparameters for each particular split of the outer loop
from a defined search space. For each combination of
hyperparameters, all of the j = 1 to k-folds in the inner loop
are iterated over until each set has been used as a validation
set. The accuracy of the inner j = 1 to k-folds is averaged and
used as a metric for the performance of that particular
hyperparameter combination. The hyperparameter combina-
tion that has the minimum average validation error is used to
train a model for that particular ith outer split. This model is
trained on the remaining k − 1 folds (leaving ith set from i = 1
to k-sets) as the training set and then tested on the test set (ith
set). Since the entire dataset is divided into k sets for the outer
loop, we have k errors, which represents the model’s
performance. Finally, a model is trained on the entire dataset
to obtain the final model, which can be used for finding
enthalpy of a new species that is not present in the original
dataset. A similar cross-validation pipeline was followed in our
previous work for the development of ML models for enthalpy
of linear species,27 and more details on adopted k-fold
workflow can be found therein. It should be noted that this
methodology follows best practice in ML and ensures that the
final model is not simply an overfitting of the dataset.
3.2. Model Development. Support vector regression

(SVR) and artificial neural network (ANN) are widely used
ML algorithms for regression tasks. While ANN performs
better for tasks with large datasets, SVR can be very efficient in
dealing with smaller ones;27 hence, the latter is selected for this
study. SVR28 is a regression counterpart developed from
support vector machines (SVM),29 which are large margin
classifiers widely used for classification problems. The idea of
SVM is to transform a feature space using kernels to create a
hyperplane that separates different classes with a large margin.
SVR is based on a similar concept except that the hyperplane
aims to fit the data. The function of SVR can be

mathematically described by eq 1, where ε and ξi, ξi* are
positive numbers that describe the allowable error (ε) and
additional error above ε for a data point i in the training set,
respectively. Equation 2 describes the radial basis function
(RBF) kernel. Therefore, constraint terms describe the
distance of Yi (output of data point i) from the predicted
value by the transformed hyperplane using a kernel with
parameters ω. This distance is the prediction error and is
permitted to be within ε, while the additional ξi, ξi* has to be
minimized. The term a∥ωa∥2 is the regularization term used in
the cost function to be minimized to avoid overfitting. The
parameters C, ε, and γ are known as hyperparameters, which
are adjusted using the validation set, i.e., in the inner loop for
the k-fold CV method, as explained in Section 3.1.
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The processed dataset consists of 192 species with 2478
features, which is a large amount of features compared to the
data points present. Using this entire feature set could cause
overfitting and noise. To reduce the number of features, the
dataset is divided randomly into 90/10% training/test, and the
test set accuracy is used to select the number of features. Note
that this split method is just used for feature selection and not
for error estimation, for which the k-fold CV workflow is used.
Pearson’s correlation coefficient30 is a metric used to measure
correlation between vectors and for reduction of features. For a
given correlation coefficient threshold, input features with an
absolute correlation coefficient exceeding the threshold are
removed, and then hyperparameters are tuned on the training
set. The model is then used to predict on the test set such that
the mean absolute error (MAE) can be obtained, as shown in
Figure 3. The plot consists of errors for five different random
training/test splits (each shown in different color), which are
considered to avoid any bias due to a particular split. All of the
test set errors for different splits decrease for a correlation

Figure 2. Workflow for error estimation of an ML model with k-fold
CV.

Figure 3. Variation of mean absolute error of various test sets with
respect to Pearson’s coefficient. This is used to reduce the number of
features for training the model. Different colors correspond to
different random states (training/test splits) used for dividing the
dataset.
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coefficient value of 0.4. A lower correlation coefficient value
increases error due to an insufficient number of descriptors
available to carry all of the molecular information. A higher
value gives approximately similar error, but some noise is
observed because the model is tuned based on different
descriptors that are correlated. A correlation coefficient of 0.4
corresponds to a reduced set of 47 descriptors.
Table 1 shows the number of descriptors present from each

category in the final reduced set of descriptors, the individual

list of which is provided in the Supporting Material. These 47
descriptors are used with 192 data points for error estimation
using the k-fold CV method, and the results are discussed in
Section 4.

4. RESULTS AND DISCUSSION
Using the reduced set of descriptors, the entire dataset was
split randomly into k sets, and the k-fold CV method was
applied. It is a common practice to set the value of k to 5, 10,
or the size of dataset, which are called 5-fold, 10-fold, and leave
one out CV (LOOCV), respectively. Since the dataset in this
study is small, using 5-fold would leave out too much data for
the model to adequately train. LOOCV is a computationally
expensive workflow for very small datasets. Therefore, k is set
to 10 for the present study such that there are 10 test sets in
the outer loop of the k-fold CV, resulting in 10 sets of errors.
The regression (R2) score and MAE for these 10 sets are given
in Table 2. An average MAE of 9.71 kJ/mol is achieved using
SVR with the 10-fold CV workflow. The highest errors
observed for fold numbers 6 and 7 arise from the species with a
high prediction error, azulene and cyclohepta-1,3,5-triene,
respectively. This is due to their unique structures compared to

other species in the dataset, i.e., a seven-membered ring with
resonant double bonds.
It is also worth mentioning that the ML model prediction

accuracy is more sensitive to the availability of data for species
with similar structures than for species with the same number
of carbon atoms. This can be explained by C13 species having
lower average error than C10 species, as shown in Figure 4,

despite the fact that the number of C10 and C13 species are 23
and 2, respectively. The two C13 species, 9H-fluorene and
diphenylmethane, are planar and comprise mainly benzene
rings, for which there are much data available. In contrast, the
C10 species include some unique structures, such as azulene,
for which it is more difficult to predict its enthalpy due to a few
similar species in the database.

4.1. Comparison with Group Additivity. Bensons group
additivity (GA)9 is an easy and fast method for calculating
thermochemical properties. Han et al.31 refined the GA
approach by including ring corrections to account for the
complexity of ring structures to improve the performance of
GA for cyclic species. Despite this improvement, and due to
limitations in the underlying assumptions of GA, this method
is only effective for estimating the molecular thermochemistry
of relatively simple organic molecules, and its accuracy rapidly
decreases as the species become more complex, as was
reported by Li et al.18

A direct estimation of the improvement achieved by our
SVR model over the GA approach needs both models to be
trained on the same data, but this is beyond the scope of this
work. Therefore, in Figure 5, GA values taken from RMG32

and present SVR predictions are compared to experimental

Table 1. Descriptors of Each Category in the Reduced Set

category of descriptors number of descriptors

constitutional indices 5
ring descriptors 6
topological indices 3
2D autocorrelations 7
edge adjacency indices 11
3D MoRSE descriptors 4
WHIM descriptors 3
other minor descriptors 8
total 47

Table 2. Regression (R2) Score and MAE for SVR Model
Using k-Fold CV Workflow Applied to the Dataset in This
Study

fold number R2 score MAE (kJ/mol)

1 0.986 7.32
2 0.992 8.40
3 0.992 7.70
4 0.994 7.14
5 0.992 10.67
6 0.957 13.02
7 0.986 14.35
8 0.990 9.47
9 0.990 10.59
10 0.992 8.45
average 0.987 9.71

Figure 4. Variation of accuracy with respect to number of carbon
atoms in species (averaged).

Figure 5. Comparison of GA and SVR predictions against benchmark
experimental data used in this study. Species from left to right: 1-
methylnaphthalene, 2-methylnaphthalene, 1-methyl-1,2,3,4-tetrahy-
dronaphthalene, 1,1-dimethylindan, pentamethyl-benzene, 1-methyl-
adamantane, 2-methyladamantane, and spiro[5.5]undecane.
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values for the eight C11 species in the dataset. It is important to
mention that the SVR predictions in these comparisons span
over all of the folds shown in Table 2. Therefore, every
prediction is from a model that was trained on a dataset that
does not contain the corresponding predicted species; the
species was used for external validation in a test set in the k-
fold workflow. Both GA (5.77 kJ/mol MAE) and SVR (7.82
kJ/mol MAE) achieve good accuracy on predictions of
enthalpy values for molecules with relatively simple structures
such as 1-methylnaphthalene, 2-methylnaphthalene, 1-methyl-
1,2,3,4-tetrahydronaphthalene, 1,1-dimethylindan, pentameth-
yl-benzene, and spiro[5.5]undecane. The slightly better
performance of GA could be attributed to the fact that the
SVR values are from a model that was not trained on these
particular species, whereas this may not be the case for GA.
SVR outperforms the GA method for molecules with more
complex structures, such as 1-methyladamantane and 2-
methyladamantane. The average error for 1-methyladamantane
and 2-methyladamantane is greater for GA (171.54 kJ/mol
MAE) and smaller for SVR (17.57 kJ/mol MAE). This is a
promising result, indicating that the SVR method yields more
accurate predictions for complex cyclic molecules for which the
GA approach usually fails, as has been noted by Li et al.18

Cyclic molecules with multiple rings connected together
assume complex and unique geometry that contributes to
enthalpy via ring strain, making it difficult for the GA approach
to capture complexity mere ring corrections.
4.2. Sensitivity Analysis. To get more insights into the

molecular descriptors affecting enthalpy, a sensitivity analysis
was performed. The SVR model trained on the whole dataset is
used for sensitivity analysis in this section. The perturb
method, as discussed in Gevrey et al.,33 was used to find the
sensitivity of enthalpy to each of the input features. All of the
input features are first assigned their mean, and then one of the
input features is increased by 10% of its standard deviation.
The output from the SVR model using the modified input,
when one of the feature values was increased, is compared to
the output with all of the features assigned with their mean
values. This difference is then normalized by the 10% of the
standard deviation of the feature that is perturbed. Finally,
sensitivity of a feature is determined by taking the absolute
value of the resulting normalized values. These sensitivity
values are used to sort the features, and the top 10 sensitive
features are listed in Table 3.
Among the 10 features listed in Table 3, four (nCsp3, nDB,

MW, and nTA) are simple constitutional descriptors
describing chemical composition of a compound without any
information about its molecular geometry or atom con-

nectivity. Out of the remaining six, four are ring descriptors
(nR03, nR04, Rbrid, and nR05) which describe the number
and size of rings as well as the number of ring bridges; these
descriptors are crucial to discern among different cycles and
their arrangement within the dataset. MAXDN is the
maximum of the field effects on the atoms in a molecule due
to the perturbation of all other atoms.34 Mor26u is a 3D
MoRSE descriptor calculated from the whole molecule
structure and is one of the few descriptors that could discern
between species with chiral centers. This descriptor can be
used to establish relationships between enthalpy and chirality.
Although the Morse descriptor is difficult to interpret, many
studies have found them to be useful in quantitative structure−
property relationship (QSPR) studies.35 MAXDN and
Mor26U are the only sensitive descriptors that are related to
the geometry of molecules, while the remaining are constitu-
tional and ring descriptors.
These findings are in contrast to those of the noncyclic

compounds previously studied27 by us, wherein enthalpy
predictions were found to be highly sensitive to P_VSA
descriptors, which are related to the polarizability and
electronic structure of the species. This indicates that enthalpy
of cyclic compounds is highly influenced by the number and
size of their cycles, as well as by the arrangement these cycles
adopt, that is, by ring descriptors. These conclusions are
helpful for the development of further ML models on cyclic
and/or linear hydrocarbons, which can benefit from our
sensitivity analysis that ranks the importance of different
descriptors.

5. CONCLUSIONS

A data-driven approach based on the SVR algorithm was
developed to predict enthalpy values for cyclic hydrocarbons
with a dataset of 192 species collected from Ghahremanpour et
al.,19 CRC,20 and Minenkov et al.21 Molecular descriptors from
alvaDesc24 were used as input features that are generated from
the output of SMILES, which are chemical formulas encoded
as text strings. A k-fold workflow with an SVR algorithm was
used to determine the accuracy with which our ML model
could predict standard enthalpy of formation of cyclic
hydrocarbons. In comparison to the group additivity method,
our ML model performs better for species with complex
structures. Sensitivity analysis reveals that simple molecular
descriptors reflecting the ring nature and overall size of species
play a more important role compared to more complex
descriptors involving the shape of a species. Our ML model
represents an accurate and computationally practical alter-
native to well-established GA and quantum chemistry methods
for the prediction of enthalpy data of cyclic species, which are
scarce in the literature despite their importance in combustion.
Access to more data can greatly enhance the accuracy and

predictive capability of the presented ML model. Therefore, it
is expected that this ML model will be improved as new and
accurate data for enthalpy of cyclic hydrocarbons become
available. However, calculating accurate enthalpies for cyclic
and large hydrocarbons can be computationally expensive, and
methods like active learning used by Li et al.18 for better design
of experiments (DoE) should be considered for this task.
Furthermore, it can be useful to train the existing model with
large datasets consisting of uniform inputs, as opposed to
widely varying features. In this sense, it would be also beneficial
to identify a subset of cyclic species specifically relevant to

Table 3. List of the 10 Most Sensitive Features

feature description

nCsp3 number of sp3-hybridized carbon atoms
nDB number of double bonds
MW molecular weight
nR03 number of three-membered rings
nTA number of all atoms
nR04 number of four-membered rings
Rbrid ring bridge count
nR05 number of five-membered rings
MAXDN maximal electro topological negative variation
Mor26u signal 26/unweighted
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combustion and fine-tune active learning model with the
modified subset.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpca.0c02785.

Enthalpy database used in this study (.csv); molecular
descriptors used in this study for all of the species used
for developing ML model (.csv); final reduced set of
descriptors (.csv); all of the supporting information
compiled (.xlsx) (ZIP)

■ AUTHOR INFORMATION
Corresponding Authors
Kiran K. Yalamanchi − Physical Sciences and Engineering
Division, Clean Combustion Research Center, King Abdullah
University of Science and Technology (KAUST), Thuwal
23955-6900, Saudi Arabia; orcid.org/0000-0002-9990-
0046; Email: kiran.yalamanchi@kaust.edu.sa

S. Mani Sarathy − Physical Sciences and Engineering Division,
Clean Combustion Research Center, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900,
Saudi Arabia; orcid.org/0000-0002-3975-6206;
Email: mani.sarathy@kaust.edu.sa

Authors
M. Monge-Palacios − Physical Sciences and Engineering
Division, Clean Combustion Research Center, King Abdullah
University of Science and Technology (KAUST), Thuwal
23955-6900, Saudi Arabia; orcid.org/0000-0003-1199-
5026

Vincent C. O. van Oudenhoven − Physical Sciences and
Engineering Division, Clean Combustion Research Center, King
Abdullah University of Science and Technology (KAUST),
Thuwal 23955-6900, Saudi Arabia

Xin Gao − Computer, Electrical and Mathematical Sciences and
Engineering Division, Computational Bioscience Research
Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpca.0c02785

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by King Abdullah University of
Science and Technology (KAUST) Office of Sponsored
Research under the award number OSR-2019-CRG7-4077,
and the KAUST Clean Fuels Consortium (KCFC) and its
member companies.

■ REFERENCES
(1) Yang, Y.; Boehman, A. L. Oxidation Chemistry of Cyclic
Hydrocarbons in a Motored Engine: Methylcyclopentane, Tetralin,
and Decalin. Combust. Flame 2010, 157, 495−505.
(2) Chen, F.; Li, N.; Li, S.; Li, G.; Wang, A.; Cong, Y.; Wang, X.;
Zhang, T. Synthesis of Jet Fuel Range Cycloalkanes with Diacetone
Alcohol from Lignocellulose. Green Chem. 2016, 18, 5751−5755.
(3) Monge-Palacios, M.; Rissanen, M. P.; Wang, Z.; Sarathy, S. M.
Theoretical Kinetic Study of the Formic Acid Catalyzed Criegee
Intermediate Isomerization: Multistructural Anharmonicity and

Atmospheric Implications. Phys. Chem. Chem. Phys. 2018, 20,
10806−10814.
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